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Abstract

The infinitely repeated prisoners' dilemma has a multiplicity of Pareto−unranked equilibria.
This leads to a battle of the sexes problem of coordinating on a single efficient outcome. One
natural method of achieving coordination is for the players to bargain over the set of possible
equilibrium allocations. If players have different preferences over cooperative bargaining
solutions, it is reasonable to imagin that agents randomize over their favorite choices. This
paper asks the following question: do the players risk choosing an inefficient outcome by
resorting to such randomizations? In general, randomizations over points in a convex set
yields interior points. We show, however, that if the candidate solutions are the two most
frequently used −− the Nash and Kalai−Smorodinsky solutions −− then for any prisoners'
dilemma, this procedure guarantees coordination of an efficient outcome.
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1. The Problem

We consider the canonical prisoners’ dilemma (PD) given by the bimatrix

game in Figure 1. Any prisoners’ dilemma game (with strictly dominated strategies)

can be transformed into a game of the form given below by subtracting the (b, R)

payoffs from all cells and normalizing to one the marginal cost of choosing the

dominated strategy, given that the opponent chooses the dominant strategy.

The players are 1 (the row player) and 2 (the column player). The payoffs

are in terms of von-Neumann Morgenstern utilities and the class of PD games is

characterized by {(a, d) = (a1, a2, d2, d2) ∈ <4 s.t. 0 < ai < di for i = 1, 2}. We
shall denote the probability with which player 1 chooses t by p1 and the probability

with which player 2 chooses L by p2.

Given (a, d), an allocation is a pair of payoffs x = (x1, x2) residing in X (a, d),

the set of all allocations achievable via mixed strategies. With slight abuse of

notation, we shall simply write X (a, d) as X . The set of all individually rational
allocations in X is denoted IR(X ) ≡ {x ∈ X | x ≥ (0, 0)}. The Pareto-efficient
frontier of X is denoted EFF (X ) ≡ {x ∈ X | ∀ x̂ ∈ <2, if x̂ À x then x̂ 6∈ X}1 It
is well known that the unique solution to the PD is (p1, p2) = (0, 0).

Consider now the infinitely repeated PD, with discount factor δ ∈ [0, 1] which we
denote (PD∞, δ). By the Folk Theorem for infinitely repeated games (for example,

see Fudenberg and Maskin 1986) for every x in the interior of IR(X ) there exists
a δ̂ such that for all δ ∈ (δ̂, 1], there is a subgame perfect equilibrium of (PD∞, δ)

with payoff x in every repetition. Given the multiplicity of equilibria in the game

(PD∞, δ), it is not immediately clear how agents coordinate their actions to get a

specific payoff.

One approach to the problem of multiple equilibrium is to refine the equilibrium

1 The three vector inequalities are denoted À, >, and ≥.
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concept. This is a vast literature. See, for example, Kajii and Morris (1997) or van

Damme (2002) for a recent survey of parts of this research. Another alternative is

to modify the way that the repeated game is constructed in order to narrow the

equilibrium set. See Chakravorti, Conley and Taub for an example of this type of

work using probabilistic cheap talk.

In this note, we suppose instead that agents’ agree to resolve this coordination

problem through the use of bargaining theory. In general, a two person bargaining

problem consists of a pair (S, d), where S ⊂ <2 is interpreted as the set of feasible
allocations over the two agents, and d ∈ S, called the disagreement point, is the

allocation agents receive if they fail to find a mutually satisfactory way of dividing

the surplus. In the case of the repeated prisoners’ dilemma game described above,

the subgame perfect equilibrium payoffs of stage game can be taken as a set of

feasible allocations which converges to the individually rational set in the limit as

the discount factor goes to one. For simplicity, we take the limiting case and set

S = IR(X ). The disagreement point is of course the payoff agents receive when
they choose noncooperative strategies. Thus, d = (0, 0) in our case. Note that the

IR(X ) is closed, convex and comprehensive set which contains elements that strictly
dominate the disagreement point. A bargaining solution is a function φ which maps

a class of bargaining problems Σ into <2+ such that for all (S, d) ∈ Σ, it is the case
that φ(S, d) ∈ S.

More formally, we consider a situation in which agents resolve the problem of

multiple subgame perfect equilibria using the following procedure.

1. First, a bargaining problem is generated by taking the set of individually ratio-

nal allocations, IR(X ), as the set of feasible payoffs, and the payoff associated
with agents jointly playing defection strategies, (b,R), as the disagreement

point.

2. Each player i proposes a bargaining solution, φi to resolve the bargaining

(IR(X ), 0) which the agents face each time the stage game is played. In general,
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it is likely that φi 6= φj .

3. A public randomization over the alternative solution outcomes φi(IR(X ), 0)
and φj(IR(X ), 0) is used to determine the allocation to be implemented. Let
P(IR(X ), 0) denote the allocation thus implemented in any given round of the
stage game.

The specific question we are interested in is whether or not there are circumstances

under which this procedure will lead to Pareto efficient outcomes.

2. Some Definitions

We begin this investigation by recalling the definitions of the two central solu-

tions in the axiomatic theory of bargaining. The Nash solution (Nash, 1950), N is

defined as follows:

N(S, d) = argmax
x∈S
x≥d

(x1 − d1)(x2 − d2).

The Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975), K is found by tak-

ing the maximal element in the feasible set on the line connecting the disagreement

point and the ideal point Formally, the ideal point is defined as:

a(S, d) = (max
x∈S
x≥d

x1,max
x∈S
x≥d

x2),

and the Kalai-Smorodinsky solution is defined as:

K(S, d) ≡ {x ∈ S | ∃λ ∈ [0, 1] s.t. x = λd+ (1− λ)a(S, d) and 6 ∃z ∈ S, s.t. z À x}

These two solutions can be characterized by sets of axioms. We now give formal

definitions of the axioms which are necessary for our purposes:
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A permutation operator, π, is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}. Πn

is the class of all such operators. Let π(x) = (xπ−1(1), xπ−1(2), . . . , xπ−1(n))
2 and

π(S) = {y ∈ <n | y = π(x)x ∈ S}.

Symmetry (SYM): If for all permutation operators π ∈ Πn, π(S) = S and

π(d) = d, then F i(S, d) = F j(S, d) ∀ i, j.

An affine transformation on <n is a map, λ : <n → <n, where for some a ∈
<n and b ∈ <n

++, λ(x) = a + bx. Λn is the class of all such transformations. Let

λ(S) = {y ∈ <n | y = λ(x), x ∈ S}.

Scale Invariance (S.INV): ∀ λ ∈ Λn, F (λ(S), λ(d)) = λ(F (S, d)).

Individual Monotonicity (I.MON): For all (S, d), (S0, d0) ∈ Σ, such that
d = d0 and S ⊆ S0 if aj(S, d) = aj(S

0, d0) for some j = 1, 2, then

φi(S
0, d0) ≥ φi(S, d).

It is well known that both the Nash and the Kalai-Smorodinsky solutions satisfy

the SYM and S.INV axioms while the Kalai-Smorodinsky solution alone satisfies

the I.MON axiom.

3. Result

We provide the following answer to the question posed above:

Theorem 1. If φi = N and φj = K, then P(X ) ∈ EFF (X ).

Proof/

2 Subscripts indicate the components of a vector
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Suppose that the theorem were not true. Refer to (IR(X ), O) where IR(X ) =
ABCO given in Figure 2. In this case, without loss of generality, suppose that

K(IR(X ), O) picks the allocation K and N(IR(X ), O) picks the allocation N on

EFF (X ) ∩ IR(X ). Next, consider the bargaining problem AECO given in Figure

3. Note that E is to the left of C and to the right of K3 Since a(AECO,O) =

a((IR(X ), O), it holds that K(AECO, O) picks the allocation K 0. Next, con-

sider the smallest triangle containing AECO, (i.e. AFO). By the I.MON ax-

iom, K1(AFO,O) ≥ K1(AECO), since a1(AFO, O) > a1(AECO, O). In words

this means that the Kalai-Smorodinsky outcome of the problem AFO must not

lie to the left of K 0. By definition, N is the point of contact between two convex

sets (i.e. the upper contour set defined by the rectangular hyperbola in X and

the bargaining problem (IR(X ), O) whose interiors are non-intersecting). Since

IR(X ) ⊂ AFO, and AFO is convex, we have N(IR(X ), O) = N(AECO, O) =

N(AFO, O). By the axioms of S.INV and SY , given that AFO is triangular,

N(AFO, O) = K(AFO, O). Given that N is to the left of K 0, we have a contradic-

tion.

4. Conclusion

We conclude that for all two person prisoners’ dilemma problems, the Nash and

Kalai-Smorodinsky solutions suggest allocations on the same facet of the feasible

set, and so any randomization between these solutions will also be Pareto efficient.

3 We thank an anonymous referee for pointing out that our previous figure fell outside of the domain
of problems we consider.
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Thus, while the noncooperative equilibrium concept of subgame perfection leave too

many equilibria and no prediction about which of these the agents will eventually

settle on, we find that cooperative solution concepts can resolve this problem in a

Pareto efficient way even when agents disagree about which solution to choose.
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