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Abstract

The Maschler—-—Perles Solution is the unique bargaining solution which is superadditive and
satisfies the usual covariance properties. We provide two proofs for supperadditivity that do
not rely on the standard traveling time.
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* SECTION 1: THE MASCHLER-PERLES SOLUTION %

1 The MASCHLER-PERLES Solution

The MASCHLER-PERLES bargaining solution (MASCHLER-PERLES [2], [3], see also [5]
for a textbook presentation) is a mapping defined on 2—-dimensional bargaining problems
respecting anonymity, Pareto efficiency, and affine transformations of utility. Moreover,
this mapping is superadditive by which property it is uniquely characterized.

A bargaining problem is a pair (0,U) with a compact, convex, and comprehensive
subset ) # U C R2. 0 is the status quo point and U the feasible set. Players may
reach agreement on some feasible utility vector. Or else, they may fail to do so in which
case they receive zero utility each. We omit reference to the status quo point (hence
mention U only) as all concepts to be treated are covariant with “affine transformations
of utility”. A solution is a mapping ¢ that, based on some axiomatic justification,
assignes to each bargaining problem U a Pareto efficient vector ¢(U). Suppose two
players (corporations, governments) are engaged in two “remote” problems U and U’
simultaneously (one in Brussels and one in Washington). Originally, they considered
these to be different affairs, thus there was a tendency to settle for ¢(U) and ¢(U’)
separately. Later on a junctim evolved and government officials considered giving in w.r.
to one contract in favor of receiving concessions in the other one. The utilities available
are now {z + 2’|z € U,2’ € U'} =: U+ U'. The solution being superadditive, i.e.,
e(U+U'") > p(U) + @(U’'), it turnes out that both players profit from a quid quo pro.

Another interpretation is that players may face a lottery involving two bargaining prob-
lems. Superaddivity is then seen to consistently favor contracting er ante, thereby in-
creasing expected utility (see [2] or [5], p.562, for a detailed discussion).
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Figure 1.1: Bargaining problems — smooth and polyhedral

A bargaining problem is polyhedral if the Pareto surface consists of line segments only.
The Maschler—Perles solution g is based on the observation that every polyhedral bar-
gaining solution in R? is an sum of “elementary” bargaining problems that are generated
by a line segment (thus reflect constant transfer of utility). By continuity with respect
to the Hausdorff metric the solution is transferred to bargaining problems with a smooth
Pareto curve. More precisely, let @ = (a1,a3) > 0 € R". We introduce the unit vectors
€', the vectors @' := a;€' (i € I), and associate with a the triangle

I* := convH ({0, a',a? }) : (1.1)
The Pareto curve of this triangle is the line segment A® which is given by

A® := convH ({a',a’}). (1.2)
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A vector a is dyadic (with basis T) if there are integers 1, ¢, such that a = (&,
holds true.

)
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Now, a bargaining problem is seen to be polyhedral if and only if the feasible set given by

m= Y v (1.3)

keK

with a family of positive vectors
k -
(@), » K:={1,....K}

As it is sufficient to establish the solution on a dense subset with respect to the Hausdorff
topology, we restrict ourselves to generating vectors a*) which are dyadic (with the same
basis).

A triangle II* my be represented as (“homothetic”) sum of two of its copies shrinked by
suitable factor. In particular, we have

1o, 1 P
I = 11+ 1% = I13% 4+ 1139
2 Ty "

By this operation the volume V(a) := ajas = % area (I1%) is divided by 4, i.e.,

Therefore, we may assume that all triangles involved in a representation (1.3) have equal
volume. The bargaining problems having this property again form a dense subset of the
set of all bargaining problems. Similarly, whenever we deal with the sum of two bargaining
problems, we may assume that the summands as well as the sum are dyadic with the same
basis.

Each triangle equal area
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Figure 1.2: A standard dyadic bargaining problem

Definition 1.1. We call a bargaining problem standard dyadic if the feasible set is a
polyhedron represented as in (1.3) with dyadic vectors all generating equal volume.
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We assume the enumeration of the triangles to be such that the tangents (i.e., the quotients
(k)

22-) are decreasing with the index k. The Maschler—Perles solution for a standard dyadic

a

blargaining problem is then defined inductively as follows: For K = 1 it is the midpoint
of the line segment (the Pareto curve). For K = 2 (and assuming that the two triangles
are not homothetic) it is the unique vertex of I = TV +TI®). For K > 3 it is defined
by the recursive formula

p(M) = u(Z HM)

keK

= @O+ (Y e

keK—{1,K}

This formula in fact implies uniquenes of the solution on standard dyadic bargaining prob-
lems. For, every superadditive solution p is necessarily additive whenever the solutions
of the two summands admit of a joint normal.

A

Figure 1.3: Additivity of the solution

To see this more clearly, consider Figure 1.3. Note that the sum of two Pareto efficient
vectors is Pareto efficient if and only if both admit of a joint normal (equivalently: a joint
tangency). In Figure 1.3, the corner point of T admits of a joint normal with each Pareto
efficient point of ¥ (some normal cones are indicated). If the volumes of the two triangles
involved in Y are equal, then the solution yields this cornerpoint, denoted by u(Y), hence
w(Y) + () is Pareto efficient. As the solution is superadditive, we must necessarily
have (T + ¥) = u(Y) + p(0).

In view of our enumeration, the first polyhedron I + IT¥) plays the role of Y, hence
its solution admits of a joint normal with every Pareto efficient point of the second poly-
hedron.
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2 Superadditivity

The recursive definition of the Maschler—Perles solution shows uniqueness at once. The
fact that the solution is superadditive is proved by MASCHLER—PERLES [2], [3] using the
concept of the “traveling time”. To this end, they first extend the solution to smooth
bargaining problems. The procedure amounts to having two points travel on the Pareto
curve, simultaneously starting at each players “bliss point”. The speed of the motion is
arranged such that the product of velocities in axis directions is constant at each instant
(“concessions” are made continuously in this way). When both points meet on the Pareto
surface, the solution is reached. This concept is then carried back to polyhedral problems
in order to show superadditivity. The reader may wish to consult MASCHLER-PERLES
[2] or [5] (CH. VIII, Theorem 4.21, p.588) for more details.

We wish to provide two simple proofs that do not hinge on this concept. These versions
can be used in classroom as they need no further preparation. Together, they might
provide a clue for generalizing the concept to more than two dimensions. The first proof
hinges on induction, thus it is close to the definition of the solution as discussed in SECTI0N
1. The second one is shorter and based on the ordering of slopes in a polyhedral probelem.

Theorem 2.1 ( see [2], [3]). Let IT be a dyadic polyhedron such that

m= > " (2.1)

kK
holds true. Let
I =7T+0 (2.2)
where
=YY" w=3%n" (2.3)
kel keJ
Then
p(I0) > p(T) + p(¥). (2.4)

Proof: By induction: if IT is the sum of two polyhedra (w.l.g. not homothetic) with equal
volume, then u(IT) is the unique vertex on the Pareto surface of IT while pu(Y) + (V) is
a non—Pareto efficient point on the line connecting 0 and g (II).

In order to perform the induction step, assume that
M= +v, T=>Ym", ¢=>n" (2.5)
kel ked
holds true.

15*'STEP : Assume that the indices 1 and K are jointly contained in one of the above
sets, say {1, K} C I. Then, as II'V) 4+ I1(5) admits of joint normals at g (1" + 1)) with
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all other polyhedra involved, we have

pdl) = p OO+ 4 N e
keK—{1,K}

keK—{1,K}
(by Definition, see (1.4) )

m (H(l) + H(K)) + 1 Z 7e® t (Z Ha(k))

keI—{1,K} ked

v

(by induction hypothesis)

)l

kel ked

2°dSTEP : Suppose now, that we have 1 € I and K € J. Let L denote the largest index
in I, i.e., the one wich induces the largest slope (in absolute value) of a line segment
involved in Y. Then we obtain

p) = p(OO+0® 4 S e 43 e
keI—{1,L} ked
> p (H(l) + I ZH““”) 71 DY G
ked kel {1,L}

(by the 1**STEP as{1,K} C J + {1,L})

W 4 ) e 7e® (2.7)
p (IO 4+ 1) 4 ) tul D

keJ keI—{1,L}

v

(by induction hypothesis)

_ m (Z Ha(k)) .y H(l) + H(L) Z Ha(k)

ked keI-{1,L}
(by Definition applied to T, see (1.4) )
= {1} + p{V},
q.e.d.
The second proof refers to the construction of the solution.

Proof: The enumeration is such that the tangent slope decreases with the index k. Since

the products agk)agk) are all equal, it follows that the enumeration satisfies

agl) > a?) D agK) , (2.8)
ag) < af) .. < agK) '
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W.lo.g we may assume that K is even (otherwise split every polyhedron homothetically
in two). Then we know that

K
2 K
k k
pm= (S a, 3 o], (2.9)
k=1 k=541

that is, p(Il) collects the & largest vectors with respect to each coordinate.

Now with respect to T we may as well assume that |I] is even. Thus, there is a decom-

position I = I, + I, with |I;| = |I5| such that
p(T) = (Z a3 agk)) . (2.10)
kel kels

The same holds true concerning ¥ with respect to a decomposition J = J;+J5. Clearly,
I, + Ji| = [Iy+ J5] =% and hence

o[

p () +m(¥) = Y a?+ > a” = Y WP <> (21
1

kel kedJi keli+J, k=

as the last sum collects the largest & coordinates (see (2.9)),
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