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Abstract

We propose a modification to the concept of the potential of agame à la Hart−Mas Colell to
determine a salary system for theassignment problem. We obtain explicit formulas for the
potentialof the assignment problem and for it's corresponding salarysystem. Also, we
establish some properties of this salary systemand we give an interpretation in terms of the
Shapley value.
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1. Introduction

Let us consider a finite set of workers, a set of jobs with equal cardinality and
values aij which measure the efficiency of the assigning worker j to the job i. In
the assignment problem each worker is to be assigned to a different job in such a
way that the sum of corresponding efficiencies is maximum. In other words,

max
∑n

i=1

∑n
j=1 aij xij

s.t. ∑n
i=1 xij = 1 j = 1, . . . , n∑n
j=1 xij = 1 i = 1, . . . , n

xij = 0 or 1

where xij = 1 if the worker j is assigned to job i and xij = 0 otherwise.
In this work, we propose a fair salary system for the previous problem. We have

three main assumptions: First, we suppose that the maximum efficiency of the
system (the optimal value of the objective function) is equal to the amount to be
shared in salaries among the workers. Alternatively, the total amount to be shared
in salaries could be given exogenously and most of the results remain valid. Second,
we only consider problems where the number of workers is equal to the number of
jobs. Lastly, we suppose that each worker has the same right to be assigned to any
of the jobs, so every worker must agree with the final assignment.

Notice that as a general rule it is not fair to pay according to the efficiency that
each worker generates in the optimal solution since, in that case, some workers
are usually sacrificed for the sake of global efficiency. For example in the optimal
solution of the problem with the following matrix,

(1.1)
Workers

Jobs
[

8 0
15 10

]
the first worker is assigned to job 1 and the second to job 2, however it is not fair
to pay 8 units to the first worker and 10 units to the second since the first worker
is more productive than the second worker, job by job. So, in order to define a
salary for the workers it will be necessary to consider their relative abilities to do
the different jobs.

Shapley and Shubik[4] suppose an optimal assignment of sellers to buyers in
two-sided markets and proposed a solution based on linear programming to share
the maximum total monetary payoff among sellers and buyers. In this work, we
suppose an optimal assignment of a set of workers to a set of jobs and propose a
solution to share the efficiency of the system only among the set of workers.

We use the concept of potential of a cooperative game to establish this salary
system. Hart and Mas-Colell ([2] and [3]) established a new form to generate the
value of a game. They start with the definition of a set of games in which a
real function is defined, called the potential of the game. This function must be
defined in such a way that the following two conditions are satisfied: i) the gain
or participation of each player is equal to the difference in potential between the
game that is considered and the one that results when he abandons the game, and,
ii) the sum of gains or participations add to what all the players get in that game.
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Surprisingly, these two conditions determine the gain or participation of the players
and also these participations coincide with it’s corresponding Shapley value.

For a brief revision of the concepts of cooperative games that are mentioned
here, such as the Shapley value, see Appendix A (Finite games and their values) in
Aumman and Shapley [1].

Now, we present the previous ideas formally. Let (N, v) be a cooperative game
and let us denote by G = {(S, vS) : S ⊆ N and vS = v|S} the family of subgames
of (N, v). The potential of a game is defined as a function

P : G → R

such that

(1.2)
∑
j∈S

[
P (S, vS)− P (S\{j}, vS\{j})

]
= v(S)

with the condition that P (∅, v∅) = 0. Furthermore, it is assumed that the loss of
potential

(1.3) P (S, vS)− P (S\{j}, vS\{j})

when the player j abandons the game, is equal to the amount that corresponds to
this player in the game (S, vS).

Notice that (1.2) could be rewritten as

(1.4) s · P (S, vS) = v(S) +
∑
j∈S

P (S\{j}, vS\{j})

where s = |S|. This expression determines P and allows it’s calculation in a recur-
sive form. Moreover, it turns out that the difference (1.3) is equal to the Shapley
value of player j in the game (S, vS).

Furthermore, Hart and Mas-Colell give an explicit formula for the potential of a
game:

(1.5) P (N, v) =
∑
S⊆N

(s− 1)! (n− s)!
n!

v(S).

In section 2 we show that these ideas could be applied, with appropriate modi-
fication, to determine a salary system for the assignment problem. In section 3 we
present some properties of the salary system proposed in this work. First, we see
this salary system as a particular case of a more general framework and then we
consider the case where the workers do not have any bargaining power.

2. Potential for the assignment problem

We assume that each worker is assigned to one and only one job. Let us also
suppose that we have defined a potential on the set of this problems, i.e., a real
function on this set.

We need to define the loss of potential when one worker abandons a problem,
so we need also to eliminate a job. A priori it could be any job, so we propose the
average loss of potential instead. Let us formalize this idea.

Denote by M the set of jobs, by N the set of workers and by A the matrix which
entry aij represents the efficiency of the worker j doing the job i. Notice that rows
of A are indexed by the elements of M and its columns by the elements in N . We
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suppose that M and N have the same cardinality and we will denote by A|(M,N)
the matrix A restricted to the rows in M and columns in N . The problem,

max
∑

i∈M

∑
j∈N aij xij

s.t. ∑
i∈M xij = 1 j ∈ N∑
j∈N xij = 1 i ∈ M

xij = 0 or 1

defined by the parameters M ⊆ M, N ⊆ N and A = A|(M,N) will be denoted
by (M,N,A). So that this does not produce confusion, we will use only (M,N)
instead of (M,N,A) and sometimes we will represent it just by it’s matrix A.

The set of problems that we will consider is as follows,

P = {(M,N,A) : M ⊆M, N ⊆ N such that |M | = |N | and A = A|(M,N)},

It is well-known that these kinds of problems always have at least one optimal
solution, therefore the following function is well defined,

LP : P → R

where LP (M,N) is the optimal value of the objective function for the problem
(M,N). Let us denote

Pot(N\{j}) =
∑
i∈M

Pot(M\{i}, N\{j})
n

.

Definition 1. We define the potential of the assignment problem as a function,

Pot : P → R

such that Pot(∅, ∅) = 0 and

(2.1)
∑
j∈N

[Pot(M,N)− Pot(N\{j})] = LP (M,N).

As in Hart and Mas-Colell [2] and [3], we will suppose that

Pot(M,N)− Pot(N\{j})

is the salary which corresponds to the worker j in the problem (M,N). This number
is the average of the loss of potential when the worker j abandons the system. It
is easy to see that (2.1) is equivalent to the following recursive expression,

(2.2) Pot(M,N) =
n LP (M,N) +

∑
j∈N

∑
i∈M Pot(M\{i}, N\{j})

n2

which determines the potential of the assignment problem. We will denote in-
distinctly for ϕ(M,N) or for ϕ(A) the vector of salaries that corresponds to the
problem (M,N,A), i.e., the vector with entry j is given by

(2.3) ϕj(M,N) = Pot(M,N)− Pot(N\{j})

and we will call it a salary system for the assignment problem (M,N).
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Example. In this example, we calculate the salary system for the problem with
the following matrix,

(2.4)

 9 10 2

7 8 6

10 1 3


For simplicity of the exposition we will represent the problem (M,N,A) in the

following form:
A

LP (M,N)
Pot(M,N)

In order to calculate Pot(M,N) using (2.2) we need to generate all sub problems
as the result of removing one worker and one job. We repeat this process in each
case until there are no workers. Then we calculate LP for each of the obtained
problems and their potential beginning with the lower cardinality. Notice that for
matrices with one element, say A = [a], LP (M,N) = Pot(M,N) = a. While if the
matrix is 2 × 2, then Pot(M,N) is equal to the sum of the entries of the matrix,
plus 2LP (M,N), all divided by 4. Thus, the problems that are derived from (2.4)
when one worker is missing are:

When worker 1 is missing:

(2.5)

[
10 2

8 6

]16

14.5

[
10 2

1 3

]13

10.5

[
8 6

1 3

]11

10

When worker 2 is missing:

(2.6)

[
9 2

7 6

]15

13.5

[
9 2

10 3

]12

12

[
7 6

10 3

]16

14.5

When worker 3 is missing:

(2.7)

[
9 10

7 8

]17

17

[
9 10

10 1

]20

17.5

[
7 8

10 1

]18

15.5

The potential of the problem with matrix (2.4) is the result of adding 3 times
the optimal value of the objective function (3 · 26) with the potential of each of the
nine previous problems and divide the result by 9. Thus, 9 10 2

7 8 6

10 1 3


26

22.555

Now, we can calculate the salaries for the problem with matrix (2.4) using (2.3).

Pot(S\{1}) = (14.5 + 10.5 + 10)/3 = 11. 667
Pot(S\{2}) = (13.5 + 12 + 14.5)/3 = 13. 333
Pot(S\{3}) = (17 + 17.5 + 15.5)/3 = 16. 667

giving us

ϕ(A) =

 22.555− 11. 667
22.555− 13. 333
22.555− 16. 667

 =

 10. 888
9. 222
5. 888

 .
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As another example, the wages for the problem given in the introduction (see 1.1)
are 12.25 for worker 1 and 5.75 for worker 2.

3. Properties of the potential of the assignment problem

The next theorem establishes an explicit expression for the potential of the as-
signment problem. We will denote by

(3.1) L̂M (S) =
∑

{R⊆M :|R|=|S|}

LP (R,S).

Theorem 1. For each (M,N) ∈ P we have that

(3.2) Pot(M,N) =
∑
S⊆N

1
s

[
s! (n− s)!

n!

]2

L̂M (S).

Theorem 2. The salary for worker j in the assignment problem (M,N) is given
by

ϕj(M,N) =
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2 [
L̂M (S)− ̂LM (N\S)

]
.

The previous theorem provides us an alternative way to calculate the salary
system for the assignment problem. Using (3.1) and (2.5) - (2.7) we have that

̂LM ({1, 2, 3}) = 26
̂LM ({1, 2}) = 17 + 20 + 18 = 55
̂LM ({1, 3}) = 15 + 12 + 16 = 43
̂LM ({2, 3}) = 16 + 13 + 11 = 40

̂LM ({1}) = 9 + 7 + 10 = 26
̂LM ({2}) = 10 + 8 + 1 = 19
̂LM ({3}) = 2 + 6 + 3 = 11

and therefore,

ϕ1(A) =
1
9
(26− 40) +

1
18

(55− 11) +
1
18

(43− 19) +
1
3
26 = 10.888.

The next result establishes a relation between the salary system given by (2.3)
and the Shapley value. Let us denote by

Θ = {θ : N → M |θ bijective}
the set of the n! possible ways to assign the jobs to the workers. Let us select
θ ∈ Θ randomly (each case with probability 1

n! ), in such a way that worker j
gets the job θ(j) and suppose the workers have the possibility of exchanging their
assigned jobs. The process of bargaining generates a cooperative game in a natural
way: when the coalition of workers S is formed they can generate an efficiency
vθ(S) = L(θ(S), S). Thus, when they distribute the efficiency according to the
value φ, they get an average 1

n!

∑
θ∈Θ φ(vθ). The next theorem establishes that the

salary system coincides with the previous process when they use the Shapley value.
We will denote by Sh(N, v) the Shapley value of the game (N, v).
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Theorem 3. For A ∈ P we have that

ϕ(A) =
1
n!

∑
θ∈Θ

Sh(N, vθ) = Sh(N,
1
n!

∑
θ∈Θ

vθ).

The following theorem establishes some properties of the salary system. The
first property is that the solution does not change when re-naming the jobs. The
second one establishes the symmetry with regard to the workers, in particular for
two workers with corresponding equal columns, the same salary is obtained. Also
we have a change in the scale of efficiency that gives us an equivalent change in the
salary. Lastly, we establish a weak monotony property with respect to the efficiency
of the workers and a logical solution for permutation matrices.

Let P be a permutation matrix, i.e., a n × n matrix where n − 1 of the entries
of each column and of each row are zero and the other one is equal to one. It is
well known that for any matrix A, PA is a permutation of rows of A and AP is a
permutation of the columns of A. Let 1 be the column vector in Rn of all 1’s and
Aj the column j of the matrix A.

Theorem 4. For A ∈ P we have that
a) ϕ(PA) = ϕ(A) for every permutation matrix P .
b) ϕ(AP ) = Pϕ(A) for every permutation matrix P .
c) ϕ(λA) = λϕ(A) for every real number λ.
d) If Ak ≤ Aj then ϕk(A) ≤ ϕj(A).
e) ϕ(P ) = 1 for every permutation matrix P .

In general, we have that ϕ(diag(d)) 6= d, where d is a vector and diag(d) it’s
corresponding diagonal matrix.

It may also happen for the bargaining power of the workers that a positive salary
is assigned to a worker with zero efficiency in all jobs. For example in the problem[

2 0
1 0

]2

7
4

we get the salary system ( 7
4 , 7

4 −
3
2 )T = ( 7

4 , 1
4 )T . This could be explained with

Theorem 3, with one of the θ ∈ Θ there is no bargaining but with the other, worker
2 has some bargaining power.

4. Appendix

Proof of Theorem 1. The proof is by induction on the common cardinality of M
and N . For |N | = |M | = 1, both (2.2) and (3.2) are equal to LP (M,N). Let us
suppose that (2.2) and (3.2) are equal for (M\{i}, N\{j}) for every i ∈ M and
j ∈ N . Then,

1
n2

∑
i∈M

∑
j∈N

Pot(M\{i}, N\{j}) =

=
1
n2

∑
i∈M

∑
j∈N

∑
S⊆N\{j}

∑
{R⊆M\{i}:|R|=s}

1
s

[
s! (n− s− 1)!

(n− 1)!

]2

LP (R,S)

Now, since the double sum
∑

i∈M

∑
{R⊆M\{i}:|R|=s} is equivalent to

∑
{R⊆M :|R|=s}

∑
i∈M\R

and the double sum
∑

j∈N

∑
S⊆N\{j} is equivalent to

∑
{S⊂N :S 6=N}

∑
j∈N\S we

have that
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=
1
n2

∑
{S⊂N :S 6=N}

∑
j∈N\S

∑
{R⊆M :|R|=s}

∑
i∈M\R

1
s

[
s! (n− s− 1)!

(n− 1)!

]2

LP (R,S)

=
∑

{S⊂N :S 6=N}

∑
{R⊆M :|R|=s}

1
s

[
s! (n− s)!

n!

]2

LP (R,S) = Pot(M,N)− 1
s
LP (M,N)

�
Proof of Theorem 2. By the previous theorem we have that

1
n

∑
i∈M

Pot(M\{i}, N\{j}) =
1
n

∑
i∈M

∑
S⊆N\{j}

∑
{R⊆M\{i}:|R|=s}

1
s

[
s! (n− s− 1)!

(n− 1)!

]2

LP (R,S)

Since the double sum
∑

i∈M

∑
{R⊆M\{i}:|R|=s} is equivalent to

∑
{R⊂M :|R|=s}

∑
i∈M\R

we have that

=
∑

S⊆N\{j}

∑
{R⊂M :|R|=s}

(n− s)
n

1
s

[
s! (n− s− 1)!

(n− 1)!

]2

LP (R,S)

=
∑

S⊆N\{j}

∑
{R⊂M :|R|=s}

n

n− s

1
s

[
s! (n− s)!

n!

]2

LP (R,S)

=
∑

S⊆N\{j}

n

n− s

1
s

[
s! (n− s)!

n!

]2

L̂M (S)

therefore
ϕj(M,N) = Pot(M,N)− 1

n

∑
i∈M

Pot(M\{i}, N\{j})

=
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2

L̂M (S) +
∑

S⊆N\{j}

1
s

[
s! (n− s)!

n!

]2

L̂M (S)

−
∑

S⊆N\{j}

n

n− s

1
s

[
s! (n− s)!

n!

]2

L̂M (S)

=
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2

L̂M (S)+

+
∑

S⊆N\{j}

[
1− n

n− s

]
1
s

[
s! (n− s)!

n!

]2

L̂M (S)

=
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2

L̂M (S)−
∑

S⊆N\{j}

1
n− s

[
s! (n− s)!

n!

]2

L̂M (S)

=
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2

L̂M (S)−
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2

̂LM (N\S)

=
∑

{S⊆N :j∈S}

1
s

[
s! (n− s)!

n!

]2 [
L̂M (S)− ̂LM (N\S)

]
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�
Proof of Theorem 3. Let µ be the cooperative game given by

µ(S) =
1
n!

∑
θ∈Θ

vθ(S)

then
µ(S) =

1
n!

∑
θ∈Θ

L(θ(S), S)

=
∑

{R⊆M :|R|=s}

s!(n− s)!
n!

L(R,S)

Now, by (3.2) we have that

Pot(M,N) =
∑
S⊆N

∑
{R⊆M :|R|=s}

1
s

[
s! (n− s)!

n!

]2

L(R,S)

=
∑
S⊆N

(s− 1)! (n− s)!
n!

∑
{R⊆M :|R|=s}

s! (n− s)!
n!

L(R,S)

=
∑
S⊆N

(s− 1)! (n− s)!
n!

µ(S) = P (N,µ)

which is the potential of the game µ.
In a similar way

Pot(N\{j}) =
1
n

∑
i∈M

Pot(M\{i}, N\{j}) =

=
1
n

∑
i∈M

∑
S⊆N\{j}

∑
{R⊆M\{i}:|R|=s}

1
s

[
s! (n− s− 1)!

(n− 1)!

]2

L(R,S)

=
∑

S⊆N\{j}

1
n

1
s

[
s! (n− s− 1)!

(n− 1)!

]2 ∑
i∈M

∑
{R⊆M\{i}:|R|=s}

L(R,S)

=
∑

S⊆N\{j}

1
n

1
s

[
s! (n− s− 1)!

(n− 1)!

]2 ∑
{R⊆M :|R|=s}

(n− s)L(R,S)

=
∑

S⊆N\{j}

(s− 1)! (n− s− 1)!
(n− 1)!

s! (n− s)!
n!

∑
{R⊆M :|R|=s}

L(R,S)

=
∑

S⊆N\{j}

(s− 1)! (n− s− 1)!
(n− 1)!

µ(S) = P (N\{j}, µN\{j})

�
Proof of Theorem 4.

a) It follows by Theorem 1 and using the fact that

L̂M (S) = ̂Lθ(M)(S)

for every θ ∈ Θ.
b) It follows by ϕ(A) = Sh(N, 1

n!

∑
θ∈Θ vθ) and the symmetry of the Shapley

value.
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c) The proof is straightforward since

LP (R,S, λB) = λLP (R,S,B).

d) Notice that the marginal contributions are monotonic, so, d) follows by
Theorem 3.

e) Using b) and a) we have that

Pϕ(I) = ϕ(IP ) = ϕ(P ) = ϕ(PI) = ϕ(I)

Thus, ϕi(I) = ϕj(I) for every i, j ∈ N . By the efficiency property ϕj(I) = 1
for every j ∈ N . �
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