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Abstract

When testing for a change in mean of a time series, the null hypothesis is no change in mean.
However, a change in mean causes a bias in the estimation of serial correlation parameters.
This bias can cause nonmonotonic power to the point that if the change is big enough, power
can go to zero. In this paper, we show that a nonparametric correction can restore power. The
procedure is illustrated with a small Monte Carlo experiment.
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1. Introduction

There are a number of tests designed to test for a change in mean of a time series. Many
of the tests can be applied to general regression models or single time series. Some of these
tests include the CUSUM tests of Brown, Durbin, and Evans (1975) which were analyzed
again in Ploberger and Kramer (1992). Related tests were developed by Gardner (1969) and
MacNeill (1978) which are based on the square of cumulative sums of residuals. Andrews
(1993) analyzed functions of a Wald test and Andrews and Ploberger (1994) proposed optimal
tests. The tests in Elliott and Müller (2003) satisfy a different optimality property and are
shown to behave in a similar manner to many of the existing tests.

The unit root literature is large, and, for a time, developed independently of the literature
on testing for change in mean. However, Perron (1989) showed that if there is a change in
the mean of an otherwise stationary time series, traditional unit root tests are unable to
reject the unit root hypothesis. Perron (1990) provides an analysis of the coefficient bias
in an autoregression when there is a change in mean. The results show that the estimated
coefficient is biased toward one so that the estimator is closer to one the larger the change
in mean. Based on these findings, a huge literature has developed which attempts to sort
out the unit root versus break in deterministic trend hypothesis. Moreover, Kuan, Newbold,
and Nunes (1995) show that the converse is also true; if there is a unit root, some tests for a
change in mean will find one. In response to this interaction between changes in mean and
the unit root hypothesis, Vogelsang (1998) developed a test for change in mean (or trend)
that is robust to the unit root hypothesis.

Vogelsang (1997, 1999) shows that the confusion between a unit root and a change in
mean has another adverse affect on inference for a change in mean. When testing for a
change in mean, one must estimate some effect for serial correlation, either in a parametric
or nonparametric fashion. If one is dealing with a dynamic time series model and there is a
change in mean, the effect discovered by Perron (1990) causes the autoregressive coefficient
to be biased toward one. Now the test for a change in mean interprets the change in mean
as persistence and hence a larger variance for the process rather than a change in mean.
Vogelsang (1999) shows that as the change in mean increases, some tests are less likely to
detect the change. This effect causes the power function to initially increase but eventually
decrease, hence the phenomenon is referred to as nonmonotonic power. Therefore, a change
in mean causes a bias in the autoregressive parameters causes poor inference in both unit
root tests and tests for a change in mean.

In this paper, we show that a nonparametric adjustment to some tests can alleviate
nonmonotonic power while retaining the original asymptotic distribution for the test. The
correction is based on a nonparametric estimation of the mean of the time series. We then
use the residuals to construct an estimate of the dynamic parameters in the model. By using
the nonparametric estimation technique, we are able to consistently estimate the dynamic
parameters even if there is some form of change in the mean. The modified tests are compared
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to their original counterparts in a small Monte Carlo experiment where it is revealed that
the nonparametric adjustment is effective in avoiding nonmonotonic power.

2. Model

We introduce a simple time series model given by

yt = θ

(
t

T

)
+ ut

ut = αut−1 + εt

where εt is a martingale difference sequence with mean zero, variance given by σ2
ε , and

possessing finite fourth moments. The mean of yt is given by θ(t/T ) and the variance of yt

is given by σ2
ε /(1− α2).

One hypothesis of interest is that the mean of yt is not time-varying, so that the null
hypothesis is given as

H0 : θ(t/T ) = θ = constant.

Following Vogelsang (1999), define the variable

DUt = 1(t > Tb)

which is a simple indicator of whether the time period is greater than some reference point
Tb. Suppose that σ2

ε and α are known but we wish to test the constancy of θ. First, note
that the variance of

√
T ȳ is given as ω2 = σ2

ε /(1 − α)2. The tests of Andrews (1993) and
and Andrews and Ploberger (1994) are based on the Wald test given as

W (Tb) =

(
ω2

T∑
t=Tb+1

D̂U
2

t

)(
T∑

t=Tb+1

ŷt

)2

, (1)

where D̂U t and ŷt are the residuals from regressing DUt and yt respectively on a constant.
Let Λ be a set of possible dates for a discrete shift in mean. The sup Wald, mean Wald, and
exponential Wald statistics are defined as

sup Wald = sup
Tb∈Λ

W (Tb)

mean Wald =
1

T

∑
Tb∈Λ

W (Tb)

exp Wald = log

(
1

T

∑
Tb∈Λ

exp

(
1

2
W (Tb)

))
.
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In applications, the parameter ω2 is unknown and must be estimated in a parametric or
nonparametric fashion.

As discussed in Vogelsang (1999), it is possible to calculate a dynamic version of the
Wald statistic as

WD(Tb) =

(
s2(Tb)

T∑
t=Tb+1

D̃U
2

t

)(
T∑

t=Tb+1

ỹt

)2

, (2)

where D̃U t and ỹt are the residuals from regressing DUt and yt respectively on a constant,
Dt, and yt−1 with Dt = 1(t = Tb + 1). The term s2(Tb) is calculated from the residuals of
regressing yt on a constant, DUt, Dt, and yt−1.

Vogelsang (1999) provides a thorough anaylsis of the statistics calculated with nonpara-
metric estimates of ω2 and the statistics based on the dynamic version of the Wald tests.
Both types of statistics may exhibit nonmonotonic power to the point that power can go to
zero if the change in mean is large enough.

We propose a modification to the existing statistics based on a nonparametric estimator
for ω2. In a different test, this is the method used in Juhl and Xiao (2004) to modify
a U-statistic for testing a constant mean. The procedure is as follows. First, obtain a
nonparametric estimator for ut = yt − θ(t/T ) by the quantity

ǔt =
1

Th

T∑

s 6=t

K

(
t− s

Th

)
(yt − ys)

where K(·) is a kernel function and h is a bandwidth parameter that goes to zero at a
prescribed rate. Then we regress ǔt on ǔt−1 to get an estimate of ρ. The variance of εt is
estimated using residuals of the regression of ǔt on ǔt−1. The final estimator of ω2 is defined
as ω̌2.

3. Asymptotic Distribution

We list the assumptions needed for ω̌2 to be consistent for ω2.

Assumption 1 yt is generated according to

yt = θ

(
t

T

)
+ ut

ut = αut−1 + εt

where |α| < 1.
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Assumption 2 Let Ft−1 = σ(εt, εt−1, . . .). E(εt|Ft−1) = 0, E(ε2
t |Ft−1) = E(ε2

t ) = σ2 < ∞,
E(ε4

t |Ft−1) = E(ε4
t ) = µ4 < ∞.

Assumption 3 g(·) belongs to the class G4
2 defined in Robinson (1988).

Assumption 4 k(·) ∈ K2, a class of kernels defined in Robinson (1988).

Assumption 2 are moment conditions, one of which requires εt to be a martingale dif-
ference. Assumptions 3 and 4 are a standard type of smoothness conditions and kernel
restrictions such as those employed in Fan and Li (1999). We state the result below.

Theorem 1 Suppose that Assumptions 1-4 hold, h → 0, Th8 → 0, and Th2 →∞. Then
√

T (α̌− α) = Op(1),

and ω̌2 p→ ω2.

This result is proven in Juhl and Xiao (2004). Given the assumptions above, one can
replace ω by its estimate in the Wald statistics. With the consistency of ω̌2 in hand, it is
obvious that under the null hypothesis, the functions of the Wald statistics will have the
distributions found in Andrews (1993) and Andrews and Ploberger (1994).

4. Monte Carlo

This section provides an illustration of the perfmance of the modified test statistics in a
small experiment. The model is given as

yt = γDBt + ut

ut = αut−1 + εt, t = 1, . . . 200,

where DBt = 1(75 < t < 150) and α = 0.5. To examine size, we set γ = 0 and we count
the percentage of rejections in 2000 replications. We compute the supW , meanW , and
expW statistics based on the dynamic regression model given in (2). The modified statistics
are denoted supW ∗, meanW ∗, and expW ∗ are based on (1). These modified statistics all
require a bandwidth parameter to obtain the estimator ω̌2. To examine the sensitivity of
the results to the bandwidth choice and serial correlation in the data, we use three versions
of the bandwidth, h = c×T−1/5, where c = 1, 1.5, 2 and α = 0.0, 0.5, 0.7. The results appear
in Table 1. Notice that all of the statistics have size very close to the nominal 5% and that
the modified statistics are not particularly sensitive to the bandwidth.

To examine the power of the tests, we let γ increase up to 4.5. A nonzero γ causes
the process to have two changes in mean, one at t = 0.25T and another at t = 0.75T .

4



The power is calculated using size-adjusted critical values based on the size experiment.
For the modified statistics, we use a bandwidth of T−1/5. Power is shown in Figures 1-
3. The nonmonotonic power of the original statistics based on the dynamic regression is
apparent from the Figures. However, as expected, the modified statistics have excellent
power throughout the entire range of γ.

5. Conclusion

We have illustrated how to avoid nonmonotonic power in tests for changing mean in this
paper. The tests in this paper use a result from Juhl and Xiao (2004) on the consistency
of long-run variance estimators under changing means. Our Monte Carlo experiment shows
that the tests are not particularly sensitive to the bandwidth parameter needed in the non-
parametric estimation of the mean function.
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Table 1.
Size

α = 0.0 supW meanW expW
0.026 0.037 0.028

supW∗ meanW∗ expW∗

c = 1.0 0.041 0.032 0.0275
c = 1.5 0.037 0.030 0.025
c = 2.0 0.035 0.029 0.024

α = 0.5 supW meanW expW
0.030 0.040 0.034

supW∗ meanW∗ expW∗

c = 1.0 0.031 0.041 0.034
c = 1.5 0.026 0.039 0.030
c = 2.0 0.022 0.035 0.027

α = 0.7 supW meanW expW
0.037 0.042 0.035

supW∗ meanW∗ expW∗

c = 1.0 0.041 0.058 0.0445
c = 1.5 0.030 0.048 0.038
c = 2.0 0.024 0.042 0.031
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