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1 Introduction

The ability to correctly decompose a time series into its separate difference stationary,
I(1), and trend stationary, I(0), regimes, where they exist, has important implica-
tions for effective model building and forecasting in applied economics and finance.
A number of recent testing procedures have been developed that aim to distinguish
such behaviour. These include the ratio-based persistence change tests of, inter alia,
Kim (2000), Kim et al. (2002), Busetti and Taylor (2004) (BT) and Leybourne and
Taylor (2004) which test the null hypothesis of I(0) throughout the sample against the
alternative of a change from I(0) to I(1), or vice versa.
The test statistics developed by these authors are based on a sequence of ratios of

sub-sample implementations of the Kwiatkowski et al. (1992) (KPSS) type stationarity
test statistic. The sample is split in two at some point. The sub-sample KPSS test

∗Address for Correspondence: Robert Taylor, Department of Economics, University of Birming-
ham, Edgbaston, Birmingham B15 2TT, United Kingdom.
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statistics are applied to each of the two sub-samples and then the ratio of the two
statistics is taken. This is repeated over a range of possible changepoints and the test
is then based on, for example, the maximum of the resulting sequence of ratios. In
testing against I(0) to I(1) changes we divide the second sub-sample statistic by the
first, and vice versa for tests against I(0) to I(1) changes. Now, it is well known that the
KPSS statistic diverges with the sample size against I(1) data, but is of Op(1) against
I(0) data; see, for example, KPSS pp.165-9. The ratio-based testing approach exploits
these facts, since the largest ratio statistic will be of Op(1) against either constant I(0)
or constant I(1) processes but will diverge where a persistence change occurs (due to
the different orders in probability of the two sub-sample KPSS-type statistics).
In many ways it would seem more logical, rather than taking the largest of the

sequence of ratios of sub-sample KPSS-type statistics, to take the ratio of the largest
sub-sample statistic to the smallest sub-sample statistic. In testing against I(0) to I(1)
changes the largest second sub-sample KPSS-type statistic would form the numerator
and the smallest first sub-sample statistic the denominator, and vice versa for testing
against I(1) to I(0) changes. In this way the numerator of the statistic will identify
the sub-sample providing the most evidence against stationarity (for a given direction
of change), while the denominator will identify the sub-sample which yields the least
evidence. It seems, a priori, not unreasonable to expect that a test based on this
statistic might be expected to be more powerful than that based on the maximal ratio
of the sub-sample test statistics. Moreover, unlike existing tests, the sub-samples of
data used in the numerator and denominator of the statistic will not necessarily span
the whole of the data set.
The paper is organized as follows. Section 2 outlines the model of persistence

change upon which we focus. In Section 3 we provide a brief review of the existing
persistence change tests. In Section 4 we detail our new test statistics and derive their
large sample properties. In Section 5, using Monte Carlo simulation, we provide critical
values and compare the finite-sample size and power properties of the new tests with
the corresponding tests of Section 3. Section 6 concludes.

2 The Persistence Change Model

As a model of persistence change, we follow BT and adopt the following data generating
process (DGP):

yt = dt + εt, (2.1)

εt = vt + wt, t = 1, ..., T,

with either
wt = wt−1 + ηt1(t > bτ ∗Tc) (2.2)

or
wt = wt−1 + ηt1(t ≤ bτ ∗Tc) (2.3)
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with τ ∗ ∈ [0, 1], and where 1(·) denotes the indicator function and b·c denotes the
integer part of its argument.
In (2.1), the deterministic kernel, dt = x0tβ, where xt is a (k+1)× 1 fixed sequence

whose first element is fixed at unity throughout (so that (2.1) always contains an
intercept term), with associated parameter vector β. The vector xt is assumed to be a
k-th order polynomial trend; that is, xt = (1, t, ..., tk)0, within which the constant (dt =
β0) and constant plus linear time trend (dt = β0+ β1t) are arguably the cases of most
interest. The disturbances {vt} and {ηt} are mutually independent mean zero processes
satisfying the familiar α-mixing conditions of Phillips and Perron (1998,p.336), with

strictly positive and bounded long-run variances ω2 ≡ lim
T→∞

E
³PT

t=1 vt
´2
, and ω2η ≡

lim
T→∞

E
³PT

t=1 ηt

´2
, respectively.

Within this model, we consider four possibilities. The first of these is that yt is
I(0) throughout the sample period. This is represented by (2.1) and (2.2) with τ ∗ = 1
(or (2.3) with τ ∗ = 0). We denote this H0. Secondly, yt may be I(1) throughout;
represented by (2.1) and (2.2) with τ ∗ = 0 (or (2.3) with τ ∗ = 1), denoted H1. Thirdly,
there may be a change from I(0) to I(1) at time t = bτ ∗Tc; as given by (2.1) and (2.2)
with the changepoint fraction 0 < τ ∗ < 1, denoted H01. Finally, a change from I(1) to
I(0) at time t = bτ ∗Tc is represented by (2.1) and (2.3) with 0 < τ ∗ < 1, denoted H10.

3 Kim’s Ratio-Based Tests

In order to test the null hypothesis that yt is a constant I(0) process against an I(0)-
I(1) shift at some unknown point in the sample, BT and Kim et al. (2002) have
independently proposed the test which rejects for large values of the statistic

K = max
τ∈T

(T − bτTc)−2
PT

t=bτT c+1(St,2(τ))
2

bτTc−2
PbτT c

t=1 (St,1(τ))
2

≡ max
τ∈T

½
K2(τ)

K1(τ)

¾
(3.1)

where: T ≡ [τ l, τu] is a given sub-interval of [0, 1]; St,1(τ) ≡
Pt

i=1 �̂1,i and St,2(τ) ≡Pt
i=bτT c+1 �̂2,i, where {�̂1,t}

bτT c
t=1 and {�̂2,t}Tt=bτT c+1 are the OLS residuals from the re-

gressions of yt on xt for t = 1, . . . bτTc and for t = bτT c+ 1, ..., T , respectively.
BT demonstrate that K is consistent at rate Op(T

2) under H01 but of Op(1) under
H10. They show, however, that the statistic K 0 = max

τ∈T
{K1(τ)/K2(τ)} is of Op(T

2)

under H10, and of Op(1) under H01. BT therefore also suggest a test based on the
maximum of the these two statistics; that is, K∗ ≡ max{K,K 0}, which they show to
be of Op(T

2) under both H01 and H10. All of these statistics are also shown to be of
Op(1) under H1.
Representations for the limiting null distributions of the foregoing statistics are

given in BT. Notably, these do not depend on the long run variance ω2, even though
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neither the numerator nor the denominator of K is scaled by a long run variance
estimator. However, Leybourne and Taylor (2004) have shown that the finite sample
size properties of the foregoing ratio-based tests against (constant parameter) weakly
dependent I(0) processes are not at all satisfactory.
Consequently, Leybourne and Taylor (2004) have proposed tests based on statistics

where the denominator and numerator of (3.1) are scaled by appropriate sub-sample
variance estimators; that is, they consider replacing K1(τ) and K2(τ) of (3.1), by
K1(τ ,m) ≡ (ω̂21,τ)−1K1(τ) andK2(τ ,m) ≡ (ω̂22,τ)−1K1(τ), respectively, where following
KPSS (Eq.(10), p.164)

ω̂21,τ = (bτT c)−1
bτTcX
t=1

�̂21,t + 2(bτT c)−1
mX
i=1

w(i,m)

bτT cX
t=i+1

�̂1,t�̂1,t−i

ω̂22,τ = (T − bτT c)−1
TX

t=bτT c+1

�̂22,t + 2(T − bτT c)−1
mX
i=1

w(i,m)
TX

t=i+bτT c+1

�̂2,t�̂2,t−i,

with w(i,m) = 1 − i/(m + 1). With an obvious notation, we denote the resulting
modified statistics by K(m), K 0(m) and K∗(m). Leybourne and Taylor (2004) report
significant improvements in the finite sample size properties of the resulting tests.
They find that setting m = 0 provides a useful pragmatic balance between re-dressing
the size problems of the tests yet keeping power losses against persistence change
processes relatively small. The results (including finite-sample critical values) presented
in Section 5 all pertain to m = 0. Like Leybourne and Taylor (2004), we found that
m = 0 appears to deliver the best size/power trade-off available. Results for other
values of m are available on request.

4 Alternative Persistence Change Tests

Following the discussion in Section 1, our proposed new test against H01 rejects H0 for
large values of the statistic

L =
max
τ∈T

K2(τ)

min
τ∈T

K1(τ)
(4.1)

where K1(τ) and K2(τ) are as defined in section 3. Similarly, to test H0 against H10,
we also propose the test which rejects for large values of the statistic

L0 =
max
τ∈T

K1(τ)

min
τ∈T

K2(τ)
(4.2)

and, finally, in order to test H0 against either H10 or H01, we propose the test which
rejects for large values of the statistic L∗ ≡ max{L,L0}.
As in Leybourne and Taylor (2004) studentised versions of these statistics can

also be entertained simply by replacing K1(τ) and K2(τ) by K1(τ ,m) and K2(τ ,m)
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respectively in (4.1) and (4.2). Again with an obvious notation, we denote the resulting
modified statistics by L(m), L0(m) and L∗(m).
We now establish the limiting distributions of our proposed statistics under the

null, H0. BT demonstrate that for 0 < τ < 1,

ω−1T−1/2(SbT ·c,2(·), SbT ·c,1(·))⇒ (N2(·, ·), N1(·, ·)) (4.3)

where “⇒” denotes weak convergence and where

N2(τ , r) ≡ W (r)−W (τ)−
Z 1

τ

x(r)0dW (r)

µZ 1

τ

x(r)x(r)0dr

¶−1 Z r

τ

x(s)ds, r ∈ (τ , 1]

N1(τ , r) ≡ W (r)−
Z τ

0

x(r)0dW (r)

µZ τ

0

x(r)x(r)0dr

¶−1 Z r

0

x(s)ds, r ∈ [0, τ ],

where x(r) = (1, r, ..., rk)0, and W (·) is a standard Brownian motion process on [0, 1]:
here defined by ω−1T−1/2

PbrT c
t=1 vt ⇒W (r), r ∈ [0, 1].

We then obtain immediately from (4.3) and applications of the CMT, that

L ⇒
supτ∈[τ l,τu](1− τ)−2

R 1
τ
N2(τ , r)

2dr

infτ∈[τ l,τu] τ
−2
R τ
0
N1(τ , r)2dr

≡ B(τ l, τu)

L0 ⇒
supτ∈[τ l,τu] τ

−2 R τ
0
N1(τ , r)

2dr

infτ∈[τ l,τu](1− τ)−2
R 1
τ
N2(τ , r)2dr

≡ B0(τ l, τu)

L∗ ⇒ max {B(τ l, τu), B0(τ l, τu)} .

Again these limiting representations do not depend on the long-run variance, ω2. The
same limiting distributions also apply to the modified tests L(m), L0(m) and L∗(m).
Under H01 it is trivial to show, using results given in the proof of Theorem 2.2

of BT, that both L and L∗ will be of Op(T
2), while L(m) and L∗(m) will also be of

Op(T
2) if m does not increase with T , but of Op(T/m) if m → ∞ as T → ∞, while

L0 and L0(m) will be of Op(1). Similarly, under H10 it follows from results in the proof
of Theorem 3.2 of BT that both L0 and L∗ will be of Op(T

2), while L0(m) and L∗(m)
will also be of Op(T

2) if m does not increase with T , but of Op(T/m) if m → ∞ as
T →∞, while L and L(m) will be of Op(1). Under H1 all statistics are of Op(1).

5 Simulation Results

5.1 Critical Values

Table 1 reports both finite sample and asymptotic upper tail null critical values for the
L(0), L0(0) and L∗(0) persistence change tests of section 3. Precisely, the finite sample
critical values of Table 1 were obtained by Monte Carlo simulation using pseudo-data
generated according to the pure noise DGP:

yt = εt ∼ NIID(0, 1), t = 1, ..., T.
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Results are reported for both de-meaned (xt = 1) and de-meaned and de-trended
(xt = (1, t)0) data. In each case finite sample critical values are given for T = 60, 120
and 240, while the rows labelled ‘∞’ give asymptotic critical values for the tests,
obtained by direct simulation of the appropriate limiting functionals of section 4 using
discrete approximations for T = 1000. For each test we used T = [0.2, 0.8], as is
typical in this literature: this choice is applied throughout this section of the paper.
All simulations in this paper were performed using 80, 000 Monte Carlo replications
and the RNDN function of Gauss 3.2.

Tables 1− 3 about here

5.2 Size Properties

Table 3 reports, for T = 60, 120 and 240 and for both de-meaned and de-meaned and
de-trended data, the empirical rejection frequencies of the K(0), K 0(0) and K∗(0) tests
of section 3, relative to our new tests, L(0), L0(0) and L∗(0), of section 4 when applied
to data generated by the following stable and invertible ARMA process:

yt = φyt−1 + εt − θεt−1, t = −100, ..., T, (5.1)

with εt ∼ NIID(0, 1), and the design parameters φ ∈ {0.0, 0.50, 0.90} and θ ∈
{0.0,±0.4}. Notice that in all cases yt is an I(0) process and, hence, H0 holds. Notice
that, due to invariance, we have set dt = 0 with no loss of generality.
All tests in this and the following section were run at the nominal 5% level using

exact (simulated) critical values for each test, and, in order to control for initial effects,
the first 100 observations were discarded in each experiment.
In terms of a relative comparison there is really very little to choose overall between

the finite sample size properties of the K(0) and L(0), K 0(0) and L0(0), and K∗(0) and
L∗(0) tests. For all of tests size distortions are, not surprisingly, worst for φ = 0.9, where
distortions are also worse, other things equal, for the de-meaned and de-trended case.
Size distortions are ameliorated, other things equal, as the sample size is increased,
as predicted by the limiting distribution theory. Although the tests display notable
finite-sample size distortions when φ = 0.9, a comparison with the results reported
in KPSS, Table 3, p.171 shows that these distortions are overwhelmingly less serious
than for the corresponding full-sample KPSS tests when the lag truncations m = 0
and m = int[4(T/100)1/4] are used in the full-sample long-run variance estimator, and
roughly comparable where m = int[12(T/100)1/4] is used.

5.3 Empirical Power

Table 3 reports, for T = 60, 120 and 240 and for both de-meaned and de-meaned and
de-trended data, the empirical rejection frequencies of the tests when the data are
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generated according to the I(0)− I(1) switch DGP

yt = µt + εt, t = −100, ..., T (5.2)

µt = µt−1 + 1(t > bτ ∗Tc)ηt, ηt ∼ NIID(0, ω2η). (5.3)

with εt ∼ NIID(0, 1), changepoint τ ∗ ∈ {0.25, 0.50, 0.75}, and signal-to-noise ratio,
ω2η ∈ {0.05, 0.10, 0.25}. Qualitatively similar conclusions are drawn for other values of
τ ∗ and ω2η and from size-adjusted results for other stable and invertible noise processes.
Again we set dt = 0 and discard the first 100 observations.
Summarizing the results in Table 3, there is not one case where L(0) and L∗(0)

does not display higher power than K(0) and K∗(0), respectively.1 Although the
power improvements displayed by the new tests are not massive, they are statistically
significant in the vast majority of cases.2 For these tests it is also worth noting that,
other things equal, power is not necessarily lower in the de-meaned and de-trended
case than for the de-meaned case; this phenomenon is also apparent in the simulation
results presented in, for example, Table 4 (p.172) of KPSS.
Although not reported, we also considered the corresponding I(1)-I(0) switch DGP.

These experiments yielded very similar results to those observed in Table 3, save that
the relative behaviour of K(0) and K 0(0) and L(0) and L0(0) are inter-changed, on
switching τ ∗ for (1− τ ∗), noting that this model can also be viewed as a process with
a switch from I(0) to I(1) at (1− τ ∗) when the data are taken in reverse order.

6 Conclusions

In this paper we have proposed a new set of tests for a change in persistence based on
statistics formed from the ratio of the largest sub-sample KPSS-type statistic to the
smallest sub-sample statistic. Asymptotic null distributions of the proposed statistics
were derived and associated tables of critical values provided. The consistency of the
proposed tests against persistence change processes was demonstrated. A Monte Carlo
study comparing the finite sample size and power properties of the proposed tests with
their existing counterparts formed from the maximal ratio of the sub-sample KPSS-
type statistics. The results suggested that the new tests proposed in this paper provide
a very useful complement to the existing maximal ratio tests, displaying comparable
size properties coupled with somewhat superior power properties to the latter.
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Table 1. Critical values for tests of stationarity against a change in persistence.
Panel A. De-meaned Case

L(0) L0(0) L∗(0)
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
60 14.52 18.09 26.34 14.39 17.76 25.74 17.89 21.35 29.74
120 17.04 21.56 32.64 17.22 21.70 33.06 21.55 26.40 38.10
240 18.99 23.94 37.04 18.91 24.08 37.52 23.93 29.39 43.15
∞ 21.32 27.26 43.30 21.32 27.26 43.30 27.17 33.82 51.05

Panel B. De-meaned and De-trended Case
L(0) L0(0) L∗(0)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
60 6.60 7.68 10.34 6.55 7.73 10.29 7.69 8.83 11.48
120 7.81 9.34 12.97 7.89 9.49 13.21 9.39 10.97 14.63
240 8.73 10.57 15.14 8.76 10.60 15.01 10.55 12.40 17.06
∞ 9.87 12.11 17.65 9.87 12.11 17.65 12.06 14.37 20.07
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Table 2. Empirical rejection frequencies of nominal 5% tests against a change in persistence: DGP (5.1).

Panel A. De-meaned Case
T = 60 T = 120 T = 240

φ θ K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0)
.0 .4 3.5 4.3 3.8 3.1 4.2 3.7 3.5 4.1 3.5 3.0 3.6 3.1 4.0 4.0 3.9 3.5 3.7 3.2

-.4 4.3 5.2 4.6 3.9 5.2 4.5 4.3 5.1 4.4 4.1 4.7 4.5 4.7 4.9 4.8 4.6 4.8 4.5
.5 .0 5.0 6.4 5.9 4.7 6.5 5.9 4.7 5.5 5.1 4.6 5.3 5.0 4.8 4.9 4.9 4.6 4.8 4.6

.4 5.2 6.1 5.9 5.0 6.4 6.0 5.2 5.9 5.7 5.4 6.1 6.0 5.2 5.3 5.6 5.3 5.7 5.7
-.4 4.3 4.9 4.8 3.7 4.8 4.4 4.1 4.7 4.2 3.5 4.4 3.8 4.1 4.4 4.2 3.8 4.1 3.8

.9 .0 10.9 12.5 14.5 9.4 11.6 13.1 7.9 8.8 9.7 6.7 7.4 8.5 5.7 5.6 6.4 4.6 4.8 5.0
.4 16.1 18.2 22.8 15.5 18.5 22.5 12.1 13.2 16.1 11.9 12.7 16.4 8.0 8.2 9.8 7.6 8.0 9.3
-.4 8.3 9.8 10.7 6.7 8.4 8.9 6.7 7.0 7.5 5.2 5.6 6.0 5.1 4.9 5.5 4.0 4.1 4.3

Panel B. De-meaned and De-trended Case
T = 60 T = 120 T = 240

φ θ K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0)
.0 .4 4.6 5.8 5.2 3.8 4.7 4.1 3.6 3.9 3.7 2.8 3.2 2.9 3.5 3.5 3.3 2.8 3.1 2.6

-.4 4.0 5.0 4.3 4.0 5.1 4.3 4.5 4.8 4.6 4.5 5.0 4.6 4.5 4.7 4.6 4.6 4.9 4.7
.5 .0 6.6 8.0 7.7 7.4 8.6 8.5 5.8 6.1 6.2 6.2 6.8 6.7 4.7 5.1 4.8 5.1 5.5 5.3

.4 5.2 6.3 6.1 5.6 7.0 6.5 5.4 6.1 6.0 5.7 6.8 6.5 5.0 5.5 5.4 5.4 6.2 6.0
-.4 5.4 6.3 6.0 5.5 6.5 5.9 4.8 5.0 4.8 4.7 5.2 4.9 4.1 4.6 4.3 3.9 4.6 4.0

.9 .0 22.3 24.8 29.8 22.1 24.6 29.2 17.5 18.3 22.4 16.4 17.3 21.0 9.9 10.4 12.0 9.2 9.9 11.1
.4 26.4 29.1 35.6 27.8 30.6 37.4 25.0 26.4 33.7 25.7 27.4 34.7 15.7 16.4 20.5 16.1 17.2 21.2
-.4 17.3 20.0 22.8 16.1 18.7 20.9 13.7 14.4 17.1 12.3 13.2 15.2 8.4 8.9 10.0 7.5 8.1 8.9



Table 3. Empirical rejection frequencies of nominal 5% tests against a change in persistence: DGP (5.2)-(5.3).

Panel A. De-meaned Case
T = 60 T = 120 T = 240

ω2η τ∗ K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0)
.05 .25 6.8 6.0 6.6 7.1 6.5 7.5 13.2 9.7 13.5 14.5 10.2 14.9 34.5 21.8 37.9 36.6 22.1 39.2

.50 6.7 4.6 5.6 7.0 4.9 6.2 12.8 4.8 10.5 13.9 5.1 11.4 32.6 7.3 27.8 34.9 7.6 29.9

.75 5.9 4.7 5.2 6.0 4.8 5.5 8.0 4.2 6.6 8.2 4.2 6.7 17.2 2.8 13.0 18.3 3.1 13.8
.10 .25 12.7 9.2 12.6 14.0 10.5 14.9 32.7 21.3 36.0 35.0 21.7 37.9 63.4 34.9 66.7 66.3 33.9 68.3

.50 12.5 4.5 9.8 13.8 5.3 11.6 31.5 7.3 26.8 34.2 7.5 29.1 62.0 14.9 57.8 65.1 13.9 60.1

.75 8.2 4.0 6.4 8.3 4.4 7.0 16.7 2.8 12.6 17.9 2.9 13.6 39.4 1.3 32.2 41.3 1.4 33.9
.25 .25 37.8 23.4 40.5 39.8 24.1 43.3 66.0 33.6 68.3 69.2 32.4 70.4 87.4 35.8 87.0 90.3 33.1 89.8

.50 37.1 8.0 31.5 40.7 8.5 35.6 67.8 15.3 63.5 71.3 14.3 66.4 89.3 18.3 86.6 91.6 16.8 89.1

.75 21.5 2.1 15.5 22.8 2.3 17.4 46.0 1.0 38.8 48.3 1.0 40.8 73.8 0.2 67.9 76.0 0.2 70.0
Panel B. De-meaned and De-trended Case

T = 60 T = 120 T = 240
ω2η τ∗ K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0) K(0) K0(0) K∗(0) L(0) L0(0) L∗(0)
.05 .25 5.4 5.0 5.3 5.5 5.1 5.6 7.1 5.4 6.5 7.6 5.5 6.9 16.1 9.6 15.7 17.7 10.2 16.7

.50 5.4 4.7 5.0 5.5 4.9 5.1 6.9 4.7 6.0 7.3 4.9 6.4 14.2 5.8 12.0 15.6 6.2 12.8

.75 5.3 4.8 5.2 5.4 4.8 5.3 6.1 4.7 5.5 6.3 4.8 5.7 10.2 3.7 7.9 11.2 4.2 8.4
.10 .25 6.9 5.2 6.3 7.4 5.7 7.0 15.9 8.9 15.1 17.5 9.8 16.5 44.2 24.1 45.0 46.8 24.5 47.3

.50 6.7 4.4 5.7 7.0 4.9 6.1 13.6 5.5 11.3 15.0 6.0 12.3 38.6 13.7 35.8 42.2 13.5 38.3

.75 6.1 4.5 5.5 6.4 4.5 5.7 9.9 3.6 7.7 10.7 4.0 8.4 25.6 2.1 19.6 28.1 2.5 21.5
.25 .25 18.3 9.7 16.8 20.6 11.2 19.8 51.7 27.9 52.8 54.7 28.8 55.8 84.4 44.9 84.6 87.3 44.5 87.0

.50 16.5 5.9 13.3 18.8 6.7 15.5 47.6 16.4 44.1 51.8 16.4 47.9 83.6 30.4 81.6 86.9 29.2 84.5

.75 12.1 3.0 8.5 13.6 3.4 10.0 33.3 1.6 25.9 36.7 1.9 29.2 69.3 0.5 62.2 72.5 0.6 65.9


