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Abstract

A bootstrap algorithm proposed by Psaradakis (2001) for hypothesis testing in 1(1)
regressions is discussed and shown to be valid only under the null hypothesis. A simple
correction making the procedure valid under both the null and the alternative hypothesis is
proposed.
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1 Introduction

The widespread awareness of the poor small sample performances of asymp-
totic tests in regressions with integrated variables is leading to a growing
interest in simulation-based inference. In this vein, in a recent contribution
to this journal Psaradakis (2001) has proposed a bootstrap algorithm for
hypothesis testing in fully modified ordinary least squares (FMOLS; Phillips
and Hansen, 1990) and canonical cointegrating regressions (CCR; Park,1992).
The aim of this note is to show (Section 2) that under the alternative hypoth-
esis the proposed bootstrap algorithm is not valid and to propose a simple
correction making the algorithm valid under both the null and the alterna-
tive hypothesis. A small Monte Carlo experiment, discussed in Section 3,
suggests that the proposed bootstrap algorithm has size close to nominal
significance level and good power properties.

2 Bootstrap hypothesis testing in I(1) regres-
sion

Consider for simplicity, and with no loss of generality, a cointegrated bivariate
system

Yo = Bry+uy (1)
Ty = Tpq+ Uy

where t = 1,... ,n and {y}; , {z:}; ,are both I(1). The first equation
is a cointegrating relation, and thus {uy; , ug};, , is stationary. Suppose we
are interested in testing some hypothesis Hy : § = [,. If [ is estimated by
FMOLS or CCR inference is asymptotically standard, but the small sam-
ple properties of such tests may be poor, with Type I errors much higher
than the nominal significance levels. Psaradakis (2001) proposed to tackle
this important problem by applying a bootstrap test, with the pseudoseries
constructed according to the following approach:

e compute the residuals of the cointegrating regression under Hy, 19, =
Yt — Poxt, as well as the first differences of the right hand side variable
Uy = Axy;

then, there are essentially two alternatives:

(a) first option (suggested): sieve boostrap:



1. fit AR models to {@f,}; | and {uy}; , and obtain residuals {é?t}?:p+1
and {/e\%}?:p 11> Where p is the order of the model, selected by some
consistent criteria such as AIC;

2. resample the residuals of the AR models computed in step (1), obtain-

ing {e%,€5,} ?:p+1

3. construct recursively first the series of bootstrap errors {uj,, ugt}?zl on
the basis of the estimated coefficients of the AR models and the resam-
pled residuals {&%;, é;t}?:p 11, and finally the bootstrap pseudoseries
{yz‘ = Boxy +ul, xf =25 |+ ug}:;l (initial values set at zero in both
recursions).

(b) second option (examined, but not suggested): block bootstrap: resample
directly {uY,, U2 }; , and proceed to construct y; and z} as above.

Some simulation results for the Type I errors are reported by Psaradakis:
the test based on the sieve bootstrap delivers the best results; the block
bootstrap performance is disappointing for all block lengths, with the result-
ing test strongly conservative; the tendency to overreject of the asymptotic
test is confirmed. According to Psaradakis, the algorithm is justified by
the common assumption (henceforth AR representation assumption) that
the noise u; = [uy; ug] admits an AR(co) representation u, = Z;O ITu
+ ¢, with € a white-noise process and the coefficient matrices II; satisfying
det { I,, — Z;O 11,27 ) # 0 V z < 1. Thus, in practice u, may be filtered by a
finite-order AR model to obtain IID residuals to be resampled, as in the sieve
bootstrap, or directly resampled applying a scheme allowing for weak depen-
dence, such as the block bootstrap. However, the algorithm as outlined by
Psaradakis is not applied to the unconstrained residuals u, but to the resid-
uals {@,, Us}; , estimated under the null hypothesis Hy : 8 = ;. Now,
these satisfy the AR representation assumption if, and only if, Hy holds: if
this does not happen (i.e., the alternative hypothesis holds) u{ will be non-
stationary, and thus uf = Z;O ILa? ; 1+ & will have a unit root. This will
have serious consequences:

(7) the block bootstrap, which cannot handle non-stationarity (Paparoditis
and Politis, 2003), would fail;

(i) the sieve bootstrap will empirically work if, and only if, the unit root in
the finite-order AR model fitted to {@l,}; ,is precisely estimated .



Can we devise a correction to the Psaradakis procedure which will be
make it valid under both the null and the alternative hypothesis? Fortunately,
the answer is positive and very simple. Considering that the bootstrap pseu-
doseries should resemble the real data while satisfying Hy : § = J,, the
natural solution is to apply thensieve bootstrap to the unconstrained residu-

als {ﬂlt =1y — ﬁa; Uy = Axy , where ﬁ is some suitable estimator (e.g.,

FMOLS or CCR) of the Cointegtlja?ting coeflicient 3, and then proceed exactly
as above. If the system is cointegrated {uy; , Us}; , Will be stationary, the
AR representation assumption will be satisfied, and both the sieve bootstrap
and the block bootstrap may be applied. This approach (actually easier to
implement as the estimation of the constrained model is not required) is
proposed by Psaradakis for the construction of confidence intervals, while
for hypothesis testing is recommended by van Giersbergen and Kiviet (2002)
in stable dynamic regression models and by Omtzigt and Fachin (2002) in
the Johansen framework. Having established a theoretically valid scheme we
need to shed some light on its empirical performance: this will be done in the
next section.

3 Simulation study

We examined through a very small Monte Carlo experiment the performance
of a sieve bootstrap t—test based on pseudodata constructed according to
both the Psaradakis algorithm (based upon the constrained residuals) and the
corrected version proposed here (based upon the unconstrained residuals).
Given that the block bootstrap is known not to be valid for non-stationary
data we did not take it into consideration. In order to facilitate comparisons
the experimental design replicated Psaradakis’; however, we considered only
two points in the parameter space, namely the most and least favourable to
his algorithm. As we will see, the results are clear enough to suggest that
it was unnecessary to replicate the experiment in all the other cases, thus
limiting the amount of space required to report the results. Further, we
limited the analysis to the FMOLS estimator since replicating the study for
the test based upon the CCR estimator would not provide any additional
information useful for the comparison of the two bootstrap procedures.

The data generating process (DGP) is common to many studies, starting
with Phillips and Hansen (1990), and is given by system (1) with errors
governed by



o=z [0 oet] (2] o

o e ([8] [ 1)), o

The DGP parameters are as follows: [ = 2; (0,0) = (—0.4,—-0.5),
(0.8,0.5), respectively the combination where the Psaradakis procedure de-
livers the best and worst results under Hy. The sample size is 50, with 30
initial observations discarded; the number of Monte Carlo replications 1000,
with 399 bootstrap redrawings. The lag length of the AR models fitted by
OLS to the residuals is selected by the AIC, with a maximum lag equal
to 3. Finally, to evaluate power we considered the wrong null hypothesis

where

Hy : 8 = 3. Given that we are interested in the relative comparison of the
performance of the two tests the choice of this specific value was dictated by
the need to have an hypothesis not too close to the DGP value, so to obtain
constrained residuals with a clear non-stationary pattern even in a sample
as small as that considered here.

The results are summarised in Table 1. As it can be appreciated by look-
ing at either the reported rejection rates for the traditional 5% and 10% tests
or the Kolmogorov- Smirnov test for the hypothesis that the p—values are
uniform over [0,1], when Hy holds the procedure based on the unconstrained
residuals works as well as the Psaradakis procedure. The rejection rates are
not significantly different and the KS statistics are always very close and
largely smaller than the 5% critical value (0.043). When Hy does not hold
the unit root in the constrained residuals is on the average rather accurately
estimated, and thus the Psaradakis procedure delivers a good performance
(actually, maximum power, a result due to the extremely high signal/noise
ratio) which is fully matched by the corrected procedure.

What can we learn from this small simulation? First of all, as anticipated
the Psaradakis procedure may actually work well, even if the null hypothesis
does not hold, if the unit root in the residuals is precisely estimated. However,
since the seminal work of Dickey and Fuller (1979) we know this to be a
difficult task; thus, the good performance of the Psaradakis procedure in
our Monte Carlo experiment should be considered the exception (probably
explained by the very simple dynamics of the DGP) rather than the rule. The
second result of interest is that the procedure based on the unconstrained
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residuals works well under both Hy (when using the constrained residuals
would obviously be more efficient) and H;. Thus, there is absolutely no reason
to prefer the risky option of using the constrained residuals. Replacing these
with the unconstrained residuals we obtain a bootstrap algorithm which:

(7) is theoretically valid both under the null and the alternative hypothesis;

(i1) not requiring estimation of the constrained model, is actually simpler to
implement;

(iii) is empirically able to deliver good small sample performances.

and which is thus the recommended approach.



Table 1
Bootstrap t-tests in FMOLS regressions

Hy true Hy false

0,0 |[ —04,—0.5] [08,05] || —04,-05]| [0.8,05]

Test SBO SBU SBO SBU SB() SBU SB() SBU

KS |0.016 0.017 | 0.08 0.07 — — — —

@] 013 0.08 | —0.12 —0.12| 0.99 0.22 | 098 —0.24
Rs | 440  5.10 8.40 9.50 | 100.0 100.0 | 100.0 100.0
Rip | 990 950 | 15.10 15.40 | 100.0 100.0 | 100.0 100.0

S By: Sieve bootstrap test with constrained residuals;

S By: Sieve bootstrap test with unconstrained residuals;

K S: test for Hy : rejection rates uniform over [0,1];

> 7. average sum of the estimated autoregressive polynomial;
R,: Rejection rate of test with nominal significance level=q;

—: not relevant.
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