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Abstract

Monte Carlo simulations are used to study the size and power properties of two stationarity
tests developed by Kwiatkowski et al. (1992) [KPSS] and Leybourne and McCabe (1994)
[LMC] when the data contain additive outliers. We show that the KPSS tests are very robust
to additive outliers whereas the LMC test exhibits size distorsions and loss of power.
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1 Introduction
Since Nelson and Plosser (1982), substantial literature has developed on the

nature of the trend (deterministic or stochastic) in the economic times series from
the unit root tests. These tests test the null hypothesis of a difference stationary
(or I(1)) process against the alternative of a level stationary (or I(0)) process.

In practice, time-series data often contain aberrant observations referred to
as outliers, in particular the additive outliers (AO’s). Such AO’s affect observa-
tions in isolation due to some nonrepetitive events and may occur as a results of
measurement errors or economic, political and financial events such as oil shocks,
wars, financial crashes and changes in policy regimes. In recent studies, Franses
and Haldrup (1994) and Shin et al. (1996) established that the presence of ad-
ditive outliers in a univariate time series disturbs the properties of Dickey-Fuller
(1979) unit root tests 1. Indeed, the presence of additive outliers induces in the
errors a negative moving-average component which causes the unit root tests to
exhibit substantial size distorsions towards rejecting the null hypothesis too often
(Vogelsang, 1999).

Recently, there has been increasing interest in tests of the null hypothesis of
level stationary (or I(0)) process against the alternative of a difference stationary
(or I(1)) process. These tests are widely used in empirical applications, notably
as complements to tests of the unit root hypothesis (Caner and Kilian, 2001) in
order to obtain more robust results.
Therefore, we study the effects of additive outliers on the two most widely used
stationarity tests developed by Kwiatkowski et al. (1992) and Leybourne and
McCabe (1994) from simulation experiments.

2 Stationarity Tests
The two most widely used tests of the I(0) null hypothesis are due to Kwiat-

kowski et al. (1992) [KPSS] and to Leybourne and McCabe (1994) [LMC]. These
two tests differ in how they account for serial correlation under the null. Whereas
the KPSS test employs a nonparametric correction similar to the Phillips-Perron
test, the LMC test allows for additional autoregressive lags similar to the aug-
mented Dickey-Fuller test.

2.1 Leybourne-McCabe test

Leybourne and McCabe (1994) consider the generalized local-level model

1. Shin et al. (1996) also studied the innovational outliers and showed that they did not
affect the Dickey-Fuller unit root tests
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Φ(L)yt = αt + βt + εt (1)
αt = αt−1 + νt, α0 = α, t = 1, . . . ,T (2)

where Φ(L) = 1 − φ1L − φ2L
2 − · · · − φpL

p is a pth-order autoregressive
polynomial in the lag operator L with roots outside the unit circle, εt ∼ iid
(0,σ2

ε) and νt ∼ iid (0,σ2
ν), and εt and νt being mutually independent. This model

can be shown to be second-order equivalent in moments to the ARIMA(p,0,0)
process

Φ(L)(1− L)yt = β + (1− θ)ξt 0 < θ ≤ 1 (3)

with ξt ∼ iid (0,σ2
ξ ), σ2

ξ = σ2
εθ
−1, and θ related to σ2

ν according to θ =

(r + 2− (r2 + 4r)1/2)/2, r being the signal-to-noise ratio r = σ2
ν/σ

2
ε . Here, σ2

ν = 0
implies θ = 1 and σ2

ν > 0 implies 0 < θ < 1. Thus, stationarity test is concer-
ned with the null hypothesis H0 : σ2

ν = 0, i.e. yt follows a trend-stationary
ARIMA(p,0,0) process, and the alternative H1 : σ2

ν > 0, i.e. yt is I(1) and follows
an ARIMA(p,1,1) process.

To implement the LMC test we construct the series

y∗t = yt −
p∑

i=1

φ∗i yt−i (4)

where the θ∗i are the maximum likelihood estimates of θi from the fitted
ARIMA(p,1,1) model

∆yt = β +

p∑
i=1

φi∆yt−i + ξt − θξt−1 (5)

and then calculate the residuals, noted ε̂t, from the least-squares regression of
y∗t on a constant and an deterministic time trend. The test statistic is defined by

LMC =
ε̂′V ε̂

σ̂2
ε T

2
(6)

where σ̂2
ε = ε̂′ε̂/T is a consistent estimator and V is a (T × T ) matrix with

ijth element equal to the minimum of i and j.
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2.2 Kwiatkowski-Phillips-Schmidt-Shin test

The KPSS test of stationarity is based on the same model as the LMC test
and has the same general structure. The KPSS test statistic for the model with
time trend is computed as

KPSS =
ε̂′V ε̂

σ̂2
ε T

2
(7)

where ε̂t is the least-squares residual from a regression of y∗t on a constant and
an deterministic time trend. The difference to the LMC test is that the KPSS
test relies on a nonparametric estimator of the long-run variance of εt

σ̂2
ε = ε̂′ε̂/T + 2

l∑
i=1

w(i,l)ε̂′ ˆεt−i/T (8)

where w(i,l)1 − i/(l + 1) is the Bartlett kernel. This estimator is consistent
if the truncation lag l increases with the sample size. As parameter l is to be
determined, we set l = int[8(T/100)1/4] and l = int[12(T/100)1/4], where int[.]
denotes the integer part, as there is no consensus concerning the choice of it.
The asymptotic critical values for the LMC and KPSS statistics are identical and
provided in Kwiatkowski et al. (1992).

3 Monte Carlo Study
In order to assess the performance of the LMC and KPSS test statistics in the

presence of additive outliers, a Monte Carlo study is performed. The results are
reported in Tables 1 and 2. The data-generating-process is given by yt = αyt−1+εt

with εt ∼ N(0,1). The sample size is T = 100 and 200, and all experiments
are based on 5000 replications. We consider the following three additive outlier
situations: a single AO at k = T/2, two AOs at k = 2T/5 and 4T/5, and three
AOs at k = 2T/5, T/2 and 4T/5 2. Results are reported for outliers of magnitude
(ω) 0, 5 and 10. For size simulations α = 0.8 and for power simulations α = 1.

For the KPSS test, we choose two values of l such that l = int[8(T/100)1/4]
and int[12(T/100)1/4], noted KPPS(8) and KPSS(12), respectively. These choices
tended to produce the most accurate test results in previous studies. For the LMC
test we set p = 1, noted LMC(1), since the test is not sensitive to the lag order
used. We focus on the nominal 5% test.

Table 1 displays the empirical size of stationarity test. The KPPS tests have
an excellent size when there is one or several outliers. Therefore, the size of KPSS

2. We do not add more outliers in order the amount of outliers is in accordance with the
view that outliers are rare events.
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tests seems to be not affected by the presence of outliers, whatever the sample
size. On the other hand, the LMC test is inflated size when the magnitude and
amount of outliers increase. For example, with T = 200 and when the data
contain three additive outliers, the size increases from 0.075 to 0.301 when the
outlier magnitude increases from 0 to 10.

Power of the tests are given in Table 2. From this table we see that the power
of the KPSS tests is good in all cases. If the outlier magnitude is low (ω = 5),
the power of LMC test is closed enough to that with no outlier. However, there is
evidence of serious loss of power for the LMC statistic when the outlier magnitude
is high (ω = 10).

Overall, the simulation results suggest that the KPSS tests are very robust to
additive outliers and the LMC test exhibits size distorsions and loss of power in
the presence of outliers.
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