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Abstract

Before solving a two−stage capacity and pricing game for oligopoly, Boccard and Wauthy
(2000) argue that, as under duopoly, at a mixed strategy equilibrium of the pricing game the
largest firm's expected profit is the profit accruing to it as a Stackelberg follower when the
rivals supply their entire capacity. We point to a serious mistake in their argument and then
we see how this important property can be satisfactorily established.
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1 Introduction

In a recent paper Boccard andWauthy (2000) (hereafter, BW) analyze a two-
stage capacity and pricing game among a fixed number n ≥ 2 of firms. The
setting is basically the one envisaged for a duopoly by Kreps and Scheinkman
(1983) (hereafter, KS). Capacities are built in the first stage while prices
are set in the second stage in the knowledge of previous capacity decisions.
The firms face identical convex costs of capacity building, marginal variable
cost is constant up to capacity, and rationing takes place according to the
surplus-maximizing rule. Differently from KS, the firms can produce beyond
“capacity” at a constant additional unit cost θ. The upshot is a generalization
of the Cournot outcome obtained by KS for a duopoly: when θ is sufficiently
high, at the subgame perfect equilibrium solution of the capacity and pricing
game the n firms invest in Cournot capacity and prices are subsequently set
equal to the demand price of total capacity (BW, pp. 283-4).
In order to apply backward induction to the two-stage capacity and pric-

ing game, BW have to characterize the solutions of the pricing subgames in
the different regions of the capacity space that may arise from previous ca-
pacity decisions. This task is not so easy in the region where no pure strategy
equilibrium exists. Since KS it has been known that, under duopoly, at a
mixed strategy equilibrium of the pricing game the largest firm’s expected
revenue is what it obtains as a Stackelberg follower when the rival supplies
its entire capacity. An extention of this property to oligopoly was subse-
quently provided by Brock and Scheinkman (1985) and Vives (1986) for the
special case of equally sized firms. To the best of our knowledge, Claim 6 by
BW (pp. 282-3) is the only attempt that has been made so far to generalize
this important property to asymmetric oligopoly. Unfortunately, while con-
taining one important step towards such a generalization, the proof by BW
suffers from several shortcomings and one serious mistake. Besides seeing
this, the present comment shows how the property under discussion can be
satisfactorily established for asymmetric oligopoly.
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2 The pricing game

2.1 Preliminaries

We draw on BW for most of the notation employed. D(p) and P (q) are
demand and the inverse demand, respectively, where p is the price and q
the total output; P (q) > 0 on a bounded interval [0, bq) on which P 0(·) < 0
and P 00(·) ≤ 0. We are concerned with the pricing game being played by the
firms after the choice of capacities. There are n ≥ 2 firms; xi denotes firm i’s
capacity, x−i =

P
j 6=i xj the total capacity of i’s rivals, and x = xi+x−i total

industry capacity. Without loss of generality, BW assume firm 1 to be (one
of) the largest firm(s), i.e., x1 ≥ xi for any i 6= 1. Variable cost is zero up to
the firm capacity, hence in the pricing game each i ≤ n seeks to maximize
expected revenue, denoted Πi.
For our purposes we can stick to the KS’s assumption that the firms can-

not produce above capacity. Then, under the surplus-maximizing rationing
rule, the residual demand facing firm i is max {0,D(pi)− x−i} when pi > pj
for any j 6= i.
Finally, it will be helpful to have on hand a few concepts from Cournot

competition. Denote r (x−i) firm i’s Cournot best response to x−i under
costless capacity building and R(x−i) the corresponding revenue. In other
words, r (x−i) = argmaxxi xiP (xi + x−i) and R(x−i) = r (x−i)P (r (x−i) +
x−i). Note that xiP (xi + x−i) is concave in xi and −1 < r0 (x−i) < 0 for any
x−i < bq, hence (r (x−i) + x−i) is increasing in x−i.
2.2 Mixed strategy equilibria

Before looking at mixed strategy equilibria of the pricing game it will be
helpful to explore the region of the capacity space giving rise to pure strategy
equilibria. The following proposition is a straightforward generalization of
results already achieved under symmetric oligopoly (Vives, 1986).

Proposition 1 (i) Let x : D(0) ≤ x−1. Then all firms charging a zero price
is the symmetric equilibrium of the pricing game.
(ii) Let x : x < D(0); r (x−1) ≥ x1. Then all firms charging P (x) is the

unique equilibrium of the pricing game.
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Proof. (i) If follows from x−1 ≥ D(0) that x−i ≥ D(0) for any i ≤ n.
Then, for any i, charging a zero price is a best response to all j 6= i charging a
zero price because there would be no residual demand left if charging pi > 0.1

(ii) Note that r (x−1) ≥ x1 implies [∂(p1(D(p1) − x−1))/∂p1]p1=P (x) ≤ 0,
which in turn implies [∂(pi(D(pi)−x−i))/∂pi]pi=P (x) ≤ 0 for any i ≤ n. From
concavity of (pi(D(pi)− x−i) it follows that, for any i, charging P (x) is the
best response to all j 6= i charging P (x). Uniqueness of equilibrium can be
established along the lines of KS.

A pure strategy equilibrium of the pricing game does not exist either
at x : x−1 < D(0) ≤ x or x : x < D(0); r (x−1) < x1. In the region of
no existence of a pure strategy equilibrium, existence of a mixed strategy
equilibrium is guaranteed by Theorem 5 of Dasgupta and Maskin (1986) (see
also BW, p. 281). Let Σi ≡ {pi | fi(pi) > 0} denote the support of firm i’s
equilibrium density fi(pi), and pi and pi, respectively, the infimum (i.e., the
greatest lower bound) and the supremum (the lowest upper bound) of Σi.
It is important to note that it can be pi /∈ Σi. Also, let p ≡ maxi≤n pi and
H ≡ argmaxi≤n pi; in words, members of H are all i ≤ n such that pi = p.
Further, let Fi(p) ≡ Pr(pi < p) and denote Π∗i firm i’s equilibrium expected
revenue.
The present comment seeks to establish the following property of mixed

strategy equilibria, which was already obtained for a duopoly by KS (pp.
331-5).

Proposition 2 At a mixed strategy equilibrium of the pricing game p =
P (r (x−1)+x−1) and (any of) the largest firm(s) has expected profit R(x−1) =
r (x−1)P (r (x−1) + x−1), the profit accruing to it as a Stackelberg follower
when its rivals supply their entire capacity.

Remark. It must be pointed out that our Proposition 2 does not exactly
match the characterization of mixed strategy equilibrium to be found in BW.
In fact, BW make the following points while proving their Claim 6 (pp. 282-
3):2

1Any price vector (p1, ..., pn) such that
P
j 6=i:pj=0 xj ≥ D(0) for any i : pi = 0 is also

an equilibrium.
2Claim 6 states that, in the region of the capacity space where no pure strategy equi-

librium exists, “H = {1}, the large capacity firm” (p. 282). Besides other problems, this
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(a) p = P (r (x−1) + x−1),
(b) p = P (r (x−j)+x−j) for any j ∈ H, hence “members of H must have

the same (largest) capacity” (p. 283),
(c) Π∗j = R(x−j) for any j ∈ H.
Of course, our Proposition 2 would be implied by points (a), (b), and

(c), should they hold true. Unfortunately, points (b) and (c) may not hold
true. To check this, consider the example of asymmetric duopoly in the
appendix of Levitan and Shubik (1972), where it is assumed D(p) = a − p
and x1 = a > x2. In that example, p1 = p2: thus, contrary to point (b),
H also includes the smallest firm.3 Further, Π∗2 6= R(x1), which contradicts
point (c).

Proof of Proposition 2. As acknowledged below, one major step of
our proof is taken over from the argument by which BW seek to establish
their Claim 6; on the other hand, their argument is incomplete and, as shown
below, is vitiated by a nontrivial mistake.
To begin with, a few features of mixed strategy equilibria are readily

established. First, any j ∈ H sells less than xj when charging p: otherwise
it would be D(p) ≥ x, implying that any i : Fi(p) > 0 has not made a best
response since it can sell xi by charging p. Second, p is charged with positive
probability by one firm at most: indeed, if Pr(pj = p) > 0, charging slightly
less than p is better than p to any i 6= j due to the jump in i’s residual
demand in the event of j charging p. Thus, at a mixed strategy equilibrium
there exists at least one firm j ∈ H such that no i 6= j charges p with
positive probability.4 Arguing along the lines of KS, p = P (r(x−j) + x−j)
and Π∗j = R(x−j) = pr(x−j) for any such j, with r(x−j) < xj; in words,
since firm j is certainly undercut when charging p and given that p must
be an optimal response to j’s rival equilibrium strategies, it must be p =
argmaxpj(D(pj)− x−j)pj.
In the remainder of the proof the main task will be to show that a contra-

diction would arise from assuming xj < x1 when j ∈ H and no i 6= j charges
p with positive probability. Recall that (r(x−i) + x−i) is increasing in x−i.
Therefore, with xj < x1 it would be p1 ≤ p < P (r(x−1) + x−1). On the other
concise statement is a bit inaccurate. For example, when there are several firms with the
largest capacity, it seems to be in contrast with point (b) in the text.

3While H = {1, 2}, p is charged with positive probability by firm 1 and with zero
probability by firm 2 (more than that, p /∈ Σ2).

4This means that, for any i 6= j, either p /∈ Σi or p ∈ Σi but Pr(pi = p) = 0.
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hand, the fact that firm 1 will never charge a price of P (r(x−1)+x−1) at the
equilibrium reveals that R(x−1) = r(x−1)P (r(x−1) + x−1) ≤ Π∗1. Further -
and this is the major step we take over from BW - assuming xj < x1 would
also lead to x1R(x−j) < xjR(x−1) (see the proof in the Appendix). In view
of all this, we can write, along with BW (p. 283),

Π∗j = R(x−j) <
xj
x1
R(x−1) ≤ xj

x1
Π∗1 < Π∗1. (1)

The final stage of the argument by BW relies on writing (p. 283)

Π∗1 = p1

h
F−1(p1)(D(p1)− x−1) + (1− F−1(p1))D(p1)

i
, (2)

where the expression in square brackets is firm 1’s expected output when
charging p

1
in the face of rivals’ equilibrium strategies. The term D(p

1
)

multiplying (1−F−1(p1)) is mistaken. Notice that F−1(p1) is the probability
of the event that pi < p

1
for every i 6= 1, i.e., F−1(p1) = ×i6=1Fi(p1). The

complementary event is thus the event that pi ≥ p1 for at least some i 6= 1.
Therefore, (1 − F−1(p1)) should have been multiplied by q1(p1 = p1 | some
pi ≥ p1), i.e., 1’s expected output when charging p1, conditional on pi ≥ p1
for some i 6= 1. To understand that q1(p1 = p1 | some pi ≥ p1) < D(p1) it
suffices to show that x1 < D(p

1
). Notice that x−j ≥ x1 (with x−j = x1 if

and only if n = 2) and recall that p = P (r (x−j) + x−j) < P (x−j); further,
p
1
< p since it is assumed that p is never charged by firm 1. Consequently,

D(p
1
) > r (x−j) + x−j > x1.5

Then, how can we achieve the desired contradiction? Write firm 1’s
equilibrium expected revenue as Π∗1 = p

1
q1(p1 = p

1
), where q1(p1 = p

1
)

is 1’s expected output when charging p
1
. Let (xj/x1)Π∗1 ≡ xjp1k, where

k ≡ q1(p1 = p1)/x1 ≤ 1. It follows from (1) that Π∗j < xjp1k. Notice that
firm j sells xj by charging p−1 , i.e., a price slightly less than p1 : indeed, this
results in a residual demand of at least D(p

1
)− x−j + x1 > x1 > xj because

D(p
1
) > x−j as p1 < p < P (x−j). Thus Πj(pj = p

−
1
) = p

1
xj ≥ xjp1k > Π∗j , a

contradiction.
To avoid the contradiction it must be p = P (r(x−1) + x−1) and Π∗i =

R(x−i) for any i : xi = x1. This is immediate when x1 > xi for every i 6= 1,
5Further, if Fi(p1) > 0 for some i 6= 1, the event that pi ≥ p1 for some i 6= 1 would also

include price vectors by 1’s rivals with some pi < p
1
, resulting in a residual demand for

firm 1 less than D(p
1
) when charging p

1
.
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since then it must be that 1∈ H and no i 6= 1 charges p with positive
probability. The case xi = x1 for some i 6= 1 needs further reflection. The
above contradiction is avoided by having xj = x1 for any j ∈ H for which
no i 6= j charges p with positive probability; further, Π∗i = R(x−i) for any
i : xi = x1. Indeed, suppose the latter does not hold, i.e., 1 ∈ H but
pi < p = P (r(x−1) + x−1) and Π∗i > Π∗1 = R(x−1) for some i : xi = x1.

6

Similarly as above, firm 1 would sell x1 by charging p−i ,
7 hence Π1(p1 =

p−
i
) = p

i
x1 ≥ Π∗i > Π∗1, a contradiction.

APPENDIX

Here we report (with a few integrations) the argument by which BW
establish that x1R(x−j) < xjR(x−1), where, by assumption, x1 > xj, j ∈ H
and no i 6= j charges p with positive probability at a mixed equilibrium.
Let m ≡ P

i6=j,1 xi, so that x−j = m + x1 and x−1 = m + xj. By letting
Θ(z) ≡ zR(m+ z) = zr(m+ z)P (m+ z+ r(m+ z)) our task is to prove that
Θ(x1)−Θ(xj) < 0. By the envelope theorem,

.

Θ(z) = (r(m+z)−z)P (m+z+
r(m+z)). In the following, we repeteadly use the fact that ∂r(m+z)/∂z < 0
form+z < bq. If r(m+xj) < xj, then .

Θ(z) < 0 for any z ∈ [xj, x1] , implying
Θ(x1) − Θ(xj) < 0. The same implication is drawn if r(m + xj) = xj since
then

.

Θ(z) < 0 for z ∈ (xj, x1]. The argument is somewhat involved when
r(m + xj) > xj. Then, r(m + x) = x is solved for x = x∗ > xj. Similarly,
r(m + x) = xj is solved for x = y∗ > x∗. Finally, in view of the latter and
recalling that r(m+ x1) = r(x−j) < xj, it is understood that y∗ < x1. This
leads to8

Θ(x1)−Θ(xj) =

Z x∗

xj

.

Θ(z)dz +

Z x1

x∗

.

Θ(z)dz <

Z x∗

xj

.

Θ(z)dz +

Z y∗

x∗

.

Θ(z)dz

= Θ(y∗)−Θ(xj) = y
∗R(r−1(xj))− xjR(m+ xj)

= y∗xjP (xj + r−1(xj))− xjR(m+ xj) = xj [y∗P (xj +m+ y∗)−R(m+ xj)] .
6The case Π∗i < Π

∗
1 = R(x−1) is immediately dismissed since firm i earns no less than

R(x−1) by charging p. (It earns R(x−1) if firm 1 charges p with zero probability.)
7By charging p−

i
firm 1 obtains a residual demand of at least D(p

i
)−x−1+xi > xi = x1

since p
i
< p < P (x−1).

8Actually, BW (p. 283) write
R x∗
xj

.

Θ(z)dz +
R x1
x∗

.

Θ(z)dz ≤ R x∗
xj

.

Θ(z)dz +
R y∗
x∗

.

Θ(z)dz.

Strict inequality must hold, however, because
.

Θ(z) < 0 for z ≥ y∗ so that R x1
y∗

.

Θ(z)dz < 0.
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Finally, y∗P (xj + m + y∗) ≤ R(m + xj) as R(m + xj) is by definition the
maximum payoff in response to an aggregate output of m + xj by rivals.9

Thus Θ(x1)−Θ(xj) < 0.
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