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Abstract

Recent literature has shown that the magnitude of behavioral heterogeneity of a population
has an impact on the structure of mean demand. This paper investigates the effect of
aggregation on the magnitude of behavioral heterogeneity if we aggregate disjoint
subpopulations. Using the Hildenbrand and Kneip (1999) framework of behavioral
heterogeneity, we show: (i) aggregation cannot decrease the degree of behavioral
heterogeneity; (ii) conditions under which aggregation increases the degree of behavioral
heterogeneity are derived; (iii) aggregation weakly increases the degree of behavioral
heterogeneity.
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1 Introduction

In this note we consider the aggregation of disjoint subpopulations and its effect on
the magnitude of the degree of behavioral heterogeneity as given by Hildenbrand
and Kneip (1999). Similar results might be obtained using the other frameworks
of behavioral heterogeneity. We consider here the Hildenbrand and Kneip (1999)
framework because it directly applies to the Jacobian of mean demand rather to its
Slutsky decomposition terms as in Hildenbrand (1993) and Kneip (1999). Moreover,
their framework is a generalization of Grandmont’s (1992) economy and the degree
of behavioral heterogeneity, as defined by Hildenbrand and Kneip, can only assume
values between zero and one.

Our analysis relates the degree of behavioral heterogeneity of arbitrary com-
posed disjoint subpopulations to the one of the entire population, i.e. we investigate
whether (dis-)aggregation may affect the structural properties of aggregate demand.
This question is important for empirical analysis, since demand systems are often es-
timated using homogenous samples of households. We obtain three results: Firstly,
aggregation never decreases the degree of behavioral heterogeneity. In other words,
the degree of behavioral heterogeneity at the aggregate level is higher than the lowest
degree of behavioral heterogeneity of arbitrary disjoint subpopulation. Secondly, we
show that the degree of behavioral heterogeneity at the aggregate level can be either
greater or smaller than the maximal degree of heterogeneity of all subpopulations.
We derive the conditions for generating behavioral heterogeneity due to aggrega-
tion. Thirdly, and finally, we show that aggregation weakly generates heterogeneity.
In other words, aggregation leads to a higher degree of behavioral heterogeneity
at the aggregate level when compared to the weighted average of arbitrary disjoint
subpopulations. We conclude that a decomposition of a heterogenous population
into homogenous subpopulations might destroy mathematical properties of mean
demand which are induced by behavioral heterogeneity.

We use the model and the notation of Hildenbrand and Kneip (1999).

2 Behavioral Heterogeneity and Aggregation

Consider m = 1, . . . , k nonempty subpopulations of H with
⋃̇k

m=1H
m = H, where⋃̇

denotes the union of disjoint sets. The disjoint subpopulations are allowed to be
of arbitrary size and arbitrary composition.

Definition 1 Aggregation reduces heterogeneity as measured by γ, if

γ(H) < infmγ(Hm)

is true.

Definition 2 Aggregation increases heterogeneity as measured by γ, if

γ(H) ≥ supmγ(Hm)

is true.
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Proposition 1 Aggregation cannot reduce the degree of behavioral heterogeneity as

measured by γ, i.e. for every H and {Hm}m=1,...,k such that
⋃̇k

m=1H
m = H it follows

γ(H) ≥ infmγ(Hm).

Proof. It suffices to prove the proposition for k = 2, since Hk∪
(⋃̇k−1

m=1H
m

)
= H.

Suppose we have two subpopulations m and n and assume without loss of generality
that γ(Hm) ≤ γ(Hn). Then,

Iε
ij(p) =

1

#Hm + #Hn
#{h ∈ Hm ∪Hn|p ∈ Aε

ij(w
h, xh)}

=
1

#Hm + #Hn

(
#HmIεm

ij (p) + #HnIεn
ij (p)

)
(1)

≤ sup{Iεm
ij (p), Iεn

ij (p)}

for ε ∈ [0, 1], where

Iεm
ij (p) :=

1

#Hm
#{h ∈ Hm|p ∈ Aε

ij(w
h, xh)}.

Applying this inequality gives

1− γij(p) =

∫ 1

0

Iε
ij(p)dε ≤

∫ 1

0

sup{Iεm
ij (p), Iεn

ij (p)}dε ≤ 1− inf{γm
ij (p), γn

ij(p)}
⇔ γij(p) ≥ inf{γm

ij (p), γn
ij(p)}

for all i, j and p ∈ (0,∞)l, which proves Proposition 1. ¥
Note, however, that we can neither infer from Proposition 1 that an expansion

of the population by an additional household does not lead to a decrease in the
index of heterogeneity nor that γ(H) < supmγ(Hm) holds. More generally, we ask
whether γ(H) ≥ supmγ(Hm) may occur. We show that this inequality does not
hold in general: because of equation (1) one can infer Iε

ij(p) ≥ inf{Iεm
ij (p), Iεn

ij (p)}
(see Figure 1). Therefore

1− γij(p) =

∫ 1

0

Iε
ij(p)dε ≥

∫ 1

0

inf{Iεm
ij (p), Iεn

ij (p)}dε ≤ 1− sup{γm
ij (p), γn

ij(p)},

which is not a unique relation.
The next propositions shed light on this point. Proposition 2 looks at an ex-

pansion of the original population by an additional household, while Proposition 3
considers the general case when aggregating subpopulations of arbitrary size.

The Intruder’s Influence. We are looking at the degree of heterogeneity while
expanding the original population H by one additional household. Let H+ = H∪H1

where H1 consists of one household only, the intruder. Let II denote the set of (i, j, p)

such that γ(H) = 1−∫ 1

0
Iε
ij(p)dε. Note that II may contain of more than one element.
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Proposition 2 Increasing the size of the population by one additional household
leads to γ(H+) ≥ γ(H) if
1)

c1
ij(p) :=

pj|∂pj
w1

i (p, x
1)|

d1
ij

≤
∫ 1

0

Iε
ij(p)dε for all (i, j, p) ∈ II

and
2) ∫ 1

0

Iε
ij(p)dε ≥ 1

(1 + #H)
+

∫ 1

0

Iε
ĩj̃
(p̃)dε for all (̃i, j̃, p̃) ∈ CII,

where CII denotes the complementary set of II.

The first condition ensures that 1−∫ 1

0
Iε+
ij (p)dε ≥ 1−∫ 1

0
Iε
ij(p)dε for all (i, j, p) ∈

II. The intuition is that the inequality is more likely to be satisfied if the origi-
nal population is homogeneous or if c1

ij(p) is small, meaning that the variability of
the intruder’s budget share is small at (i, j, p) ∈ II. The second condition ensures

firstly that γ(H+) = 1 − ∫ 1

0
Iε+
ij (p)dε ≤ 1 − ∫ 1

0
Iε+
ĩj̃

(p̃)dε for all (̃i, j̃, p̃) ∈ CII and

secondly that at least one original element of (i, j, p) ∈ II remains in this set after
the expansion of the population, i.e. we have the maximal area under the step func-
tion Iε

ij(p). Obviously, this condition is likely to be satisfied for large populations.

However, the condition is stronger than required, because if for all (̃i, j̃, p̃) ∈ CII :

c1
ĩj̃
(p̃) ≤ ∫ 1

0
Iε
ĩj̃
(p̃)dε, then

∫ 1

0
Iε+
ĩj̃

(p̃)dε ≤ ∫ 1

0
Iε
ĩj̃
(p̃)dε. In those cases we do not require

the second condition. However, we use the stronger version of the second condition.
The first condition is also satisfied if

c1
ij(p) ≤ infh∈H

pj|∂pj
wh

i (p, xh)|
dh

ij

,

meaning that the intruder needs to have less relative variability of the budget share
for (i, j, p) ∈ II than every household of the original population. In fact, this condi-
tion is stronger than the first one.

Let us prove Proposition 2 and illustrate it with the help of three examples.

Proof. The inequality γ(H+) ≥ γ(H) corresponds to supi,j,p

∫ 1

0
Iε+
ij (p) ≤ supi,j,p

∫ 1

0
Iε
ij(p).

In the Part A we prove the proposition for the strong version of the first condition.
In Part B we show the general result.

A Since Gε
ij(p) is the cumulative distribution function of |si(p, x

h)|/dh
ij, we have

for all (i, j, p) ∈ II that Gε+
ij (p) ≥ Gε

ij(p) for ε ∈ [0, 1], if c1
ij(p) ≤ infh∈Hpj|∂pj

wh
i (p, xh)|/dh

ij

and therefore Iε+
ij (p)− Iε

ij(p) ≤ 0. Using the properties of first order stochastic dom-
inance (Lemma 2 in the appendix) leads to γ+

ij (p) ≥ γij(p) for all (i, j, p) ∈ II. In

order to ensure
∫ 1

0
Iε
ij(p)dε ≥ ∫ 1

0
Iε+
ĩj̃

(p̃)dε for all (i, j, p) ∈ II and all (̃i, j̃, p̃) ∈ CII we

need the second condition, since 1/(1 + #H) ≥ supi,j,p

(∫ 1

0
Iε+
ij (p)dε− ∫ 1

0
Iε
ij(p)dε

)

for all (i, j, p) ∈ II ∪ CII.
B One can show that

Iε+
ij (p)− Iε

ij(p) =





1
1+#H

(
1− Iε

ij(p)
)

if
|w1

i (p,x1)|
d1

ij
≥ ε

−Iε
ij(p)

1+#H
otherwise
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In order to obtain ∫ 1

0

Iε+
ij (p)− Iε

ij(p)dε ≤ 0,

we need
1

1 + #H

(∫ c1ij(p)

0

1dε−
∫ c1ij(p)

0

Iε
ijdε−

∫ 1

c1ij(p)

Iε
ij(p)dε

)
≤ 0

and therefore
1

1 + #H

(
c1
ij(p)−

∫ 1

0

Iε
ij(p)dε

)
≤ 0

for all (i, j, p) ∈ II such that γ(H) = 1−∫ 1

0
Iε
ij(p)dε. Using

∫ 1

0
Iε
ij(p)dε−∫ 1

0
Iε
ĩj̃
(p̃)dε ≥

1/(1 + #H) for all (̃i, j̃, p̃) ∈ CII proves the proposition. ¥

Increasing Heterogeneity Due to Aggregation Suppose H =
⋃̇k

m=1H
m and

let supmγ(Hm) =: γ(Hn). In addition, let II be the set of (i, j, p) such that γ(Hn) =

1− ∫ 1

0
Iεn
ij (p)dε.

Proposition 3 Aggregation increases the degree of behavioral heterogeneity as mea-
sured by γ, i.e. γ(H) ≥ supmγ(Hm), if the following conditions hold:
1) ∫ 1

0

Iεm
ij (p)dε ≤

∫ 1

0

Iεn
ij (p)dε

for all (i, j, p) ∈ II and m = 1, . . . , k and
2) ∫ 1

0

Iεn
ij (p)dε−

∫ 1

0

Iεn
ĩj̃

(p̃)dε ≥ #H −#Hn

#H

for all (i, j, p) ∈ II and for all (̃i, j̃, p̃) ∈ CII such that

∫ 1

0

Iεm
ĩj̃

(p̃)dε ≥
∫ 1

0

Iεn
ĩj̃

(p̃)dε.

Proof. The proof follows the same reasoning as in the proof of Proposition 2.
The first condition implies

∫ 1

0

Iε
ij(p)dε ≤

∫ 1

0

Iεn
ij (p)dε

for all (i, j, p) ∈ II. Let CII = ∪2
i=1CIIi, where (̃i, j̃, p̃) ∈ CII1 if

∫ 1

0
Iεm
ĩj̃

(p̃)dε ≤
Iεm
ĩj̃

(p̃)dε ≤ ∫ 1

0
Iεn
ij (p)dε and (̃i, j̃, p̃) ∈ CII2 if

∫ 1

0
Iεm
ĩj̃

(p̃)dε ≥ Iεm
ĩj̃

(p̃)dε ≤ ∫ 1

0
Iεn
ij (p)dε.

Therefore we have ∫ 1

0

Iε
ĩj̃
(p̃)dε ≤

∫ 1

0

Iεm
ĩj̃

(p̃)dε

for all (̃i, j̃, p̃) ∈ CII1 and

∫ 1

0

Iε
ĩj̃
(p̃)dε ≥

∫ 1

0

Iεm
ĩj̃

(p̃)dε
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for all (̃i, j̃, p̃) ∈ CII2. Thus, the second condition ensures
∫ 1

0
Iε
ij(p)dε ≥ Iε

ĩj̃
(p̃)dε

for all (i, j, p) ∈ II and all (̃i, j̃, p̃) ∈ CII2, since supi,j,p

(∫ 1

0
Iε
ij(p)− Iεm

ij (p)dε
)
≤

(#H −#Hm)/#H for all m, i, j and p ∈ (0,∞)l. Hence the set of (i, j, p) such that

γ(H) = 1− ∫ 1

0
Iε
ijdε might consist of elements of II, CII1 and CII2. ¥

The first condition of Proposition 3 implies that for all (i, j, p) ∈ II the hetero-
geneity of subpopulation n has to be the lowest. The second condition says that
for subpopulation n the largest expanding area below the step function has to be
smaller than the largest diminishing area minus the largest possible size of variation.
The second condition is more likely to be satisfied if #Hn is large compared to the
rest of the population.

Weakly Increasing Heterogeneity. Now, we look at a weaker definition of in-
creasing heterogeneity. Since Proposition 2 and Proposition 3 involve complicated
conditions, this may allow for more intuitive results. We use a concept that compares
the degree of heterogeneity on average.

Definition 3 Aggregation weakly increases heterogeneity, as measured by γ, if

γ(H) ≥
k∑

m=1

#Hm

#H
γ(Hm)

is true.

Before presenting the result by a proposition, we state a lemma.

Lemma 1 For all i, j and p ∈ (0,∞)l, γij(p) is an element of a convex set. The
lower bound is infmγm

ij (p) and the upper bound is supmγm
ij (p), where all nonempty

subpopulations Hm are disjoint and H =
⋃̇k

m=1H
m for every positive integer k ≤

#H.

Proof. We have to prove that γij(p) ∈ [infmγm
ij (p), supmγm

ij (p)] for all i, j and
p ∈ (0,∞)l. For a fixed ε, one can infer from the definition of Iε

ij(p) that

Iε
ij(p) =

k∑
m=1

#Hm

#H
Iεm
ij (p),

which is a convex combination of Iεm
ij (p) over m = 1, . . . , k. By rearranging, it

follows immediately that

γij(p) := 1−
∫ 1

0

Iε
ij(p)dε = 1−

k∑
m=1

#Hm

#H

∫ 1

0

Iεm
ij (p)dε,

which is evidently a convex combination of 1−supm

∫ 1

0
Iεm
ij (p)dε and 1−infm

∫ 1

0
Iεm
ij (p)dε.

¥
Now we ask whether γ(H) ≥ ∑k

m=1(#Hm/#H)γ(Hm) holds. Preliminarily, this
inequality is likely to be satisfied if all γ(Hm) are very small, which corresponds to
very homogeneous subpopulations, or if γ(H) is close to one. The next proposition
provides an unambiguous answer.
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Proposition 4 Aggregation weakly generates heterogeneity as measured by γ.

Before we provide some intuition, let us prove the proposition.

Proof.

infi,j,pγij(p) ≥ 1− supi,j,p

k∑
m=1

#Hm

#H

∫ 1

0

Iεm
ij (p)dε

≥ 1−
k∑

m=1

#Hm

#H
supi,j,p

∫ 1

0

Iεm
ij (p)dε

=
k∑

m=1

#Hm

#H

(
1− supi,j,p

∫ 1

0

Iεm
ij (p)dε

)

=
k∑

m=1

#Hm

#H
infi,j,pγ

m
ij (p)

We remark that the first inequality is due to Lemma 1. ¥
Intuitively, γ(H) is the smallest weighted average over all γm

ij (p) with respect to

(i, j, p) due to γ(H) := infi,j,pγij(p), while
∑k

m=1(#Hm/#H)γ(Hm) is the weighted
average over infi,j,pγ

m
ij (p). Note, the fact that Proposition 4 includes Proposition 1

as a weak increase in heterogeneity rules out a decrease in heterogeneity as defined
in Definition 1.

One can infer that the separation of the entire population into homogeneous
subgroups changes the structural properties of mean demand. Then we have on
average less behavioral heterogeneity and we therefore may lose for example the
monotonicity property of mean demand.

Proposition 1 and Proposition 4 are in accordance with results from Kneip (1999)
for the coefficient of sensitivity, a measure of structural stability of a population.

3 Conclusion

We derive sufficient conditions for generating behavioral heterogeneity due to ag-
gregation and we show that aggregation weakly generates behavioral heterogeneity.
We conclude that restricting attention to homogeneous subgroups of households
may not allow one to capture the impacts of behavioral heterogeneity on aggregate
values, such as mean demand.

Appendix

Lemma 2 Consider two populations H and H∗ such that Iε∗
ij (p) − Iε

ij(p) ≤ 0 for
given i, j and ε ∈ [0, 1]. Then we have

γ∗ij(p)− γij(p) ≥ 0.

Proof. For ε ∈ [0, 1] we have

Iε∗
ij (p) ≤ Iε

ij(p) ⇔ Gε∗
ij (p) ≥ Gε

ij(p).
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inf{Im(p),In(p)} 

Im(p)
In(p)

1

1

0

I(p)

epsilon

Figure 1:
∫ 1

0
inf{Iεm

ij (p), Iεn
ij (p)}dε ≤ 1− sup{γm

ij (p), γn
ij(p)}.

We know that Gε
ij(p) = 1−Iε

ij(p) is the cumulative distribution function of
|sh

ij(p,xh)|
dh

ij
,

so Gε
ij(p) first order stochastically dominates Gε∗

ij (p). By definition of first order
stochastic dominance one yields

∫
εdGε

ij(p) ≥
∫

εdGε∗
ij (p)

which is equivalent to
1− γij(p) ≥ 1− γ∗ij(p).

If this inequality holds for all p, i, j, one obtains γ(H∗) ≥ γ(H) by definition of
γ(H). ¥
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