Conditional adaptive strategies

Yuichi Noguchi
Department of Economics, Harvard University

Abstract

A general class of adaptive strategies in Hart and Mas—Colell (2001) may be extended to
conditional strategies in the same way as smooth fictitious play in Fudenberg and Levine
(1999). We show that a generalized version of universal conditional consistency (UCC)
obtains for conditional adaptive strategies under some assumption.
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1 Introduction

We show that a general class of adaptive strategies in Hart and Mas-Colell (2001)
may be extended to conditional strategies in the same way as smooth fictitious play
in Fudenberg and Levine (1999), and a “classwise generalization” of universal condi-
tional consistency (abbreviated to UCC) obtains for conditional adaptive strategies
under some assumption, as it does for conditional smooth fictitious play (Fudenberg
and Levine (1999) and Noguchi (2000) and (2002)).

Hart and Mas-Colell (2001) shows a general class of adaptive strategies which
has the property of universal consistency by generalizing Blackwell’s approacha-
bility theorem; we say universal consistency because the consistency criterion is
passed against all opposing strategies. On the other hand, Fudenberg and Levine
(1999) extend smooth fictitious play to conditional one by introducing learning rules
called “classification rules,” taking into consideration the case in which a player has
a sophisticated ability of learning regularities of opponent strategies. Then, they
generalize universal consistency in Fudenberg and Levine (1995) to “universal con-
ditional consistency” for conditional smooth fictitious play. Furthermore, Noguchi
(2000) and (2002) generalizes their UCC theorem to a classwise version for smooth
fictitious play. (Generalized) UCC is quite useful to show that a player’s strategy
is a sophisticated learning procedure. Noguchi (2000) makes use of (generalized)
UCC to show that conditional smooth fictitious play passes strong time-average op-
timality criteria for many opposing strategies. Moreover, Noguchi (2002) shows that
generalized UCC implies the same wide range no-regret property as Lehrer (2003)
obtains.

Smooth fictitious play is not included in the Hart and Mas-Colell’s general class
of adaptive strategies, but it may be arbitrarily approximated by adaptive strategies,
as Hart and Mas-Colell point out. This fact leads us to infer that adaptive strategies
in the Hart and Mas-Colell’s sense may also be extended to conditional ones, and
that those have the generalized property of universal conditional consistency. The
purpose of this paper is to show it is correct at least under some assumption.

The paper is organized as follows. In Section 2 we shall give the basic model
and define conditional adaptive strategies. In Section 3 we shall show a classwise
generalization of universal conditional consistency for conditional adaptive strategies
under some assumption. Section 4 concludes.



2 The Model

2.1 The basic model and notations

We focus on one player who plays an infinitely repeated game against one opponent.
The player’s payoff at a stage game is denoted by u(a,y), where a is a player’s
action in a finite set A and y is an opponent’s action in a finite set Y. Let A(S)
denote the set of all mixed actions over S. Let u(\, ) denote the player’s expected
payoff obtained by playing mixed actions A € A(A) and 7 € A(Y). A finite history
of actions (up to time 7T') is denoted by hr := (a1,y1-- ,ar,yr) and an infinite
history of actions is denoted by h. = (a1,%1,02,92,---). The set of all finite
histories, including the null history hg := (), is denoted by H, and H is the set of
all infinite histories. We denote a behavior strategy of a player by o : H — A(A),
and a behavior strategy of an opponent by p: H — A(Y). We write y, , for the
stochastic process on H* induced by playing ¢ and p.

2.2 Conditional adaptive strategies and classification rules

We shall extend adaptive strategies in Hart and Mas-Colell (2001) to conditional
strategies. In this paper we focus on a stationary regret-based action ® : R4 —
A(A):r (i) there exists a continuously differentiable function P : R* — R such
that ®(x) is positively proportional to the derivative OP(x) for all x ¢ R? and (ii)
P(x) -z >0 for all z ¢ RA2 P is called a potential of ®.

First of all, we shall define an important concept: classification rules. Classifi-
cation rules, introduced as learning rules by Fudenberg and Levine (1999), classify
observed samples into categories. Formally, a classification rule R is defined as a
partition of H x A,® and an element in R is called a category, denoted by ~; thus, a
category v may be considered as a subset of H x A. If a realized history (h;_1, a;) € 7,
we say that time t is a y—effective period or 7 is effective at time t; given an infinite
history, each period has exactly one effective category because a classification rule
is a partition of H x A. Given a history hr, let n). denote the number of times
that v has been effective up to time 7', and D7, denote the empirical distribution of
opponent actions observed in y—effective periods up to time 7.

'Hart and Mas-Colell (2001) call it a stationary regret-based strategy.

2 A also denotes the cardinality of itself. R” is an A—dimensional Euclidean space. R4 := {z €
R4 | x[a] <0 for all a € A}.

3Fudenberg and Levine (1999) define a classification rule as a function from H x A to a countable
set of categories. But their definition is equivalent to ours.



If a player knew in advance that the current period, say time 7', was y—effective,
then he would pick up observed regret vectors g; := (u(b,y;) — u(as, y))pea in past
—effective periods, and o‘tﬁ;@m the conditional average gl , of regret vectors on vy

up to time T —1: G} 1= (h,_1.a)ey 9:ANT. ;. Thus, he would take its stationary
1<t<T-1
regret-based action ®(g; ;) at time 7. However, an effective category may be

endogenous in the sense that which category is effective in the current period may
depend on which player’s action is realized in the current period. Then, we define
conditional adaptive strategy o on R by extending the fixed point argument in
Fudenberg and Levine (1999). We first assume a weight function w : H — R%; we
will precisely define it in the Appendix.* Then, let hy_; is a realized past history
up to the last period. Let v, be the category that is effective at time T if a is
realized at time T": (hr_1,a) € v,. Then, for each a € A, a player obtains g,* ; and
®(g,*,). Let Z be the matrix in which each column consists of a weighted action
w(hr_1)[a] - ®(g74): Z := [w(hr_1)[a] - (g7 1)]aca. Note that the magnitudes of
w(hr-1)]al’s may be different. Thus, let J be the matrix whose diagonal elements
are w(hr-1)[a]’s, and whose off-diagonal elements are all zero. Then, we always find
out a mixed action \* € A(A) such that Z\* = JA*.° Finally, the player takes
o(hr_1) == X" at time T. We call the procedure conditional (weighted) adaptive
strategy on R.

2.3 Class

A subset of H x A will also be called a class, denoted by 3. When a realized history
(hi—1,a;) € (B, we say that time ¢ is a —active period, or that (3 is active at time
t. A class indicates periods when payoffs are evaluated. Given a history Az, let n?
denote the number of times that 3 has been active up to time 7', and Dgi denote the

empirical distribution of opposing actions observed in f—active periods up to time
T.

‘R = {z € R | z[a] > 0 for all a € A}.

°Let p(N) == T(lei)éx—)[] It is a continuous function from A(A) to A(A). By the fixed point
theorem, tl}ge exists a ﬁxedFBomt A" of . Then, Z)\I*D: X", where a =, (J71ZA7)[b].
Note that . (ZX)[b] =  ,caw(hr_1)[a]X"[a) =  cA(JA")[b]. Thus, a = 1. Therefore,
ZX* = JX\*. Hart and Mas-Colell (2000) call this type of procedure eigenvector procedures.



3 Universal classwise conditional consistency

3.1 Definition and main result

We shall generalize universal conditional consistency in Fudenberg and Levine (1999)
to a classwise version for adaptive strategies. Let us first define classwise condi-
tional consistency for a countable set €2 of classes; 2 is always countable in the
following. The criterion requires that conditional consistency hold in active peri-
ods of any class in Q (if that class is active inﬁnlitely many times). To define it
precisely, when a realized history (h;_1,a;) € 8 =, i.e., both [ is active and -~y
is effective at time ¢, we say that time t is Gy—effective. Given a history hy, let
n?ﬂ denote the number of fgy—effective periods up to time 7', and Dgﬂ denote the
empirical distribution of opponent actions observed in (y—effective periods up to
time 7. Le Uﬁ designate time-average payoff in S—active periods (up to time
T): Uﬁ = (hkl’at)eﬁu(at,yt)An?. The maximum payoff against 7 is given by

1<t<T
V(m) := max, u(a, ).

Definition 1 We say that conditional (weighted) adaptive strategy o on R passes
classwise conditional consistency for ) against p, if for all B € €, if n? — 00 as
T — oo, then

<X By

n —
lim sup %V(D?ﬂ) - Up <o, Hopy — G-5.
T—o0 n
yeR T

When Q = {H x A}, classwise conditional consistency is reduced to conditional
consistency. To obtain universal classwise conditional consistency, we impose two
assumptions on R and €2. The first assumption requires that a classification rule be
eventually finer than any class.

Assumption (Al) For all hy, € H® and all B € ), there exists Ty such that for
all v € R, either

for all T
or for all T

Ty, Zf (h'T—l7aT) €, then (h’T—l7aT) € ﬁ,

>
> To, Zf (hT_l,aT) €, then (hT_l,aT) ¢ ﬁ

The second one requires that the number of effective categories grow quite slowly
in active periods of any class. Given a history Az, let K;@ denote the number of
categories that have been effective in f—active periods (up to time 7).



Assumption (A2) For all he, € H*® and all 5 € Q, if n? — 00 as T — oo, then

8
lim —L = 0.

When Q = {H x A}, Assumption (A1) is automatically satisfied and Assumption
(A2) is reduced to Assumption 1 in Fudenberg and Levine (1999). Assumptions (A1)
and (A2) may be natural requirements about a classification rule and a countable set
of classes, but the following last assumption about a stationary regret-based action
® is rather restrictive.

Assumption (B1) A potential P of ® satisfies that OP(x)-x > P(xz) for all z ¢ RA.

l,—potentials (1 < p < 0o) and separable potentials with a monotone property
are typical examples that satisfy Assumption (B1).® We shall show that under the
assumptions above, conditional (weighted) adaptive strategy on R has universal
classwise conditional consistency for 2.

Theorem Suppose that a classification rule R and a countable set € of classes
satisfy Assumptions (A1) and (A2) and a stationary regret-based action ® satis-
fies Assumption (B1). Then, conditional weighted adaptive strategy o on R has
universal classwise conditional consistency for : o passes classwise conditional
consistency for ) against all opposing strategies.

3.2 Proof of Theorem

According to Lemma 2.3 in Hart and Mas-Colell (2001), any potential P of a sta-
tionary regret-based action ® has the following property: there exists a constant
co such that P(z) > ¢ for all z ¢ R4 and P(x) = ¢o for all x € bd(R#).” Thus,
without loss of generality, we may assume that any potential P of ® satisfies (P1)
OP(z) is positively proportional to ®(x) for all z ¢ R4, (P2) P(z) > 0 for all z,
and (P3) P(z) = 0 if and only if x € R4.2 In order to obtain Theorem, it suffices

6l,(z) := (IJ x4 [a]? )% where z4[a) == max{0,z[a]}. Let {t,}aca be continuous functions
from R to R such that v, (z |Q>for all z <0 and ¢,(z) > 0 for a&l z > (0. Then, a separable
potential is defined as P(x ) wea Ya(z[a]), where W, (z[a]) : wa( )dz for all a € A.
For example, when {v,}, are non-decreasing, 0P(z) -z > P(x) for aH r ¢ RA. See Hart and
Mas-Colell (2001) for more examples.

"bd(RA) is the boundary of RA: bd(RA) = {x € RA | z[a] < 0 for all a € A, and x[a] = 0 for
some a € A}.

8Let P(z) := (P(x ) c)? if x ¢ RA and P(z) := 0 if # € RA. Then, P is a potential of ® and
satisfies (P1), (P2) and (P3).



to show two lemmas. We first extend an important result in Hart and Mas-Colell
(2001) to a classwise conditional version: conditional average of P in active periods
of any class converges to zero.

Lemma 1 Suppose that a classification rule R and a countable set 2 of classes
satisfy Assumptions (A1) and (A2), and a stationary regret-based action ® satisfies
Assumption (B1). Then, conditional weighted adaptive strategy o on R has the
following property: for all p and all 5 € 2, if ngi — 00 as T — oo, then

> By

n
llm %P(g?’)’) - 0, /‘L(U P) — a.s.
T—o0 n ’
yeR T

E{Lere ggﬂis the conditional average of regret vectors on (B up to time T': ggﬂ =

A B
(ht—1,at)€BNY gtAnT .
1<t<T

Proof. See the Appendix. &

The key is that the above lemma induces classwise conditional consistency.

'n,B’Y . g .
Lemma 2 If limr .o i %P(ggﬂ) = 0, then classwise conditional consistency
nr
obtains:
<X B 1 X
lim sup —%V(Dgﬂ) - u(ag, ys) < 0.
T=ooyer M T (hy—1,a0)€B
1<t<T

Proof. We may assume that the domain of P is bounded because the range of
regret vectors are bounded; thus P is uniformly continuous. Then, (P2) and (P3)
imply that for all € > 0 there exists 6. > 0 such that P(z) < 6. = max, x[a] < €.
Given a history hy, let R2.(P;6) == {y € R | P(32") < 6}. T|I:1$n’ it follows from the

nPy
assumption that for all §, n > 0 there exists T, such that ©eRE(P:5) ﬁ >1—n
for all T' > Ty,,.

Take any € > 0. Let 6" := 6 and n* := eAdii, where 4 := max,, | u(a,y) |.

By
Then, for all T > Ty+,-, z

VeRE(Py 2 L Note that for all T > Ty,
’ nT _ ~
e Ry (P;6%), and all a € A, g'[a] = u(a, D7) — U < §, where Uy =

(he_1,a0)eprry U(a, yt)Angﬂ. Thus, for all T" > T+« and all y € Rgﬂ(P; 5, V(Dgfﬂ)—
1<t<T



Up < 5. Therefore, for all T' > T~

X

n 1
—EV(D?) 5 u(ag, ye)
YER N T (h¢—1,at)€B
1<t<T
X B B X B -
- g -0 o - of
verE(Pis*) T vgRE(Pis*) T
< S4 %09
— 4+ —2u
- 2 Au
< e

Proof of Theorem. It is immediate from Lemmas 1 and 2. ¥

4 Concluding Remark

We conclude with giving a remark. We have shown universal classwise conditional
consistency by imposing some assumption (i.e., Assumption (B1)) on a stationary
regret-based action. However, we may conjecture that universal classwise condi-
tional consistency obtains without Assumption (B1). Indeed, Noguchi (2003) shows
generalized UCC obtains (without Assumption (B1)) in an uncalibrated case that a
classification rule and classes do not depend at all on player’s current actions.

Appendix

Proof of Lemma 1. We may assume that the domain of P is bounded because
the rarllge of regret vectors are bounded; thus, JP is uniformly continuous. Let

By
SP= R %P(gﬁ”). We define a random variable X7[0](hy) as

X1[6](heo) := 0588 —nf_ S8 | — cigﬁ — oigﬁ, if (hy_1,ar) € B,
Xr[0](hao) := 0, otherwise

where Ci%w = (ap(ggﬂ—l)_ap(g%—l))'gﬂ Oigﬁ = ngfﬂ(P(ggfﬂ)—P(géﬂ”_l))—aP(ggjﬂ_l)-

(g7 — 327 ,), and v is the effective category at time T, i.e., (hy_1, ar) € . Note that
0&7 uniformly converges to 0 as m — oo.



_ P _ _
Let X7[0] := niﬁ 1 X4[B] and [X7]+ (heo)[6] := max{0, X1 (hoo)[B]}. Take any
T
probability distribution p = (pg)s on € such that pz > 0 for all 5 € Q. Then, we
define a weight function w : H — R% as follows:

XX B 1 XX
w(hr)la] := ( ps - [Xr]+[8] - ”: )- (- OP(gr)b), if 38 € QB > (hr,a)),
B3(hr,a) T+1 bcA

w(hr)la] ;== 0, otherwise

where 7, is the category that is effective at time 7"+ 1 if a is realized at time 7"+ 1:
(hr,a) € v,. Let (,) denote an inner product on L?.° The product measure of i, ,
and p is denoted by u x p.

Step 1: When (hr_1,ar) € 3, it follows from (P3) and Assumption (B1) that
XT[B](h’OO) = ap(ggzl) ' (gT - ggzl) + P(ggzl) + Oi;ﬁ?{w - Ci;ﬁ?{w - Oi;ﬁ?{w

OP(gr_1) - gr + Cigﬁ - Ciqu

< 9P(gr_4) - gr-

IN

Let 6? = n? — n?_l. Note that 6? = 1if 3 is active at time T, and 6? =0
otherwise. Let E,[- | hy] be conditional expectation on hp (with respect to p, ).
Then, it follows from the inequality above, (P1), and the definition of conditional
weighted adaptive strategy that

65
B, [([Xr]+, nﬁ“ Xr+1) | hrl
=B, ps- [Xr]+[0]- ngl Xr+1[0] | hr
3 T+1 < ] 1
< o(hr)la] - p(hr)ly] - ( pp - [Xrl[B] - —5— OP(97") - gr+1)
a Y B3(ht,a) T+1
=w(Zo(hr), p(hr)) — u(Jo(hr), p(hr))
= 0.

Step 2: Define [X7|_ := Xp—[X7]+ and projrz (X7)(heo) := argminy¢r2 || Xz (hoo)—
V|2 Then, proj;z (Xr) = [Xr|- and ((X7]+(hoo), [X7]- (hoo)) = 0. Thus, letting

P P
YXY) =" sps X[ Y[f] and L2 :={Y €R?| " ;ps - (Y[5])? < oo}
W2 . ={y eL?|Y[g] <0 forall 8 €Q}.




E,.«p|-] be expectation with respect to p x p, the second inequality in Step 1 implies
that

X -
Epxpl(Xe — projrz (Xi)) - ( 3 (Xev1 — projrz (X4)))]
t=1 nt"‘l
> -
= EuKXt — projr2 (Xt)7 T(Xtﬂ — projr2 (Xt)m
t=1 nt+l
> 8t
= EM[([Xt]Jr? 3 Xt+1>]
t=1 Mg

<

Therefore, we can apply a conditional version of the strong law of large numbers
(see Theorem 4 (and Corollary 1) in Lehrer (2002)), so that for all § € Q, if nf. — oo,

[XT]+(5) — 0, Ho,p) — @-S.

Step 3: Given a history hr, let Ro(e) :== {y € R | = < ¢}. Then, Assumption
nr

(A2) is equivalent to the following condition: () for all he, € H®™, if n) — oo, then

By
n >1—nforall T >T1T,.

for all €, n > 0, there exists T, such that 2eRE(© ﬁ

Thus, for all ho, € H*, if ngi — 00, then

5 s
1 X X X< 6 X
lim — 0?7 = lim Li— oM =0
T—o0 nﬁ _ T—oo ’I’LB nm —
T e m=1 serg T T m=1

where Rg is the set of all categories that have been effective in f—active periods up
to time 7.

Step 4: The range of regret vectors is bounded. It, together with Assumption (A1),

implies that there exists a constant C; > 0 such that for any effective category v in

B—active periods from time Tp on, ||gh’ — g2 < 10 . Oy for all T > Tp, where Ty is

a calendar time in Assumption (A1). Further, therTe exists Cp > 0 such that for all

v and all T | CigW |< Oy - |OP(g8Y ) — OP(g)_,)||. From these and Condition (%) it
T

P P,z

follows that for all ho, € H™, if nj. — oo, limg_.o B aers meiCn =0,



Step 5: Finally, from Steps 2, 3 and 4 it follows that for all g € €, if n? — 00,

X ph

lim sup —L_p(gi)
T—o0 nﬁ
yeR T

5 5
' 1 X 1 X X 1 X X
= lim sup [—5 (n) S} — ntﬁ—lstﬁ—l) I e = 3 o]
= Tll_{l(f)lo XT[ﬁ]
< Jm (%o [8
= 0, /“L(UHP) — a.S.

P By
Further, by (P2), liminfro cr "L P(gh") > 0 for all ho, € H®. Thus the
nr

desired result obtains. ¥
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