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Abstract

This paper looks at cooperation structures that result from a strategic game where players
make simultaneous proposals for cooperation. We identify cooperation structures that
maximize the potential of the game, and show how the outcome of potential maximization
depends on the players' Shapley values. We do not assume superadditivity and hence,
potential-maximizing strategy profiles do not always involve full cooperation. In cases
where full cooperation does result from potential maximization it can be inefficient. An
example provides intuition.
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1. Introduction

This paper considers cooperation structures that emerge in an environment where
players make simultaneous proposals for cooperation. The players can be thought of as
leaders of political parties looking to form a coalition government, CEQ’s of firms con-
templating a merger, or producers of a product looking to form a cartel. Such examples
have often been formulated as sequential processes. However, actions taken early in ne-
gotiations are inherently irreversible and determine at least to some extent the ultimate
outcome.! The selection of these initial positions is well modelled as a static game. We
characterize the potential-maximizing solutions to the game, and provide an example
that explains the occurrence of inefficient, potential-maximizing outcomes.

The games we consider are called cooperation-formation games (Qin 1996). These
are strategic games that determine both a coalitional structure (a partition of the players
into coalitions) and how members within each coalition are connected. A connection can
be thought of as a communication channel. Players within a coalition may be connected
directly, meaning they can communicate directly with each other, or indirectly, meaning
that they can communicate only through others. The reason for focusing on communi-
cation channels (as opposed to simply looking at coalitional structures) is that we wish
to understand situations where the payoffs to members of a coalition depend on their
“power” within the coalition.?

A cooperation-formation game is built upon a coalitional game, which specifies the
maximum value members of each coalition can create by acting together. The coalitional
game does not specify how players decide which coalitions to form. This choice problem
is dealt with by the cooperation-formation game. In a cooperation-formation game, each
player independently identifies whom she wishes to cooperate with. A link forms between
two players if and only if each proposes to cooperate with the other. Players’ payoff
functions are computed by applying the Myerson value to the coalitional game and the
cooperation structure determined by the players’ strategy profile.

The Myerson value has a natural interpretation in many contexts. Moreover, under
this method of assigning payoffs the cooperation-formation game is a potential game, as
defined by Monderer and Shapley (1996).% In general, only a subset of the Nash equilibria
of potential games coincide with the set of strategy profiles that maximize the potential,

'In the words of Omar Khayyam (. 11th cent.), “ The Moving Finger writes; and having writ,
Moves on; nor all your Piety nor Wit Shall lure it back to cancel half a Line, Nor all your Tears wash
out a Word of it.” (Rubadiyat. Stanza Ixxi.)

2 An alternative view is that links represent favorable relationships between players. See Garratt et.
al. (2001) for more on this interpretation in the context of coalition government formation.

3In fact, Qin (1996) establishes that a cooperation formation game is a potential game if and only
if payoffs determined using the Myerson value. Hence, any rule for dividing surplus to coalitions that
does not correspond to the Myerson value, for example equal division, will produce a game that does
not have a potential.



and hence potential maximization can be regarded as a refinement device. For three-
player cooperation-formation games, it turns out that, except in some knife-edge cases,
all of the Nash equilibria that maximize the potential correspond to a single cooperation
structure. Thus, in almost all cases, potential maximization provides a unique prediction
of the cooperation structure.?

In the three-player case, the cooperation structure that survives potential maximiza-
tion includes either two linked players and an isolated player, or the cooperation structure
in which every pair of players is linked. Cooperation structures in which players hold spe-
cial positions do not survive potential maximization. We provide conditions for either of
the two possible outcomes. These conditions are summarized in terms of restrictions on
the players’ Shapley values.

Qin (1996), Dutta, van den Nouweland, and Tijs (1998), Slikker, Dutta, van den
Nouweland (2000), Tijs (2000), and Slikker and van den Nouweland (2002) also consider
cooperation formation in simultaneous-play games and characterize potential-maximizing
strategy profiles. However, these papers assume superadditivity of the coalitional games
when characterizing potential-maximizing cooperation structures.

2. Three-player cooperation-formation game

Players are denoted by i € {1,2,3} = N. The strategy set of player i is II; = {S C
N | i € S}. A strategy m; € II; is a set of players with whom player 7 wishes to form
links. Let II = x;enIl;. Given 7 = (7, 79, m3) € II, a link between players ¢ and j forms
if i € m; and j € m;.> The undirected bilateral link between players 7 and j is denoted
i : j. The set of all (undirected) bilateral links between players is L = {i : j | i,j € N}.
A cooperation structure is a list of undirected bilateral links in L. Let g be the mapping
that maps strategy profiles in II into cooperation structures in L. Then, given 7 € II,
g(m)y={i:jliemn;and j € m}.

Given a strategy profile and hence a cooperation structure, the payoffs are determined
as follows. First, it is assumed that any coalition has a value that is expressed by a
characteristic function v : 2% — R, with v(0)) = 0. Second, those coalitions whose
members are either directly or indirectly connected by the cooperation structure resulting
from the strategy profile are formed. Players’ payoffs are then determined by how the
values of these coalitions are divided among the respective members. Two properties are
imposed on the divisions. One is that it be feasible in the sense that individual payoffs
to the players in a coalition add up exactly to the value of the coalition. The other is
that the division pattern allows the cooperation-formation game to have a potential. A

4Potential maximization is a solution concept that by definition only applies to potential games. See
Jackson and Wolinski (1996) for a general analysis of stability of link structures.
5This method of determining a cooperation structure follows Myerson (1991, pp. 448).



potential for a game with player ¢’s strategy set II; and payoff function U; for i € N is a
function P : II — R such that for any i € N, 7= € I, and 7} € 1I,,

Ui(m,,m ;) — Ui(m) = P(mi, 7 ;) — P(m).

A game is a potential game if it has a potential. Qin (1996) shows that the only division
rule for the cooperation-formation game that meets these requirements is the Myerson
value (see Myerson, 1977).

The Myerson value for the game (NV,v) with cooperation structure g is denoted
Y(v,9) = (¥;(v,9))ien.’ Tt can be constructed using the Shapley value (see Shapley,
1953). The Shapley value of a game (NN, v) is denoted ¢(v) = (¢,(v));en, Where

gy = 3 USI=DHR = IS gy v

n!
S5:58>1

Let ¢(v) = (¢;(v))ien- To construct the Myerson value, let S/g denote the partition of
S C N into subsets of players that are connected by cooperation structure g in S. Let v9
denote the characteristic function determined according to

v(S)= > w(R), SCN.

ReS/g(m)

Myerson (1977) shows that (v, g) = ¢(v9). The cooperation-formation game is the
strategic-form game I' = {II;, U, };c, where II; is as before and U;(w) = v,(v, g()) for
m e IL

Remark 1 U;(7) = U;(n’) if and only if g(7) = g(n').

Remark 1 says that the payoffs depend only on the resulting cooperation structure. It
is important to emphasize this because multiple strategy profiles may yield the same co-
operation structure. For example consider the strategy profiles 7 = ({1, 2}, {1, 2}, {1, 3})
and 7 = (N, {1,2},{2,3}). Both produce the same cooperation structure with a single
link, namely, g(7) = g(#n’) = {1 : 2}. In the strategy profile 7 player 3 is willing to
cooperate with player 1 but not vice versa. In the strategy profile 7’ player 1 is willing
to cooperate with player 3 but not vice versa. Links only form if the desire to cooperate
is mutual. It does not matter who vetoes a proposal for cooperation.

Definition 1 (Monderer and Shapley 1996, pp. 128) A path in 11 is a sequence v =
(70,7l ...) of strategy profiles such that for every £ > 1 there exists a unique player
denoted iy such that 7 = (7, 721 for some m;, € IL;, with T;, # wf;l (Player i, is the

(7R 71[
only deviator from m=1 in 7*.)

6We use g both as a mapping and a generic cooperation structure.
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Fix 70 = (7%, 79, ..., %) with 7{ = {i}. For 7 € II, let y(7) = (7%, x!,...,#™) denote
a path such that 7™ = x. That is, 7( ) is a path that connects 7° with 7. Given 7 € 11
and given a path (), let I(y(m )) S (Ui, (%) = Uy, (7471)).

Remark 2 By Theorem 2.8 of Monderer and Shapley (1996), I(y(7)) = I(y/(w)) if I is
a potential game and if () and /() are paths connecting 7° with .

3. Potential-maximizing cooperation structures

In this section we characterize the potential-maximizing cooperation structures for
three-player cooperation-formation games.

Theorem 1 Suppose v({1}) = v({2}) = v({3}) = 0, and v(S) > 0 for S C N with
|S| = 2. Let ©* € 11 be a strateqy profile that maximizes the potential of the cooperation-
formation game T'. Then, either g(7*) = {i : j} for some i,57 € N with i # j or
g(m*)={1:2,1:3,2:3}.

Proof. For m € II, let P(mw) = I(y(m)), where I(y()) is as defined at the end of section
2.. Then, since I is a potential game, P(7) is a potential function for the game (see (2.1)
of Monderer and Shapley (1996)). Fix 7 € II.

Case 1: g(m) = 0.

In this case, by Remark 2 we can assume +(7) satisfies g(7¢) = g(7*~1) for 1 </ < m.
Since v({i}) =0, U;(7) = ¢ (v, g(7)) =0 for ¢ € N. By Remark 1, I(y(7)) = 0, and thus

P(r) = 0. (1)

Case 2: g(m) = {i: j} for some i, j € N with i # j.

In this case, by Remarks 1 and 2, we may assume that m; = {7, 5}, 7TJ ={i,7}, and
y(m) = {n% mt, 7?} with 7! = (m;,7°,), and 72 = (7rj,7r ;). Since g(7') = g(7°) = 0
and g(7?) = {i : j}, we have P(w) = U;(w?) — U;(n!). Because v(S) = 0 for |S| =1,
U;(m') = 0 and U;(7?) = 1v({i, j}), and hence

P(r) = gu(fi,3}) @)

Case 3: g(m) ={i:j,i:k} fori, j,k € Nwithi#j, j#k, i #k.

In this case, by Remarks 1 and 2, we may assume 7Tl N, m; = {i, j} e = {i,k},
and y(m) = (7r0,7r1,71'2,71'3), where 7! = (7r],7r0 ) and 7% = (m,7,) and 7 = (71'2,7'(' ;)
Since g(7') = g(7*) = 0 and g(7*) = {i : j, i : k}, we have U;(7") = U;(7') = 0,

Up(mt) = U(7?) = 0, Uy(7?) = 0, and U;(73) = ({@ i}) + gv({i, k}) + sv(N). Thus,

P(r) = 2o({i, 31) + go({i, 1)) + 50(V). 3)



Case 4: g(m) ={1:2,1:3,2:3}
In this case it must be true that m; = my = w3 = N. As before, we may assume

that vy(7) = (7r0,7r1,7r2,7r3) where ! = (m;,7°,), 7% = (71'],7'('1]») and 7 = (mp,, 7% ,).
Then, g(ﬂ'l) = 0, g( Y= {i:j},and g(=*) = {i : j, 4 : k, j : k}. This implies
that Uy(7°) = Us(n') = 0,U;(7) = 0, Us(x?) = 30({,5}), Ur(7?) = 0, and Uy(7*) =

o({i, k}) + 2v({j, k}) + %U( ) — sv({i,j}). We therefore have

Plr) = glo({i,31) + v({5, kD) + o({G, k1] + 50(N) 8

Now let 7* denote a strategy profile that maximizes the potential. Then, since v(S) >
0 for S C N with [S| =2, by (1) - (4), g(7*) # 0 and g(7*) # {i : j, i : k} for any i # 7,
i # k, j # k. Thus, either g(n*) = {i : j} for some i,j7 € N with ¢ # j or g(7*) = {1 : 2,
1:3,2:3}. m

Additional details follow from the proof of Theorem 1. They are presented in the
following remarks.

Remark 3(i) Let 7* maximize P. By (2) and (4), g(7*) = {3 : j} implies that v({i, j}) =
max{v(S) : [S| =2} and v({i,5}) > v(N)+3[v({i, k}) +v({J, k})]. Moreover, v({¢, j})
max{v(S) : |S| = 2} and v({i,5}) > v(N) + 3[v({i,k}) + v({j, k})] imply that =
IT with g(m) = {i : j} is a potential maximizer. Similarly, g(7*) = {1 : 2, 1 : 3,
2 : 3} implies that v({7, ]}) < o(N) + 3[v({i, k}) + v({J, k:})] fori # j,i #k, j 7é k;
and v({i,j}) < v(N) + 3[v({i, k}) +v({j,k})] for ¢ # j,i # k, j # k implies that
(N, N, N), the unique Strategy profile that yields the cooperation structure {1:2, 1 : 3,
2 : 3}, is a potential maximizer. In cases where v({7,75}) > max{v({i, k}), U({j, k})}
and v({i,7}) > v(N) + $[v({i,k}) + v({J, k})], it must be true that g(7*) = {i : j}
is the unique potential-maximizing cooperation structure. In cases where v({i,j}) <
v(N)+w({i, k}) +v({j, k})] for i # j,i # k, j # k, it must be true that g(7*) = {1: 2,
1:3, 2:3} is the unique potential-maximizing cooperation structure.

Remark 3(ii) The Shapley value for player & € N in the full cooperation game is
o = so({i,k})+gv({j, k})+3v(N)—3v({i, j}). It follows from Remark 3(i) that g(7*) =
{i : j} implies that v({i,7}) = max{v(S) : |S| = 2} and ¢,(v) < 0; and v({7,5}) >
max{v({i,k}), v({j,k})} and ¢,(v) < O implies that g(7*) = {i : j} is the unique
potential-maximizing cooperation structure. Likewise, it follows from Remark 3(i) that
g(m*) ={1:2,1:3,2: 3} implies that ¢, (v), ¢4(v), p5(v) > 0; and ¢, (v), Po(v), d5(v) >0
implies g(7*) = {1 : 2, 1 : 3, 2 : 3} is the unique potential-maximizing cooperation
structure.

The cases described in Remark 3(ii) and the remaining, intermediate cases (mixtures
of zero and nonzero Shapley values) are summarized in the tables below. By Theorem 1,
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the possible graphs are either pairs or full cooperation. In cases where a pair will form,
but the actual pair depends on additional information, the word “pair” appears in the
tables. In such cases, the pair can be determined by Remark 3(i). If full cooperation
(i.e., the complete graph) is potential maximizing for any combination of the players’
Shapley values, the word “full” appears.

Pa(v) <0 @y(v) =0 ¢y(v) >0

¢1(v) <0 pair pair pair
$1(v) =0 pair {1:2} {1:2}
¢1(v) >0 pair {1:2} {1:2}
Table la: ¢4(v) < 0.
$y(v) <0 $y(v) =0 $y(v) > 0
$1(v) <0 pair {2:3} pair
o1 (v) =0 {1:3} {1:2}, {1:3}, {2:3}, full | {1:2}, {2:3}, full
¢1(v) >0 pair {1:2}, {1:3}, full {1:2}, full
Table 1b: ¢5(v) = 0.
$y(v) <0 $y(v) =0 $y(v) >0
$1(v) <0 pair pair pair
¢ (v) =0 pair {1:3}, {2:3}, full | {2:3}, full
¢$1(v) >0 pair {1:3}, full full

Table 1c: ¢5(v) > 0.

Tables la-c illustrate an important and intuitive fact: Full cooperation is the unique
potential-maximizing outcome if and only if all three players’ Shapley values are strictly
positive.

4. An example

One of the interesting aspects of potential maximization in the context of non superad-
ditive games is that inefficient outcomes are sometimes selected. To demonstrate this
possibility, and to provide insight into why such outcomes are reasonable we specify an
example. Consider a three-player coalitional game, with characteristic function v satisfy-
ing v(1) =v(2) =v(3) =0, v({1,2}) =12, v({1,3}) = v({2,3}) =9, and v(N) = 8. The
game is not superadditive and the efficient outcome is for the two-player coalition {1,2}
to form. However, the unique, potential-maximizing strategy profile is (N, N, N). The
resulting cooperation structure is g = {1:2, 1: 3, 2 : 3} and the payoffs are (3%, 3%, 1%)
The total payoff from this strategy is 8, which is less than the total payoff that could be
achieved by any pair of players.



The strategy profile my = {1,2}, my = {1,2}, and w3 = {3} produces the efficient
outcome and is a Nash equilibrium. Insight into why this Nash equilibrium is not likely
to be selected in practice is obtained by switching player 3’s strategy to N, her weakly
dominant strategy, and assuming players 1 and 2 each focus on the choice between con-
necting only with each other and connecting with everyone.” The resulting game is as
follows

7T1\772 {172}
{1,2} | 6,6 | 12,65
N | 65,15 | 35,35

The game has the structure of the prisoner’s dilemma. Playing N is a dominant strategy
for both player 1 and 2 and this is inefficient.®

5. More than three players

For an arbitrary number of players, the statement of Theorem 1 would be as follows:
Whenever any two players are indirectly connected in the graph that results from a poten-
tial maximizing strateqy profile, they are also directly connected. However, consider a 4-
player game (N, v) where (i) v(k) = 0 for k € N; (ii) v({1,2}) = v({2,3}) = v({3,4}) =2
and v({1,3}) = v({1,4}) = v({2,4}) = 10; (iii) v(S) = 1 for |S| = 3; and (iv)
v(N) = 100. The potential of the resulting cooperation-formation game is maximized
at ™ = ({1, 3,4},{2,4},{1, 3}, {1,2,4}).° All four players are indirectly connected in the
corresponding graph, g(7*) = {1 : 3,1 : 4,2 : 4}, but players 1 and 2, 3 and 4, and 2
and 3 are not directly connected. This example shows that further (more restrictive) as-
sumptions on the form of the characteristic function are required to generalize Theorem
1.

"This is arguably the natural choice for players 1 and 2 because they are the value-maximizing
pair. Moreover, experimental evidence supports this restriction. Garratt ef. al. (2001, Table 4, Game
4) reports frequencies of strategy choices played by paid subjects who participated in a three-player,
cooperation-formation game with the same payoff structure as this example. In 90 games, subjects
acting as player 1 played {1,2} 16 times and N 72 times. Subjects acting as player 2 played {1,2} 13
times and NV 75 times.

8Note that a sequence of (weakly) self-improving, unilateral deviations leads from the efficient strategy
profile ({1,2},{1,2}, {3}) to the potential-maximizing profile (N, N, N). Potential-maximizing outcomes
can be interpreted as the limit of an adjustment process based on such deviations (see Garratt and Qin,
2002).

9This is true because at 7* no player is willing to establish missing links with other players or break
existing links. A player who forms missing links loses more from having negative marginal contributions
to the additional connected 3-player coalitions than she gains from her low marginal contributions to
the additional connected 2-player coalitions. Similarily, each player loses by breaking existing links.
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