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Abstract

We specify an adjustment process that converges to the set of potential-maximizing strategy
profiles for 3—player cooperation—formation games or n—player cooperation—formation
games based on a superadditive characteristic function. Our analysis provides a justification
for potential maximization as a refinement of Nash equilibrium in these settings.
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1. Introduction

Monderer and Shapley (1996) specify a simple adjustment process that converges
to a Nash equilibrium of a potential game in a finite number of steps. In their process,
whenever the strategy profile is not a Nash equilibrium, it is assumed that one player
deviates to a strategy that makes her better off. Unilateral deviations that increase the
payoff of the deviator raise the value of the potential, while unilateral deviations that
decrease the payoff of the deviator lower it. Hence, once a Nash equilibrium is reached
(there are no more self-improving, unilateral deviations) the process terminates and
the potential function will be at a maximum in the sense that its value cannot be
increased by varying any single player’s strategy.

While useful for interpreting Nash equilibrium, this result does not support the
use of potential maximization as a refinement. The Nash equilibrium reached by the
simple adjustment process of Monderer and Shapley (1996) might not maximize the
potential function over its entire domain of strategy profiles. To this end, we consider
a modification of the simple adjustment process that allows for experimentation.
We assume that starting from any strategy profile, players are willing to deviate to
alternative strategies that are at least as good as their present ones. Our process
is described formally below. We refer to it as a weak adjustment process because
players may deviate to strategies to which they are indifferent.

The weak adjustment process operates on a constantly changing set of deviators
who are able to switch to a different strategy and be at least as well off, holding fixed
the strategies of the other players, as they were before the deviation. The nonempti-
ness of this set, at each step of the process, is crucial. For 3-player cooperation-
formation games the set of deviators is nonempty at any non-potential maximizing
profile. This will not be true for games that have strict local maxima of the potential
function (i.e., strict Nash equilibria). A strict local maximum of the potential func-
tion exists if there is a strategy profile that does not globally maximize the potential,
but from which all unilateral deviations make the deviators strictly worse off. An
example of such a game is a standard, two-player coordination game (shown below
with its potential function).
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If players find themselves at the Nash equilibrium (T,L) then neither is willing to
consider a unilateral deviation, even though a sequence of unilateral deviations would



lead (in two steps) to the mutually preferred, potential-maximizing outcome.! In
what follows, maximum or maximizing is used in the global sense, over all strategy
profiles.

The weak adjustment process may involve random selection of both deviators and
deviations. We show that the process converges with probability one to the set of
potential-maximizing strategy profiles of 3-player cooperation-formation games. The
weak adjustment process can be applied to n-player cooperation-formation games
(n > 3) under mild conditions, as we explain below. The weak adjustment pro-
cesl,1s converges to the set of potential-maximizing strategy profiles for cooperation-
formation games based on a superadditive characteristic function. However, we can
neither establish nor rule out convergence of the weak adjustment process to the set
of potential maximizers for non superadditive games with more than 3 players.

2. Notation and definitions

Let N = {1,2,...,n} and define the strategy set of player i to be I, = {S C N |
i € S}. A strategy m; € II; is a set of players (including him or herself) with whom
player i wishes to form links. Let II = X;enll;. Given 7 = (w1, 7, ..., m,) € II, a
link between players ¢ and j forms if i € 7; and j € m;.2 The undirected bilateral
link between players i and j is denoted i : j. The set of all (undirected) bilateral
links between players is L = {i : j | i,7 € N}. A cooperation structure is a list of
undirected bilateral links in L. Given a strategy profile 7, the resulting cooperation
structure is given by the function g : I — L where g(7) ={i:j |i € m; and j € 7;}.

Given a strategy profile the payoffs are determined as follows. First, it is assumed
that any coalition has a value that is expressed by a characteristic function v : 2% — R
that is zero-normalized (i.e., v({i}) = 0 for all ¢ € N). Second, players that are
either directly or indirectly connected by the cooperation structure resulting from the
strategy profile can cooperate. Players’ payoffs are then determined by the Myerson
values (see Myerson, 1977). The Myerson value for the coalitional game (N, v) with
cooperation structure g is denoted ¥(v,g) = (¢;(v,g))ien.®> It can be constructed
using the Shapley value (see Shapley, 1953). The Shapley value of the coalitional

Stochastic processes of the type considered by Kandori, Mailath, Rob (1993) and Young (1993)
will converge to the mutually preferred outcome in this simple example. Our goal is to see what
outcomes can be reached without random mistakes.

2This method of determining a cooperation structure follows Myerson (1991, pp. 448) and Qin
(1996).

3We use ¢ both as a mapping and a generic cooperation structure.



game (N,v) is denoted ¢(v) = (¢;(v))ien, Where
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Let ¢(v) = (¢;(v))ien. Given a cooperation structure ¢ C L and a coalition S C
N, S/g denotes the partition of S into connected components. Let v9 denote the
characteristic function determined according to

v(S)= > w(R), SCN.

ReS/g

Myerson (1977) shows that (v, g) = ¢(v7). Player i’s payoff function in the cooperation-
formation game is U;(mw) = ¥,(v, g(m)), for = € II. That is,
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Note that U;(m) = U;(7') if g(w) = g(n’). The cooperation-formation game is the
strategic-form game I' = {II;, U, }ien -

Definition 1 (Monderer and Shapley) A potential for a game T is a function
P :1I — R such that for any i € N, 7 € II, and 7, € 11;,

Ui(mg, m_i) — U(m) = P(mj, m_;) — P(m).
I' is a potential game if it has a potential.

Remark 1. An assignment, (U;);cn of players’ payoffs satisfies component efficiency
if for any 7 € II and for any S € N/g(w), > Ui(w) = v(S). By Theorem 1 and

€S
Proposition 2 of Qin (1996), the Myerson values are the only way of assigning the
players’ payoffs that satisfy component efficiency and make the cooperation-formation

game a potential game.
3. Weak adjustment process

We seek a simple dynamic adjustment process that converges to potential-maximizing
strategy profiles. The process we specify is a modification of the simple adjustment
process specified by Monderer and Shapley (1996). Our modification is to allow play-
ers to experiment in cases where no strictly self-improving unilateral deviation can
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be found and try other strategies that are at least as good as the current one. (This
is sometimes referred to as adding “drift.”)

At each stage of the process define the set of dewviators to be all those players
who can deviate to a different strategy that, holding fixed the strategies of the other
players, would leave them at least as well off as they were before the deviation. Then
we have the following:

Weak Adjustment Process: Suppose the initial strategy profile is not a potential
maximizer. Randomly select one player from the set of deviators. Allow her to deviate
to a different strategy that gives her a payoff that is at least as good as her current
one. If she has more than one such strategy, have her select one at random. Repeat.

Under the weak adjustment process, the transition probability from a given strat-
egy profile to any other one depends on the given strategy profile, but not on the
strategy profiles reached in the previous steps. This means that the process is a
Markov chain whose state space is the set of strategy profiles. Thus to show that the
process converges with probability one from any initial strategy profile to the set of
potential maximizers, it suffices to show that together potential maximizers form the
only essential class of the underlying Markov chain. The weak adjustment process
does not require that deviators select optimal strategies. Making this assumption
would be fine for the convergence result shown below.

4. Result for 3-player cooperation-formation games

The following definitions are useful for establishing convergence of the weak ad-
Justment process.

Definition 2 (Monderer and Shapley) A path in1l is a sequence y = (7%t ..., ™)
of strateqy profiles such that for every £ > 1 there exists a unique player denoted i,
such that ©* = E(ﬂ'fl,.ﬂ'{_i;) for some =%, € 1I;, with 7%, # =" (player i, is the only
deviator from w1 in 7).
Definition 3 A pure improvement path (PIP) is a path vy = (7%, mt, .., 7™) such that
for £ > 1,U,;,(7%) > U,,(n*1). If the inequality is strict for at least one deviator, the
path is called a strict PIP.

Remark 2(i). By the selection criteria of the weak adjustment process, if the initial
strategy profile of a finite PIP is reached by the adjustment process, then the entire
PIP will be realized with positive probability.
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Remark 2(ii). By Theorem 2.8 of Monderer and Shapley (1996), if there is a strict
PIP from strategy profile 7 to another strategy profile 7/, then there cannot be any
PIP from 7’ to .

Theorem 1. For zero-normalized, 3-player cooperation-formation games the weak
adjustment process converges from any strategy profile to the set of potential-maximizing
strateqgy profiles with probability one.

Proof. The proof uses the following three facts that apply to any 3-player
cooperation-formation game. Additional notation is needed. Given any coopera-
tion structure g, m(g) = (m1(g),m2(g), m3(g)) denotes a strategy profile such that
mi(g) ={j|i:j € guf{i}, fori = 1,2,3. That is, m(g) is the strategy profile
such that every player only proposes to form links with those who are linked with the
player in g.

Fact 1. For any m € 11 with m # mw(g()), there exists a finite PIP from w to m(g(m)).

Proof of Fact 1. Without loss of generality, assume that m; # m;(g(7)), for all i €
{1,2,3}. Haeringer (2002) shows a potential function for the cooperation-formation
game is

P(?T) _ Z (n — |S|)'(|S| — 1)!Ug(7r)(5), (2)

n!

for m € II.Y Observe that P(r) = P(w(g(r))). Set 7 = m1(g(7)), 73 = m2(g()), and
73 = w3(g(m)). Then, g(7') = g(7?) = g(7*), which implies that v = {7°, 7!, 7% 73}
with 70 = 7 is a PIP.S

Fact 2. There exists a strict PIP from any non potential-maximizing strategy profile
to a potential-maximizing one.

Proof of Fact 2. Let 7 be any strategy profile that does not maximize the potential.
By Fact 1, we may assume 7 = w(g(w)). When |g(7)| = 1, say g(m) = {i : j},
the existence of a strict PIP from 7 to a potential maximizer is straightforward
unless strategy profiles producing {7 : k, j : k} are the only potential-maximizers.®

4By Lemma 2.7 of Monderer and Shapley (1996), potentials for a given potential game are unique
up to an additive constant.

9We will continue to assume 70 is the given strategy profile 7 in the paths specified below.

6This is so because for all other cases a path can be found so that only the last deviator changes
the cooperation structure and hence increases the potential.



Suppose this is the case. By (2), the difference between the potential at strategy
profiles producing the cooperation structure {i : k, j : k} and 7 = (N, N, N) is
2v({4,5}). Since 7 is not potential maximizing this implies v({¢, j}) < 0. It follows
that v = {n°, 7!, 7%, 7} with 7} = {i,k}, 73 = {j,k}, and 7} = N is a strict PIP
from 7 to a potential maximizer.

When |g(7)| = 0 the existence of a strict PIP from 7 to a potential maximizer
follows from the reason stated in Footnote 6 unless 7 = (N, N, N) is the only
potential-maximizing strategy profile. Suppose it is. By (2), the difference between
the potential at the strategy profile 7V and strategy profiles producing the cooperation
structure {i : k, j : k} is 20({i,j}), for i # j # k. Since = is the only potential-
maximizing strategy profile, v({i,j}) > 0 for ¢ # j. Tt follows that v = {#° =! 72}
with ; = {i,7} and 77 = {4, 7} is a strict PIP from 7 to «*. Since g(*) = {i : j},
by the above result for |g(m)| = 1, there exists a strict PIP from 7% to a potential
maximizer. By combining the strict PIP from 7 to 72 with one from 72 to a potential
maximizer, we obtain a strict PIP from 7 to a potential maximizer.

When |g(7)| = 2, for instance suppose g(7) = {i : j, i : k}, the existence of a
strict PIP from 7 to a potential maximizer follows from the reason stated in Footnote
6, unless the potential-maximizing strategy profiles only produce one or more of the
following cooperation structures: {j : k}, {i:j,7: k},{i : k, j : k}. Suppose first that
{i:k,j:k}or{i:j,j:k} areincluded. In the former case, v({7,j}) < v({j, k}).
Thus v = {z% «', 7%} with 7} = N and 75 = {j,k} is a strict PIP from 7 to a
potential maximizer. In the latter case, we have v({i,k}) < v({j,k}), and hence
v = {7, 7", 7%} with 7} = N and 7} = {j,k} is a strict PIP from 7 to a potential
maximizer. The remaining difficult case is where strategy profiles producing the
cooperation structure {j : k} are the only potential maximizers. In this case, zero-
normalization and (2) imply v({j,k}) > 0. Now consider a path v = {7% #! 7% 73}
with 7, = N, n; = N, and m; = {i}. Then, g(n') = g(m) which, by (1), implies
Up(m!) = Ug(m); g(7?) = {1:2,1:3,2: 3} which, by (1) and the fact that v({j, k}) >
0, implies U;(7?) > Uj(n'); and g(7*) = {j : k} which, since 7% is a potential
maximizer and 72 is not, implies U;(7®) — U;(7?) = P(n®) — P(7?) > 0. Thus, v =
{m9 wt w2 w3} is a strict PIP from 7 to a potential maximizer.

Suppose |g(7)| = 3, which means 7 = 7V. First consider the case in which strategy
profiles producing a two-link structure, say {i : j, i : k}, are potential maximizing. By
(2), the difference in potential at m and any strategy profile 7’ producing {i : j,i : k}
is v({7,k}). Since 7 is not potential maximizing and =’ is, v({j,k}) < 0. Thus,
vy = {n° 7'} with 7} = {i,7} is a strict PIP from 7 to a potential maximizer. Next
consider the case where strategy profiles producing a one-link structure are potential



maximizing. Choose i,j € N such that v({7,j}) = ‘m‘axv(S) and let 7 € II be such
that g(7) = {¢ : j}. Then, 7 is potential maximizing and thus P(7) > P(n). It

follows from (1) and (2) that Uy(7) = P(w) — P(7) < 0. Since Ug(7) = 0 we conclude
that v = {7% 7!} with 7i = {k} is a strict PIP from 7 to a potential maximizer.
Finally, consider the case where strategy profiles producing the zero-link structure are
the only potential maximizers. In this case, (2) and zero-normalization imply that
P(n') = 0 for all 7’ € II such that g(7") =  and v(S) < 0 for |S| = 2. Consider a
path v = {7° 7!, 7%} with n} = {i,k} and 77 = {k}. Then, g(7') = {i : k,j : k} and
g(7*) = 0. Since v({7,j}) < 0 and Uj(7') — U;(x°) = P(x') — P(n°) = —3v({3,5}),
player i is made strictly better off in the move from 7° to 7!. Furthermore, since
P(7?) > P(r!) and Uy (7?) — Ug(7!) = P(n?) — P(x!), player k is made strictly better
of in the move from 7! to 2. This establishes that v is a strict PIP from 7 to a
potential maximizer.

Fact 3. There exists a finite PIP between any two potential-maximizing strateqy
profiles.

Proof of Fact 3. Let m and n’ be any two potential-maximizing strategy profiles.
We will assume g(7) # g(7’) since otherwise, by Fact 1, it is always possible to specify
a path from 7 to 7’ that keeps the potential constant. Note first that because both
m and 7' are potential maximizers a PIP, if one exists, from 7 to «’ cannot involve
a strict improvement for any deviator. Since the inverse of a PIP without strict
improvement is also a PIP, we need only consider the case where |g(7)| < |g(7)].
When |g(7)| = |g(7')| there are only two possibilities; g(7) = {i : j} and g(n') = {i :
k} or g(m) ={i: j,i:k} and g(7') = {i: j,5: k}. By (2), v({i,j}) = v({i,k}) in
the former case and v({i, k}) = v({j, k}) in the latter case. Thus, a PIP from 7 to 7’
is given by v = {n°, 7!, 7*} with 7 = {i, k} and 77 = {4, k} in the former case, and
m; = N and 7} = {j, k} in the latter case.

When |g(7 )| < |g(7")], four cases deserve special attention: (i) g(m) = {z j},
g(r') =A{i:j, ik} (i) g(m) = {i: j}, g(n') = {i < k, j - k}; (ild) g(m) = {i 2 j, 0 - K},
g(m ’)—{1 2,2:3,1:3} and (iv) g(m) =0, g(7n') ={1:2,2:3, 1: 3} Incase
() Uu(m) — Ui(w') = P(x) = P(x). Thus, snce P(x) = P(x), Us(x) = U(x). By
(1) and zero-normalization Ug(m) = 0 and thus Ug(7’) = 0. Hence, v = {7, 7!, 7%}
with 7} = N and 7% = {i,k} is a PIP from 7 to . In case (ii), for both 7 and 7’/
to be potential maximizing it must be true that v({i,j}) = 0; otherwise, by (2), the
potential can be increased from 7’ by adding the link ¢ : j. Thus, P(7) = P(x) = 0,
and v = {7, 7', 7% ©°} with 7} = {i, k}, 75 = {j, k}, and 7} = N a PIP. In case (iii),
v({j,k}) = 0 and so v = {n°, 7', 7} with 7} = N and 7 = N is a PIP. Finally, in
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case (iv), zero-normalization and (2) imply all coalitions have a value of zero. Hence,
any path from 7 to 7’ is a PIP.

Fact 2 establishes that from any non potential-maximizing strategy profile there is
a finite, strict PIP to a potential-maximizing strategy profile. Fact 3 shows that there
is a PIP between any two potential-maximizing strategy profiles. Combining Facts
2 and 3, there is a strict PIP from any non potential-maximizing strategy profile to
any given potential-maximizing strategy profile. By Remark 2(ii), starting from any
potential-maximizing strategy profile there does not exist any PIP to a non potential-
maximizing strategy profile. Because of this and by Remark 2(i), we conclude that
every potential maximizer is accessible from any strategy profile, but strategy profiles
that are not potential maximizers are not accessible from any potential maximizer.
This implies that the set of potential-maximizing strategy profiles is the only essential
class of the homogeneous Markov chain given by the weak adjustment process. By
Theorem 4.7 of Seneta (1981), the Markov chain and hence the adjustment process
converges from any given strategy profile to the set of potential-maximizing strategy
profiles with probability 1. m

5. n players

We conclude with a discussion on applying the weak adjustment process to n-
player cooperation-formation games. First, we establish a result for superadditive
games.

Theorem 2. For superadditive, zero-normalized, n-player cooperation-formation
games the weak adjustment process converges from any strateqy profile to the set of
potential-maximizing strategy profiles with probability one.

Proof. In this case, all potential-maximizing strategy profiles are payoff equiva-
lent to the potential-maximizing strategy profile 7% = (N, ..., N) (see Qin, 1996 and
Slikker et al., 2000), which is itself a potential maximizer. Moreover, because the
addition of new links is never detrimental to the deviating player in superadditive
games, the sequence of unilateral deviations 7} = N, 72 = N,.., 7" = N (ignor-
ing cases where 7! already equals N) defines a PIP to 7"V from any strategy profile.
Hence, 7 is accessible from any starting strategy profile with strict improvement if
the starting strategy profile is not potential maximizing. Furthermore, 7 is accessi-
ble from any starting strategy profile without strict improvement if the starting profile

is already potential maximizing. This implies that the set of potential-maximizing
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strategy profiles is the only essential class of the homogeneous Markov chain given by
the weak adjustment process. Hence, the argument used in the proof of Theorem 1
for Markov processes applies. m

For non superadditive games, we have no general convergence results, but we are
able to state conditions for the non emptiness of the set of deviators at each non
potential-maximizing strategy profile. This is crucial for the application of the weak
adjustment process. If the initial strategy profile is such that there exists i € N
with 7; # N then some player j € N\m; can either change her strategy profile to
m; = mj\{1} (if i € 7;) or change her strategy profile to 7 = m; U {i} (if 7 ¢ 7;) and
her payoff will not change. Starting from the (non potential-maximizing) strategy
profile 7V things are more complicated. We require that someone can break a link
(or multiple links) and be no worse off. This will be true provided there exists a
player 7 and a coalition S; 2 {7} such that

s ISR DY ) 4 sigiy) — ()] = 0. )

n!
SCS;:82i

The change in i’s payoff from deviating from 7 to the strategy =, = (N\S;) U {4} is
given by the difference in player i’s Myerson value under the complete graph g(m) and
the graph created by the deviation, g(7},7_;). Since g(7) = g(7")U{i : j | j € S}
the difference between the Myerson values for player ¢ reduces to the expression in
(3). The inequality in (3) is a form of weighted subadditivity that need only exist for
one player and one coalition.
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