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Abstract

According to the Fisher hypothesis, the nominal interest rate is equal to the real interest rate,
plus expected inflation. Results concerning the empirical validity of this hypothesis are not
unanimous. These contradictions may be due to the fact that the usual concept of
cointegration is too restrictive. We thus propose here to refer to the concept of fractional
cointegration introduced by Granger (1986). We study the Fisher hypothesis by testing for
the existence of a fractional cointegration relationship between nominal interest rates and
inflation. Our results suggest that, for a large majority of G7 countries, such a relationship
exists.
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1 Introduction

According to the Fisher hypothesis, the nominal interest rate is equal to the real interest rate,
plus expected inflation. If nominal interest rates and inflation are integrated of order one,
i.e. non stationary, it is possible to test the Fisher relationship by testing for the existence
of a cointegration relationship between the two variables. In other words, one has to test
whether the error term of this long-run relationship is integrated of order zero. Recently,
Crowder and Hoffman (1996), using the Johansen procedure, find results consistent with the
Fisher hypothesis for the 1952:1 to 1991:4 period on U.S. data. Conversely, using Engle
and Granger (1987) cointegration tests, Mishkin (1992) results do not support the Fisher
hypothesis on U.S. data. Evans and Lewis (1995), again by applying the Engle and Granger
(1987) procedure, show that the Fisher hypothesis is verified only when regime shifts in the
expected inflation process are taken into account.

As one can see, results are not unanimous concerning the empirical validity of the Fisher
hypothesis. These contradictions may be due to the fact that the usual concept of cointegra-
tion is too restrictive. We thus refer here to the concept of fractional cointegration introduced
by Granger (1986). This notion is linked to the fractional integration one which is itself linked
to the long-term memory property of time series (see Granger and Joyeux (1980) and Hosking
(1981)). In these conditions, the integration order of the error correction term is not neces-
sarily 0 or 1, but it can be a real: the error correction term may be fractionally integrated.
This allows to obtain more various mean reverting behaviors (see among others Chou and
Shih (1997)). More specifically, a fractionally integrated error correction term implies the ex-
istence of an equilibrium long-term relationship between nominal interest rates and inflation.
Thus, the error correction term needs not to be I(0). Consequently, if the error correction
term is fractionally integrated, then it exists a fractional cointegration relationship (that is
an equilibrium relationship) between nominal interest rates and inflation, which is consistent
with the Fisher hypothesis.

The paper is organized as follows. Section 2 presents fractional cointegration tests. Section
3 reports empirical results for the G7 countries. Section 4 concludes.

2 Tests for fractional cointegration

For the presentation of the tests, we consider two series, x; and y; each of which being
integrated of order 1. z; and y; are fractionally cointegrated if there exists a cointegration
relationship:

Y = @+ By + 2 (1)

where z is a long-term memory process, such as an ARFIM A process':
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where @ (L) and O (L) are autoregressive and moving average polynomials, respectively,
€; is a white noise, L is the lag operator and:

'For a presentation of AutoRegressive Fractionally Integrated Moving Average processes, see Granger and
Joyeux (1980) and Hosking (1981).
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The following fractional cointegration tests are based on the null hypothesis:

(1-L)'=1-dL- L — ... (3)

Hy : ¢ and y; are not cointegrated, i.e. 2 is I(1), for all a, 5 € R,
against the alternative:
H; : z; and y; are cointegrated, i.e. z; is I(d), with d < 1

These tests are applied on the estimated residuals 2; of the long-term relationship (1).

2.1 Fractional cointegration tests based on the estimation of ARFIMA
processes

We just recall the main lines of the two techniques employed here: the Geweke and Porter-
Hudak (1983) method (GPH) and the exact maximum likelihood procedure.

The application of these procedures on residual series allows us to test the null hypothesis
of a unit root (d = 1) against the alternative of fractional integration (d < 1). This is
equivalent to a test of the null d’ = 0 against d’ < 0, with d = d — 1 where d is the fractional
difference parameter of the series in levels and d’ the fractional difference parameter of the
series in first differences.

The aim of the Geweke and Porter-Hudak (GPH) method is to estimate the fractional
integration parameter d by the following regression:
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where )\; is the Fourier frequency \; = %, I(};) is the periodogram of Az, t =1,....T,
and j = 1,2, ...,m where m corresponds to the number of periodogram ordinates. Tradition-
ally the number of periodogram ordinates is chosen from the interval [T0'45, T0'55] . However,
Hurvich et al. (1998) recently showed that the optimal m is of order O (T 0‘8). Asymptotic
normality of the estimated fractional difference parameter has been proved by Geweke and

Porter-Hudak (1983) when d < 0 and by Robinson (1990) for 0 < d < 1/2.

The GPH method is a two step estimating procedure. Indeed, one has to estimate the
fractional difference parameter in a first step. In the second step, autoregressive and moving
average parameters are estimated using traditional time series methods. There exist however
one step estimation procedures, like the exact maximum likelihood (EM L) one (see Dahlhaus
(1989) and Sowell (1992a,b) for details).

Let Az, t =1,...,T, being a fractionally integrated stationary Gaussian time series. Az
follows a normal law with mean zero and covariance matrix 3. Its density function is given

by:

f(Az,2) = @2r) 28 Y2exp (-%Azgzlmt> (5)



Due to the stationarity property, the covariance matrix has a Toeplitz form: ¥ = [fyifj]
with 7,7 = 1,2,...,T. Moreover, one has:

2
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Evaluating the au/tocovariance function requires calculation of the spectral density of Az;.
Let u; = (1 — L) Az and ®(L)u; = O(L)e; where &; is a white noise. Let also:

p

O(x) = H (1—p;z) (7)

Jj=1

with |p,| <1forn=1,2,....p.
Sowell (1992) showed that the spectral density of a stationary time series generated by an
ARFIMA(p,d, q), where the roots of the autoregressive polynomial are simple, is given by:
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where w = e** and:

ﬁj = |Pj ﬁ (1 - Pipj) H (Pj - Pm) 9)
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Substituting the value of fa,(X) in (6) gives (see Sowell (1992), p.173):
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with h=p+1—s.
For empirical purposes, one uses the following form:

I'(1—2d)T (d + h)

C(d, h,p)= 13
(4:h:p) T(1-d+hID(1-d)T(d) (13)
X [pPF (d +h,1;1—d +hip) + F (d —h,1;1—d — h;p) — 1]
where F'(a,b;c; x) is the hypergeometric function:
a—l—n F'b+n)T(c)
b; " 14
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This method has the interest of using all information relative to the short and long-term be-
havior of the series since it estimates simultaneously all the parameters of the ARFIM A(p,d',q)
representation.

2.2 The modified R/S analysis

Lo (1991) derived a test, called the modified R/S statistic, of the null hypothesis of short-
range dependence which is invariant to a general class of short-term memory processes. The
modified R/S statistic, denoted as Q,,r, is given by:
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We see that the autocovariances are weighted according to lags g (see Andrews (1991) for
the choice of ¢ and Newey and West (1987) for the weights w; (¢)). The limiting distribution
of the modified R/S statistic is known (see Lo, 1991) and it is thus possible to test the null
hypothesis of short-term memory against the alternative of long-term memory (fractional
integration) of the error term by comparing the statistic V = Q,r/ VT to critical values.

2.3 The Lobato-Robinson test

Lobato and Robinson (1998) have proposed an LM-type test of the null hypothesis of I(0)
against the alternative I(d') with d’ # 0. The test statistic is given by:



Table 1: Unit root tests on interest rates series

ADF PP KPSS

Iy l12

Germany  Level -1.24 (1) -1.23 (1)  0.59 0.27*
Variation -15.74* (1) -16.27* (1) 0.05* 0.03*

France Level -1.11 (1) -1.14 (1) 164 0.72
Variation -22.11* (1) -22.10* (1) 0.04* 0.05*

UK Lovel 223 (2) 225 (1) 131 0.6
Variation -17.10* (1) -17.13* (1) 0.58 0.06*

Canada Level -0.93 (1) -0.94 (1)  1.36  0.58
Variation -18.01* (1) -18.05* (1) 0.07* 0.07*

Tealy Lovel 275 (2)  241(1) 108 047
Variation -15.64* (1) -15.39* (1) 0.11* 0.15*

Japan Level -2.11 (1) -2.82 (1) 288 1.19
Variation -10.17* (1) -10.15* (1) 0.14* 0.10%

Us. Lovel 128 (1)  -1.16 (1) 122 052

Variation -15.06* (1) -14.75% (1) 0.05*% 0.04*

(1): Model without constant, nor deterministic trend. (2): Model with constant and without trend.
*

: stationary series at the 1% significance level.

LR=-m'?— (18)

m
with v; =logj —m 1Y logi and I ()\;) is the periodogram of A%;. If the test is applied
i=1

to the true error term, then its asymptotic distribution is standard normal.

3 Empirical results

We consider monthly series of three-month nominal interest rates and inflation rates for the
G7 countries on the 1970:01 to 2001:03 period. We first test for the (non)stationarity of these
series.

Results of usual unit root tests (Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski
et al. (KPSS) tests) are reported in tables 1 and 22. According to the three tests, all interest
rates series are integrated of order one. For inflation rates series, results are more mitigate.
According to the KPSS test, the U.S. series is stationary. However, according to the non
stationarity tests (ADF and PP), this series is integrated of order one. The Germany series
is stationary according to ADF and PP tests and I(1) according to the KPSS test. Despite
these two contradictions, we retain globally that all series are integrated of order one.

2For the KPSS test, we use the values recommended by Schwert (1989) for the truncation parameter :

ly = int [4 (%)1/4} and l12 = int [12 (%)1/4]



Table 2: Unit root tests on inflation rates series

ADF PP KPSS

la l12
Germany Level -5.64% (3)  -8.19*% (1) 0.17 (t) 0.15 (t)
Variation 0.01* 0.03*

France Level -1.09 (1) -2.04 (1) 3.54 1.48
Variation -11.97* (1) -23.27* (1)  0.05* 0.10%*

UK. Lovel  2.15 (1) -388* (1) 2.64 127
Variation -20.70* (1) 0.01* 0.03*

Canada Level -1.53 (1) -3.34 (3) 2.75 1.22
Variation -20.80* (1) -24.02* (1)  0.03* 0.07*

Ttaly Level  -1.40 (2) 221 (1) 282 1.4
Variation -11.94* (1) -17.56* (1)  0.03* 0.06*

Japan Level -2.06 (1) -2.22 (1) 0.94 0.61
Variation -25.88* (1) -21.99% (1)  0.02*  0.05*

Us. Lovel 142 (1) 271 (1) 011F  0.08

Variation -15.24* (1) -17.94* (1)

(1): Model without constant, nor deterministic trend. (2): Model with constant and without trend.

(3): Model with constant and trend. *: stationary series at the 1% significance level.

Table 3: Unit root tests on residual series
ADF PP

Germany -3.73 -4.01
France -3.72  -4.04
U.K. -3.38 -3.54
Canada -3.17 -4.31
Ttaly -3.59 -3.88
Japan -1.93  -1.98
U.S. -2.45  -3.77

It seems thus interesting to test for the existence of a stable long-term relationship be-
tween nominal interest rates and inflation series. Results of the application of traditional
cointegration tests (ADF and PP tests) on residuals are reported in table 3. These results
show that the error term is non stationary at the 1% significance level, suggesting that the
Fisher hypothesis does not hold.

However, this last result may be due to the fact that the usual concept of cointegration is
too restrictive. We thus apply fractional cointegration tests. Since the tests should be applied
on stationary series, they have been run on residuals in first differences. Results are reported
in table 4 for the modified R/S analysis, in table 5 for the GPH and Lobato-Robinson tests
and in table 6 for the exact maximum likelihood procedure.

It is important to note that the properties of these tests, such as the asymptotic distribu-
tion under the null hypothesis, are known only if the true equilibrium errors z; are observable.
However this is not the case here since fractional cointegration tests are applied to estimated
residuals. Consequently, the error correction term tends to be biased in favor of the station-
arity hypothesis leading to too many rejections of the null hypothesis of no cointegration.



Table 4: Modified R/S analysis

d \%4
Germany -0.0627 0.6929
France  -0.0449 0.7661
U.K. -0.0699 0.6609
Canada -0.0649 0.6806
Ttaly -0.0022 0.9867
Japan -0.0739 0.6656
U.S. -0.0605 0.6987

Table 5: GPH and Lobato-Robinson tests

GPH LR
d tar

Germany -0.2334 -3.5844 -0.5560
France -0.3024 -4.8109 -4.8133
U.K. -0.1679 -2.6178 -2.8725
Canada -0.3154 -5.0188 -3.1400
Italy -0.2532  -4.0281 -7.5048
Japan -0.2741 -3.5750 -1.7201
U.S. -0.3042 -4.8402 -1.5566

ty is the t-ratio of the estimated d’.

Table 6: Exact maximum likelihood procedure

AICc SIC
ARFIMA(p,d,q) LL ARFIM A(p,d . q) LL

Germany (1,-0.4145,0) —490.02 (1,-0.4145,0) —490.02
ty = —3.6287 ty = —3.6287

France (0,-0,2801,0) —636.44 (1,-0.3973,0) —633.67
tgy = —6.2554 tgy = —5.8117

U.K. (1,-0.4279,0) —588.32 (1,-0.4279,0) —588.32
ty = —5.4416 ty = —5.4416

Canada (0,—0.2825,0) —649.74 (0, —0.2825,0) —649.74
ty = —6.0695 ty = —6.0695

Italy (0,—0.1289,0) —786.06 (0,—0.1289,0) —786.06
ty = —2.0134 ty = —2.0134

Japan (0,-0.2716,0) —297.59 (0,—-0.2716,0) —297.59
ty = —1.9027 ty = —1.9027

U.S. (1,-0.4296,0) —549.12 (1,-0.4296,0) —549.12
tgy = —5.8888 ty = —5.8888

ty is the t-ratio of the estimated d’. AICc: Akaike information criterion corrected by Hurvich and

Tsai (1989). SIC: Schwarz information criterion. LL: log-likelihood at optimum.



One should thus use other critical values than those calculated on the basis of the true ob-
served series. The reader is referred for example to Septhon (1993), Cheung and Lai (1993),
Barkoulas et al. (1997) and Dittmann (2000) for critical values of fractional cointegration
tests.

According to the modified R/S analysis, all residual series are fractionally integrated,
except for the French case, since the statistic V' does not range in its confidence interval given
by Dittmann (2000). According to the GPH procedure, all residual series are fractionally
integrated since the fractional difference parameter appears to be significantly different from
zero. The Lobato-Robinson test indicates that only one series is not characterized by fractional
integration: the German error term.

The application of the exact maximum likelihood procedure requires the choice of initial
values for the parameters of the ARFIM A(p,d’,q) representation. This choice is fundamental
since the log-likelihood is not globally concave. There exists two possibilities for choosing these
initial values:

e We first estimate the d’ value of the fractional integration parameter by modified R/S

analysis or GPH procedure. Then, we apply the (1 — L)d/ filter to the considered series
Az;. Finally, one has to choose for the initial values of autoregressive and moving

average coefficients the parameters estimated on the (1 — L)d, Az series.

e Given an arbitrary set of d’ values, we calculate, for each value of d’, the (1 — L)d, Az se-
ries. One estimates, by usual time series methods, the ARMA parameters and the white
noise variance. The initial values are then given by those associated to the estimated
model with the lowest white noise variance.

We apply these two procedures in order to be sure that the maximum has been reached.
Then, the log-likelihood is maximized according to all the parameters of the ARFIM A(p,d', q)
representation. Finally, we retain the model which minimizes the Akaike information criterion
corrected by Hurvich and Tsai (1989) and the Schwarz information criterion. Results in table
6 indicate that all residual series are fractionally integrated since the fractional difference
parameter appears to be significantly different from zero.

4 Conclusion

According to the simulations made by Dittmann (2000), the Lobato-Robinson and the GPH
tests exhibit the highest power among the fractional cointegration tests considered here but
they have poor size properties. On the other hand, the modified R/S analysis exhibits only
moderate size distortion but is less powerful than the other tests. If we privilege the power
aspect, we thus conclude that all error terms, except the German one, are fractionally in-
tegrated. These results support the Fisher hypothesis since they imply the existence of a
fractional cointegration relationship, that is a stable long-term equilibrium relationship, be-
tween nominal interest rates and inflation. This conclusion illustrates the interest of fractional
cointegration since such a long-term relationship between the two variables does not exist ac-
cording to usual cointegration tests.
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