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Abstract

In this note I present a new set of simulated percentiles of asymptotic distributions regarding
systems cointegration tests with a prior adjustment for deterministic terms suggested by
Saikkonen and Lütkepohl (2000a, 2000b, 2000c) and Saikkonen and Luukkonen (1997). The
new percentiles are based on an improved random number generator implemented in GAUSS
V3.6 and make critical values available for a larger range of percentage points and
higher−dimensional systems.
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1 Introduction

In this note I present a new set of percentiles of asymptotic distributions regarding systems

cointegration tests with a prior adjustment for deterministic terms suggested by Saikkonen

and Lütkepohl (2000a; 2000b; 2000c) and Saikkonen and Luukkonen (1997). These test

versions differ with respect to the deterministic terms they allow for. The procedures of

Saikkonen and Lütkepohl (2000b) are the most general ones by taking account of shifts in

the level of the time series. One test version assumes a linear trend while the other one

excludes it. The test by Saikkonen and Lütkepohl (2000c) is the corresponding one without

level shifts. It originally allows for a linear trend but can be adjusted in order to rule out a

trend explicitly. A similar test with a mean term only is due to Saikkonen and Luukkonen

(1997). Finally, Saikkonen and Lütkepohl (2000a) assume a linear trend that is orthogonal

to the cointegration space. Furthermore, seasonal dummy variables can be incorporated into

all procedures without changing the asymptotic results. The idea of the tests is to estimate

the deterministic terms in a first step and to adjust the original time series by these estimated

terms. Then, a likelihood ratio type test like in Johansen (1988) is applied to the adjusted

data. The resulting asymptotic distributions are nonstandard and functions of Brownian

motions. However, their percentiles can be obtained by simulation.

I recalculate and extend the sets of percentiles stated in Lütkepohl and Saikkonen (2000)

and Saikkonen and Lütkepohl (2000c) for the tests of Saikkonen and Lütkepohl (2000a;

2000b; 2000c). The new sets are computed using GAUSS V3.6 which incorporates a random

number generator that is supposed to be less affected by non-randomness problems than

the one in GAUSS V3.2. The latter programm was applied for the calculations of the old

percentiles. Moreover, critical values for up to 15-dimensional systems can be obtained from

eight different percentiles in contrast to the previous limitation of at most five-dimensional

systems and three different percentage points. Since the test version in Saikkonen and

Luukkonen (1997) follows the same asymptotic distribution as the cointegration test statistic

in Johansen (1988) the recalculated percentiles with respect to this version correspond to

the ones in Johansen (1995, Table 15.1). The quantiles in Johansen (1995) were calculated

by using the program DisCo written in Turbo Pascal 5 (see Johansen and Nielsen, 1993).

The note is organized as follows. The next section describes the model framework and

the test hypotheses and Section 3 presents the test statistics and their limiting distribu-
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tions. Finally, the simulation and computation details as well as the percentiles are given in

Section 4.

2 Model Framework and Test Hypotheses

Let us consider a n-dimensional times series yt = (y1t, . . . , ynt)
′ (t = 1, . . . , T ) which is

generated by

yt = µt + xt, t = 1, 2, . . . , (1)

where µt contains the deterministic terms depending on the tests’ assumptions. The term xt

is an unobservable stochastic error process which is assumed to follow a vector autoregressive

process of order p (VAR(p)). The corresponding vector error correction model (VECM) has

the form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . , (2)

where Π and Γj (j = 1, . . . , p− 1) are (n×n) unknown parameter matrices. The error term

εt is assumed to be a martingal sequence such that E(εt|εs, s < t) = 0, E(εtε
′
t|εs, s < t) = Ω

is a non-stochastic positive definite matrix and the fourth moments are bounded. For the

validity of the limiting distributions it suffices that the initial values xt (t = −p + 1, . . . , 0)

have a fixed distribution which does not depend on the sample size. Furthermore, it is

assumed that xt is at most integrated of order one and cointegrated with a rank r implying

the same properties for yt. Moreover, it follows that the matrix Π can be written as Π = αβ′,

where α and β are (n × r) matrices of full column rank. When determining the number of

cointegration relations one tests for the rank of the matrix Π. I consider the so-called trace

test versions, i.e. the pair of hypotheses

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0. (3)

is tested.

3 Test Statistics and Asymptotic Distributions

For the proposal of Saikkonen and Lütkepohl (2000b) we have µt = δdt + µ0 + µ1t allowing

for a linear trend and assuming only one level shift. The shift is modelled by the dummy
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variable dt which is one for all t ≥ T1 and zero otherwise where T1 is the break point.

The case of several level shifts can be treated in the same way by defining further shift

dummies. Obviously, the remaining two quantities µ0 and µ1t represent the mean and linear

trend terms. The unknown (n× 1) parameter vectors δ, µ0 and µ1 are estimated by a GLS

procedure. To obtain feasible GLS estimators δ̂, µ̂0, and µ̂1 the model (1) is transformed

accordingly by using first stage estimators from a reduced rank (RR) regression of

∆yt = ν+α(β′yt−1+φdt−1+τ(t−1))+

p−1∑
j=1

Γj∆yt−j+

p−1∑
j=0

γj∆dt−j+εt, t=p+1, p+2, . . . , (4)

with ν = −Πµ0 + (In −
∑p−1

j=1 Γj)µ1, φ = −β′δ, τ = −β′µ1, γj = δ for j = 0, and γj = Γjδ

for j = 1, . . . , p− 1. This VECM model for yt is derived from (1) using the aforementioned

definition of µt and (2). For the RR regression the rank r0 specified under H0 is applied since

the transformation of (1) considers the structure of xt under the null hypothesis. Having

estimated the deterministic terms one can adjust yt and compute x̂t = yt − δ̂dt − µ̂0 − µ̂1t.

Then, a Johansen-type test is performed on x̂t. Since x̂t is adjusted the test version in

Johansen (1988) assuming no deterministic terms is applied. Hence, we have to solve a

generalized eigenvalue problem. Using the resulting eigenvalues λ̂1 ≥ · · · ≥ λ̂n the test

statistic for the pair of hypotheses in (3) is1

LRδ
trend(r0) = T

n∑
j=r0+1

log(1 + λ̂j). (5)

If no linear trend is present one proceeds in the same way by making the necessary

adjustments. In line with Saikkonen and Lütkepohl (2000b) µ1 is set to zero, i.e. µt = δdt+µ0

in (1), and the intercept term in (4) is restricted to the cointegration relations since ν = Πµ0

and τ = 0 in this case. The resulting test statistic is denoted by LRδ
mean(r0).

In case of no level shifts one can set up cointegration tests as before by setting all terms

associated with the level shift in (1) and (4) to zero. These tests are due to Saikkonen

and Lütkepohl (2000c). Interestingly, their test statistics, abbreviated as LRtrend(r0) and

LRmean(r0), have the same limiting distributions as LRδ
trend(r0) and LRδ

mean(r0) respectively.

1Note that the generalized eigenvalue problem in Saikkonen and Lütkepohl (2000c) is formulated in a

different way than in Johansen (1988). Therefore, the obtained eigenvalues and the specific form of the test

statistic differ. However, the two kinds of eigenvalue problems can be transformed into each other by an

appropriate redefinition of the respective eigenvalues. Thus, the test statistics based on the two different

sets of eigenvalues are identical apart from minor numerical differences.
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To be precise, allowing for level shifts does not affect the asymptotic distribution. For the

situation of a mean term only, Saikkonen and Luukkonen (1997) have also proposed to

estimate µ0 by a GLS procedure based on first-stage estimators from a VAR model for yt

imposing no rank restriction. Lütkepohl, Saikkonen and Trenkler (2001), however, have

pointed out that using a GLS procedure as suggested by Saikkonen and Lütkepohl (2000c)

results in better size properties in small samples. Note that the alternative way of estimating

µ0 does not change the asymptotic null distribution of LRmean(r0).

The test version of Saikkonen and Lütkepohl (2000a) is similar to the one in Saikkonen

and Lütkepohl (2000c) with a linear trend but considers the restriction that the linear trend

is orthogonal to the cointegration space. Therefore, the restriction τ = β′µ1 = 0 is imposed

within the RR regression and secondly, the adjustment of the data occurs according to the

model

∆yt − µ1 = ν + Π(yt−1 − µ0) +

p−1∑
j=1

Γj(∆yt−j − µ1) + εt, t = p + 1, p + 2, . . . , (6)

which is obtained from (4) by applying τ = β′µ1 = 0 and δ = 0. Otherwise the test-setup is

the same and the corresponding test statistic is denoted as LRort(r0).

Let Bp(s) = (B1(s), . . . , Bp(s))
′ be a p-dimensional standard Brownian motion, then the

test statistics have the following asymptotic null distributions: LRδ
trend(r0), LRtrend(r0)

d→
tr(Dtr), LRort(r0)

d→ tr(Dort), and LRδ
mean(r0), LRmean(r0)

d→ tr(Dmean) where

Dtr =

(∫ 1

0

B∗dB
′
∗

)′ (∫ 1

0

B∗B
′
∗ds

)−1 (∫ 1

0

B∗dB
′
∗

)
,

Dort =

(∫ 1

0

B̄
s
dB′

(n−r0)

)′ (∫ 1

0

BsBs′ds

)−1 (∫ 1

0

B̄
s
dB′

(n−r0)

)
,

Dmean =

(∫ 1

0

B(n−r0)dB
′
(n−r0)

)′ (∫ 1

0

B(n−r0)B
′
(n−r0)ds

)−1 (∫ 1

0

B(n−r0)dB
′
(n−r0)

)
,

(7)

B∗= B(n−r0)(s)−sB(n−r0)(1) is an (n−r0)-dimensional Brownian bridge, dB∗= dB(n−r0)(s)−
dsB(n−r0), B̄

s
= Bs(s)−∫ 1

0
Bs(u)du, Bs(s) = [B(n−r0−1)(s)

′ : s]′, Bn−r0 and dBn−r0 are short

for Bn−r0(s) and dBn−r0(s), and
d→ signifies convergence in distribution.

Obviously, the null distributions depend on n − r0, not on n and r0 separately. They

are independent of the actual values of µ0 and, regarding LRtrend(r0), independent of µ1.

Furthermore, LRmean(r0) has the same limiting distribution as the cointegration test statistic

proposed by Johansen (1988) which assumes no deterministic terms (µ0 = µ1 = 0).
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Table 1. Percentiles of the Asymptotic Distribution of LRδ
trend(r0) and LRtrend(r0)

Test Versions Allowing for a Linear Trend (µ1 arbitrary)

n− r0 50% 75% 80% 85% 90% 95% 97.5% 99%

1 2.092 3.544 3.997 4.592 5.423 6.785 8.217 10.042

2 8.318 10.924 11.674 12.556 13.784 15.826 17.700 19.854

3 18.275 22.031 23.063 24.317 25.931 28.455 30.914 33.757

4 32.163 37.065 38.360 39.983 42.083 45.204 48.142 51.601

5 50.052 56.045 57.601 59.480 61.918 65.662 69.227 73.116

6 71.854 79.007 80.874 83.142 86.015 90.346 94.395 98.990

7 97.338 105.755 107.917 110.453 113.711 118.898 123.497 128.801

8 126.994 136.528 138.891 141.764 145.423 150.985 156.028 162.142

9 160.411 171.071 173.735 177.035 181.213 187.242 193.114 199.584

10 197.999 209.650 212.721 216.299 220.921 227.989 234.149 241.795

11 239.120 252.001 255.452 259.257 264.210 271.707 278.265 285.934

12 284.478 298.505 302.105 306.284 311.711 319.827 326.750 334.987

13 333.018 348.575 352.507 357.086 363.028 371.287 378.977 388.476

14 386.071 402.484 406.560 411.438 417.682 427.362 435.864 445.787

15 442.611 460.253 464.781 469.959 476.405 486.527 495.017 504.545

4 Simulated Percentiles

The limiting distributions are simulated numerically by approximating the standard Brow-

nian motions in (7) with 1,000-step random walks of the same dimension. To this end, I

generate p-dimensional independent standard normal variates εt of length T = 1000. The

random walks are then obtained as p×T vector WT
p =(W 1

p ,W 2
p , . . . , W T

p ) with W t
p = Σt

i=1εi.

Accordingly, Bs, B̄
s
, Bn−r0 , and dBn−r0 are replaced by their corresponding discrete coun-

terparts using WT
n−r0−1 and WT

n−r0
for the first two and the last two expressions respectively.

The terms
∫ 1

0
B∗dB

′
∗ and

∫ 1

0
B∗B

′
∗ are approximated by T−1[WT−1

n−r0
− W̄ T

n−r0
T−1][(W

T
n−r0

−
WT−1

n−r0
)−W̄ T

n−r0
]′ and T−2[WT−1

n−r0
−W̄ T ′

n−r0
T−1][W

T−1
n−r0

−W̄ T ′
n−r0

T−1]
′ respectively where WT−1

n−r0

are the first T −1 observations of WT
n−r0

, T−1 is a row vector representing a linear trend

running from 1 to T−1, and W̄ T
n−r0

= W T
n−r0

/T . The percentiles in Tables 1-3 are derived
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Table 2. Percentiles of the Asymptotic Distribution of LRort(r0)

Test Version Assuming a Trend Orthogonal to the Cointegration Space (µ1 6= 0, β′µ1 = 0)

n− r0 50% 75% 80% 85% 90% 95% 97.5% 99%

2 3.717 5.749 6.376 7.143 8.187 9.890 11.545 13.640

3 11.798 15.059 15.949 17.047 18.473 20.819 22.937 25.687

4 23.749 28.230 29.424 30.858 32.807 35.886 38.607 42.016

5 39.624 45.194 46.707 48.463 50.775 54.280 57.599 61.301

6 59.434 66.290 68.054 70.138 72.878 77.010 80.785 85.587

7 83.083 90.999 93.092 95.555 98.784 103.534 107.851 112.854

8 110.849 119.897 122.228 124.987 128.562 134.058 138.787 144.979

9 142.378 152.637 155.276 158.304 162.434 168.443 173.819 180.246

10 178.077 189.420 192.367 195.793 200.200 207.071 213.145 219.954

11 217.280 229.935 233.126 236.823 241.786 249.157 255.560 263.067

12 260.782 274.636 278.046 281.997 287.198 295.172 301.842 310.375

13 307.517 322.568 326.311 330.650 336.432 344.922 352.118 360.882

14 358.592 374.603 378.667 383.513 389.726 398.848 406.993 416.952

15 413.250 430.590 434.820 440.000 446.327 456.119 464.695 474.272

from 50,000 replications of this simulation experiment by means of a program written in

GAUSS V3.6. Independent realizations of εt are used for each dimension n− r0.

To generate the independent standard normal variates εt I use the Monster-KISS random

number generator which was suggested by Marsaglia (2000). The Monster-KISS algorithm

implemented in GAUSS V3.6 passes all of the DIEHARD tests which are used to evaluate

the suitability of a random number generator (compare Ford and Ford 2001, and Marsaglia

1996). Therefore, the Monster-KISS algorithm is preferred to the linear congruential random

number generator incorporated in earlier versions of GAUSS. This latter algorithm failed a

number of the DIEHARD tests indicating non-randomness problems as pointed out by Vinod

(2000) and Ford and Ford (2001).

Tables 1 and 2 contain the percentiles of the null limiting distributions of the test statistics

with respect to the test versions allowing for a linear trend and an orthogonal trend respec-

tively. They replace and extend the respective Tables in Lütkepohl and Saikkonen (2000)
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Table 3. Percentiles of the Asymptotic Distribution of LRδ
mean(r0) and LRmean(r0)

Test Versions Allowing for a Mean Term Only (µ1 = 0, µ0 arbitrary)

n− r0 50% 75% 80% 85% 90% 95% 97.5% 99%

1 0.599 1.546 1.891 2.343 2.996 4.118 5.283 6.888

2 5.482 7.799 8.485 9.331 10.446 12.276 14.172 16.420

3 14.403 18.008 19.011 20.251 21.801 24.282 26.524 29.467

4 27.287 32.027 33.316 34.908 36.903 40.067 42.905 46.305

5 44.153 50.092 51.657 53.522 55.952 59.749 63.107 67.170

6 64.958 72.122 73.983 76.248 79.062 83.364 87.439 92.338

7 89.805 97.944 100.161 102.710 105.841 110.721 115.304 120.902

8 118.350 127.663 130.034 132.985 136.487 142.222 146.971 153.066

9 150.953 161.505 164.234 167.400 171.519 177.801 183.479 190.053

10 187.370 199.307 202.406 205.927 210.461 217.325 223.701 231.072

11 227.782 240.875 244.127 248.032 252.969 260.676 266.873 274.618

12 272.275 286.247 289.871 294.026 299.156 307.161 314.050 323.007

13 319.961 335.463 339.261 343.803 349.604 358.172 365.972 374.872

14 372.283 388.526 392.597 397.447 403.580 412.966 421.208 431.355

15 427.914 445.375 449.840 455.079 461.733 471.300 480.074 489.888

and Saikkonen and Lütkepohl (2000a). Now, critical values for eight different percentage

points and up to 15-dimensional systems are available in contrast to the former limitation

of three percentage points and five-dimensional systems. Table 2 starts with n − r0 = 2

instead of n− r0 = 1 since the rank under the alternative hypothesis must be smaller than

the dimension n. Otherwise, the alternative represents a model with n stationary time series

excluding a trend in levels (β′µ1 = 0). This cannot occur since at least one series is assumed

to contain a linear trend (compare Saikkonen and Lütkepohl, 2000a). Table 3 refers to the

test versions taking account of a mean term only. It corresponds to Table 15.1 in Johansen

(1995) but also considers 13 to 15-dimensional systems. The percentiles in Tables 1-3 will

also be made available in the software program JMulTi, a Java based multiple time series

software.2

2More details on this software program can be found in the internet under http://www.jmulti.de.
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Comparing the new set of percentiles with the corresponding old ones we can see that

there exist only minor differences in general. An exception, however, are the results for

LRort(r0) with respect to n − r0 = 4 and n − r0 = 5 (compare Table 1 in Saikkonen and

Lütkepohl 2000a and Table 2 in this note). Here, the numerical differences are much more

pronounced; for example, for n − r0 = 5 and the 95% percentile we have 54.280 instead of

52.06 in Saikkonen and Lütkepohl (2000a, Table 1). Since Saikkonen and Lütkepohl (2000a)

do not present many details of their simulations I cannot explore the deviations in more

detail. However, the percentiles with respect to n− r0 = 2 and n− r0 = 3 are in accordance.

The tables are to be read in the following way. Let us consider we have a six-dimensional

system assuming a general linear trend and want to test the null hypothesis r0 = 3 at a 5%

significance level. The corresponding critical value 28.455 can be found in Table 1 for the

row n− r0 = 3 and the 95% percentile. The critical value is the same no matter whether a

level shift is present or not. If one applies the restriction that the linear trend is orthogonal

to the cointegration space we look up in Table 2 and obtain 20.819.

References

Ford, M. P., and Ford, D. J. (2001)“Investigation of GAUSS’ random number generators”

http://www.aptech.com/random/rndu36.pdf.

Johansen, S. (1988)“Statistical analysis of cointegration vectors” Journal of Economic Dy-

namics and Control 12, 231–254.

Johansen, S. (1995)Likelihood-Based Inference in Cointegrated Vector Autoregressive Models

Oxford University Press Oxford.

Johansen, S., and Nielsen, B. (1993)“Manual for the simulation program DisCo” Institute

of Mathematical Statistics, University of Copenhagen.

Lütkepohl, H., and Saikkonen, P. (2000)“Testing for the cointegration rank of a VAR process

with a time trend” Journal of Econometrics 95, 177–198.

Lütkepohl, H., Saikkonen, P., and Trenkler, C. (2001)“Maximum eigenvalue versus trace

tests for the cointegrating rank of a VAR process” Econometrics Journal 4, 287–310.

8



Marsaglia, G. (1996)“Diehard: a battery of tests of randomness” http://stat.fsu.edu/∼geo/

Department of Statistics, Florida State University.

Marsaglia, G. (2000)“The monster, a random number generator with period over 102587

as long as the previously touted longest period one” mimeo Department of Statistics,

Florida State University.

Saikkonen, P., and Lütkepohl, H. (2000a)“Testing for the cointegrating rank of a VAR

process with an intercept” Econometric Theory 16, 373–406.

Saikkonen, P., and Lütkepohl, H. (2000b)“Testing for the cointegration rank of a VAR process

with structural shifts” Journal of Business & Economic Statistics, 18, 451–464.

Saikkonen, P., and Lütkepohl, H. (2000c)“Trend adjustment prior to testing for the cointe-

gration rank of a VAR process” Journal of Time Series Analysis 21, 435–456.

Saikkonen, P., and Luukkonen, R. (1997)“Testing cointegration in infinite vector autoregres-

sive processes” Journal of Econometrics 81, 93–126.

Vinod, H. D. (2000)“Review of GAUSS for Windows, including its numerical accuracy”

Journal of Applied Econometrics 15, 211–220.

9


