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Abstract

In this note | present a new set of simulated percentiles of asymptotic distributions regarding
systems cointegration tests with a prior adjustment for deterministic terms suggested by
Saikkonen and Lutkepohl (2000a, 2000b, 2000c) and Saikkonen and Luukkonen (1997). The
new percentiles are based on an improved random number generator implemented in GAUSS
V3.6 and make critical values available for a larger range of percentage points and
higher—dimensional systems.
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1 Introduction

In this note I present a new set of percentiles of asymptotic distributions regarding systems
cointegration tests with a prior adjustment for deterministic terms suggested by Saikkonen
and Liitkepohl (2000a; 20006; 2000¢) and Saikkonen and Luukkonen (1997). These test
versions differ with respect to the deterministic terms they allow for. The procedures of
Saikkonen and Liitkepohl (20006) are the most general ones by taking account of shifts in
the level of the time series. One test version assumes a linear trend while the other one
excludes it. The test by Saikkonen and Liitkepohl (2000¢) is the corresponding one without
level shifts. It originally allows for a linear trend but can be adjusted in order to rule out a
trend explicitly. A similar test with a mean term only is due to Saikkonen and Luukkonen
(1997). Finally, Saikkonen and Liitkepohl (2000a) assume a linear trend that is orthogonal
to the cointegration space. Furthermore, seasonal dummy variables can be incorporated into
all procedures without changing the asymptotic results. The idea of the tests is to estimate
the deterministic terms in a first step and to adjust the original time series by these estimated
terms. Then, a likelihood ratio type test like in Johansen (1988) is applied to the adjusted
data. The resulting asymptotic distributions are nonstandard and functions of Brownian
motions. However, their percentiles can be obtained by simulation.

I recalculate and extend the sets of percentiles stated in Liitkepohl and Saikkonen (2000)
and Saikkonen and Liitkepohl (2000c¢) for the tests of Saikkonen and Liitkepohl (2000¢;
20000b; 2000¢). The new sets are computed using GAUSS V3.6 which incorporates a random
number generator that is supposed to be less affected by non-randomness problems than
the one in GAUSS V3.2. The latter programm was applied for the calculations of the old
percentiles. Moreover, critical values for up to 15-dimensional systems can be obtained from
eight different percentiles in contrast to the previous limitation of at most five-dimensional
systems and three different percentage points. Since the test version in Saikkonen and
Luukkonen (1997) follows the same asymptotic distribution as the cointegration test statistic
in Johansen (1988) the recalculated percentiles with respect to this version correspond to
the ones in Johansen (1995, Table 15.1). The quantiles in Johansen (1995) were calculated
by using the program DisCo written in Turbo Pascal 5 (see Johansen and Nielsen, 1993).

The note is organized as follows. The next section describes the model framework and

the test hypotheses and Section 3 presents the test statistics and their limiting distribu-



tions. Finally, the simulation and computation details as well as the percentiles are given in

Section 4.

2 Model Framework and Test Hypotheses

Let us consider a n-dimensional times series v = (y1t,...,Ynt) (t = 1,...,T) which is
generated by
yt:Mt+xt7 t:1727"'7 (1>

where p; contains the deterministic terms depending on the tests’ assumptions. The term x;
is an unobservable stochastic error process which is assumed to follow a vector autoregressive

process of order p (VAR(p)). The corresponding vector error correction model (VECM) has

the form
p—1
Ary =Ty + Y TjAzj+e, t=12.., (2)
j=1
where Il and I'; (j =1,...,p — 1) are (nxn) unknown parameter matrices. The error term

g; is assumed to be a martingal sequence such that E(g;|es, s < t) =0, E(ge)|es, s <t) =
is a non-stochastic positive definite matrix and the fourth moments are bounded. For the
validity of the limiting distributions it suffices that the initial values x; (t = —p+1,...,0)
have a fixed distribution which does not depend on the sample size. Furthermore, it is
assumed that x; is at most integrated of order one and cointegrated with a rank r implying
the same properties for ;. Moreover, it follows that the matrix IT can be written as IT = o',
where o and [ are (n x r) matrices of full column rank. When determining the number of
cointegration relations one tests for the rank of the matrix II. I consider the so-called trace

test versions, i.e. the pair of hypotheses
Ho(ro) : tk(IT) = ro  ws. Hy(rg) : rk(II) > 7. (3)

is tested.

3 Test Statistics and Asymptotic Distributions

For the proposal of Saikkonen and Liitkepohl (20000) we have pu, = dd; + po + pat allowing

for a linear trend and assuming only one level shift. The shift is modelled by the dummy



variable d; which is one for all ¢ > T} and zero otherwise where T) is the break point.
The case of several level shifts can be treated in the same way by defining further shift
dummies. Obviously, the remaining two quantities pp and u,t represent the mean and linear
trend terms. The unknown (n x 1) parameter vectors 6, 1o and py are estimated by a GLS
procedure. To obtain feasible GLS estimators 5, fio, and fi; the model (1) is transformed

accordingly by using first stage estimators from a reduced rank (RR) regression of

p—1 p—1
Ay, = V"‘O‘(ﬁ/ytfl+¢dt71+7—(t_1))+2 FjAyt—j‘i‘Z VAds—j+er, t=p+1,p+2,..., (4)
j=1 =0

with v = —TTpo + (I,, — f;% L, ¢ =—p'0, 7=—0F', v =6 for j =0, and v; =I';0
for j=1,...,p— 1. This VECM model for y, is derived from (1) using the aforementioned
definition of u; and (2). For the RR regression the rank rq specified under Hy is applied since
the transformation of (1) considers the structure of z; under the null hypothesis. Having
estimated the deterministic terms one can adjust y; and compute z; = y; — Sdt — [ig — [sit.
Then, a Johansen-type test is performed on ;. Since ; is adjusted the test version in
Johansen (1988) assuming no deterministic terms is applied. Hence, we have to solve a

~

generalized eigenvalue problem. Using the resulting eigenvalues A > oo > A, the test

statistic for the pair of hypotheses in (3) is'

LRfrend(TO) =T Z log(l + 5‘]) (5>

j=ro+1
If no linear trend is present one proceeds in the same way by making the necessary
adjustments. In line with Saikkonen and Liitkepohl (20000) p is set to zero, i.e. p; = 0d;+ puo
in (1), and the intercept term in (4) is restricted to the cointegration relations since v = Iy
and 7 = 0 in this case. The resulting test statistic is denoted by LR ... (r9).
In case of no level shifts one can set up cointegration tests as before by setting all terms
associated with the level shift in (1) and (4) to zero. These tests are due to Saikkonen

and Liitkepohl (2000¢). Interestingly, their test statistics, abbreviated as LRy enqa(ro) and

LRy ean(T0), have the same limiting distributions as LRS _ (7o) and LR? . (ro) respectively.

trend mean

INote that the generalized eigenvalue problem in Saikkonen and Liitkepohl (2000¢) is formulated in a
different way than in Johansen (1988). Therefore, the obtained eigenvalues and the specific form of the test
statistic differ. However, the two kinds of eigenvalue problems can be transformed into each other by an
appropriate redefinition of the respective eigenvalues. Thus, the test statistics based on the two different

sets of eigenvalues are identical apart from minor numerical differences.
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To be precise, allowing for level shifts does not affect the asymptotic distribution. For the
situation of a mean term only, Saikkonen and Luukkonen (1997) have also proposed to
estimate po by a GLS procedure based on first-stage estimators from a VAR model for y,
imposing no rank restriction. Liitkepohl, Saikkonen and Trenkler (2001), however, have
pointed out that using a GLS procedure as suggested by Saikkonen and Liitkepohl (2000¢)
results in better size properties in small samples. Note that the alternative way of estimating
o does not change the asymptotic null distribution of LR,,eqn(r0)-

The test version of Saikkonen and Liitkepohl (2000a) is similar to the one in Saikkonen
and Liitkepohl (2000¢) with a linear trend but considers the restriction that the linear trend
is orthogonal to the cointegration space. Therefore, the restriction 7 = 'y = 0 is imposed
within the RR regression and secondly, the adjustment of the data occurs according to the

model

p—1

Ay, — pin = v+ (y—1 — o) +er(Ayt7j —m)+e, t=p+lLp+2,..., (6)

j=1
which is obtained from (4) by applying 7 = #'u; = 0 and 6 = 0. Otherwise the test-setup is
the same and the corresponding test statistic is denoted as LR,.(ro).

Let B,(s) = (B1(S),- .., By(s))" be a p-dimensional standard Brownian motion, then the
test statistics have the following asymptotic null distributions: LR?.. ,(r0), LReena(To) 4,
tr(Dy), LRori(r0) N tr(Dyre), and LRS . (o), LRmean(T0) 4, tr(Dyean) Where

mean

1 ! 1 -1 1

Dy = ( / B*dB;) ( / B*B;ds) < / B*dB;) ,
0 0 0
1 / 1 —1 1
N ss’ S /
DOTt = (/ B d (n 7‘0)) (\/0 B°B dS) <\/0' B dB(n—T’o)) s (7)
! 1 -1 1
Diean = ( (n—ro) dB/n 7’0)) (/0 B(nro)B/(n_ro)dS) (/0 B (n— ro)dB(n 7«0))
(s

B.= B
dsB (), B* = B?(s fo B®(u)du, B*(s) = [B—r,—1)(s)" : 8|, By, and dB,,_,, are short

)— sB(n ro) (1) is an (n—rg)-dimensional Brownian bridge, dB. = dB,_y,)(s)—

for B,,_,,(s) and dB,,_,,(s), and <, signifies convergence in distribution.

Obviously, the null distributions depend on n — 7y, not on n and rq separately. They
are independent of the actual values of ug and, regarding LRy ena(70), independent of .
Furthermore, LR,,cqn(r0) has the same limiting distribution as the cointegration test statistic

proposed by Johansen (1988) which assumes no deterministic terms (po = 1 = 0).
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Table 1. Percentiles of the Asymptotic Distribution of LR _ .(r¢) and LRy ena(To)

trend

Test Versions Allowing for a Linear Trend (p; arbitrary)

n—ro  50% 5% 80% 85% 90% 95% 97.5% 99%

1 2.092 3.544 3.997 4.592 0.423 6.785 8.217  10.042
2 8.318 10.924 11.674 12556 13.784 15.826 17.700  19.854
3 18.275  22.031  23.063 24.317 25931 28.455 30914  33.757
4 32.163  37.065 38.360 39.983 42.083 45.204 48.142  51.601
3 50.052  56.045 57.601 59.480 61.918 65.662  69.227  73.116
6 71.854  79.007 80.874  83.142 86.015 90.346  94.395  98.990
7 97.338 105.755 107.917 110.453 113.711 118.898 123.497 128.801
8 126.994 136.528 138.891 141.764 145.423 150.985 156.028 162.142
9 160.411 171.071 173.735 177.035 181.213 187.242 193.114 199.584
10 197.999 209.650 212.721 216.299 220.921 227.989 234.149 241.795
11 239.120 252.001 255.452 259.257 264.210 271.707 278.265 285.934
12 284.478 298.505 302.105 306.284 311.711 319.827 326.750 334.987
13 333.018  348.575 352.507 357.086 363.028 371.287 378977 388.476
14 386.071 402.484 406.560 411.438 417.682 427.362 435.864 445.787
15 442.611 460.253 464.781 469.959 476.405 486.527 495.017 504.545

4 Simulated Percentiles

The limiting distributions are simulated numerically by approximating the standard Brow-

nian motions in (7) with 1,000-step random walks of the same dimension. To this end, I

generate p-dimensional independent standard normal variates €; of length 7" = 1000. The
. T .

random walks are then obtained as p X T' vector W, = (Wpl, WpQ, e Wg ) with W]f =Xt e

Accordingly, B®, B®, B,,_,,, and dB,,_,, are replaced by their corresponding discrete coun-

T
n—ro—

The terms fol B.dB., and fol B.B/, are approximated by 7-'WX-! —w! T ,J[(W! —

n—ro n—rg — — n—rg

W) —WI, Vand T2 (WL —WI T _4)[WEZ —WT T_;] respectively where W~}

n—ro n—ro n—ro n—ro n—ro n—ro

terparts using W , and Wf,ro for the first two and the last two expressions respectively.

are the first T—1 observations of W

n_ry» L1 18 a row vector representing a linear trend

running from 1 to T—1, and WL, = WL /T. The percentiles in Tables 1-3 are derived

n—ro



Table 2. Percentiles of the Asymptotic Distribution of LRy.+(ro)
Test Version Assuming a Trend Orthogonal to the Cointegration Space (uy # 0, 'y = 0)

n—ro  50% 75% 80% 85% 90% 95% 97.5% 99%
2 3.717 5.749 6.376 7.143 8.187 9.890 11.545 13.640
3 11.798  15.059 15949 17.047 18.473  20.819 22937  25.687
4 23.749 28230 29424  30.858 32.807 35.886  38.607  42.016
5 39.624  45.194  46.707 48463  50.775  54.280 57.599  61.301
6 09.434  66.290 68.054 70.138 72878  77.010 80.785  85.587
7
8
9

83.083  90.999  93.092  95.555 98.784 103.534 107.851 112.854
110.849 119.897 122.228 124.987 128.562 134.058 138.787 144.979
142.378 152.637 155.276 158.304 162.434 168.443 173.819 180.246

10 178.077 189.420 192.367 195.793 200.200 207.071 213.145 219.954
11 217.280 229.935 233.126 236.823 241.786 249.157 255.560 263.067
12 260.782 274.636 278.046 281.997 287.198 295.172 301.842 310.375
13 307.517  322.568 326.311 330.650 336.432 344.922 352.118 360.882
14 358.592 374.603 378.667 383.513 389.726 398.848 406.993 416.952
15 413.250 430.590 434.820 440.000 446.327 456.119 464.695 474.272

from 50,000 replications of this simulation experiment by means of a program written in
GAUSS V3.6. Independent realizations of ¢; are used for each dimension n — rg.

To generate the independent standard normal variates ¢; I use the Monster-KISS random
number generator which was suggested by Marsaglia (2000). The Monster-KISS algorithm
implemented in GAUSS V3.6 passes all of the DIEHARD tests which are used to evaluate
the suitability of a random number generator (compare Ford and Ford 2001, and Marsaglia
1996). Therefore, the Monster-KISS algorithm is preferred to the linear congruential random
number generator incorporated in earlier versions of GAUSS. This latter algorithm failed a
number of the DIEHARD tests indicating non-randomness problems as pointed out by Vinod
(2000) and Ford and Ford (2001).

Tables 1 and 2 contain the percentiles of the null limiting distributions of the test statistics
with respect to the test versions allowing for a linear trend and an orthogonal trend respec-

tively. They replace and extend the respective Tables in Liitkepohl and Saikkonen (2000)
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Table 3. Percentiles of the Asymptotic Distribution of LR’ () and LRean(T0)

Test Versions Allowing for a Mean Term Only (u; = 0, po arbitrary)

mean

n—ro  50% 5% 80% 85% 90% 95% 97.5% 99%
1 0.599 1.546 1.891 2.343 2.996 4.118 0.283 6.888
2 5.482 7.799 8.485 9.331 10.446 12276 14.172  16.420
3 14.403  18.008 19.011  20.251  21.801 24.282  26.524  29.467
4 27287 32.027  33.316  34.908  36.903 40.067  42.905  46.305
5 44.153  50.092  51.657  53.522  55.952 59.749  63.107  67.170
6 64.958  72.122 73983  76.248  79.062 83.364  87.439  92.338
7 89.805 97.944 100.161 102.710 105.841 110.721 115.304 120.902
8 118.350 127.663 130.034 132.985 136.487  142.222 146.971 153.066
9 150.953 161.505 164.234 167.400 171.519 177.801 183.479 190.053
10 187.370 199.307 202.406 205.927 210.461  217.325 223.701 231.072
11 227782 240.875 244.127 248.032 252.969  260.676 266.873 274.618
12 272.275 286.247 289.871 294.026 299.156  307.161 314.050 323.007
13 319.961 335.463 339.261 343.803 349.604  358.172 365.972 374.872
14 372.283 388.526 392.597 397.447 403.580  412.966 421.208 431.355
15 427914 445375 449.840 455.079 461.733  471.300 480.074 489.888

and Saikkonen and Liitkepohl (2000a).
points and up to 15-dimensional systems are available in contrast to the former limitation
of three percentage points and five-dimensional systems. Table 2 starts with n — rqg = 2
instead of n — rg = 1 since the rank under the alternative hypothesis must be smaller than
the dimension n. Otherwise, the alternative represents a model with n stationary time series
excluding a trend in levels (' = 0). This cannot occur since at least one series is assumed
to contain a linear trend (compare Saikkonen and Liitkepohl, 2000a). Table 3 refers to the
test versions taking account of a mean term only. It corresponds to Table 15.1 in Johansen
(1995) but also considers 13 to 15-dimensional systems. The percentiles in Tables 1-3 will

also be made available in the software program JMulTi, a Java based multiple time series

software.?

Now, critical values for eight different percentage

2More details on this software program can be found in the internet under http://www.jmulti.de.



Comparing the new set of percentiles with the corresponding old ones we can see that
there exist only minor differences in general. An exception, however, are the results for
LR,+(r9) with respect to n —rg = 4 and n — ry = 5 (compare Table 1 in Saikkonen and
Liitkepohl 2000a and Table 2 in this note). Here, the numerical differences are much more
pronounced; for example, for n — rg = 5 and the 95% percentile we have 54.280 instead of
52.06 in Saikkonen and Liitkepohl (20004, Table 1). Since Saikkonen and Liitkepohl (2000a)
do not present many details of their simulations I cannot explore the deviations in more
detail. However, the percentiles with respect to n —rqg = 2 and n —ry = 3 are in accordance.

The tables are to be read in the following way. Let us consider we have a six-dimensional
system assuming a general linear trend and want to test the null hypothesis rq = 3 at a 5%
significance level. The corresponding critical value 28.455 can be found in Table 1 for the
row n — ro = 3 and the 95% percentile. The critical value is the same no matter whether a
level shift is present or not. If one applies the restriction that the linear trend is orthogonal

to the cointegration space we look up in Table 2 and obtain 20.819.
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