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Abstract

Price changes of the Chinese yuan/US dollar rate are found to display a Sierpinski triangle in
an Iterative Function System clumpiness test. This fractal structure commonly emerges in
“the chaos game”, where randomness coexists with deterministic rules. We show that a
threshold model with four states, two deterministic and two stochastic is able to replicate the
properties of the yuan/dollar returns in general, and the Sierpinski triangle in particular.
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1.  Introduction 
 

Regime switching models include Markov switching and threshold models.  In a 
Markov switching model, a regime that occurs at time t cannot be directly observed and 
is determined by a random variable Rt.  For r regimes, Rt can be assumed to take values 
from 1 to r. The Markov regime switching model usually assumes that Rt is a first order 
Markov process where the current regime depends only on Rt – 1.  This means that a 
regime is defined by the probability of transition between regimes. 
 Threshold models with non additive noise (e.g. Tong 1990) also assume that a 
regime is determined by a unobservable random variable; however, the variables are 
independent from one another.  What is more (and interestingly) realizations of these 
classes of models can be fractals. 
 This paper assesses the behavior of the Chinese yuan/US dollar exchange rate 
returns over time by considering a suggested threshold model with both additive and 
non additive noise.  We employ classic times series tools (such as the autocorrelation 
function, partial autocorrelation function, and Ljung-Box test) only to have the null 
hypothesis that the series follows a simple uncorrelated random process rejected.  
However, when we employ a chaos-game algorithm known as Iterated Function System 
(IFS) (Barnsley 1988), the series turns out to be “pseudo-random” in that the data clump 
together in a fractal structure easily recognizable as a Sierpinski triangle.  This is 
suggestive of some sort of global determinism in the data.  Both the deterministic and 
stochastic structure are best visualized by a phase diagram of the time series which plots 
current values against lagged ones (Tong 1990).  We then put forward our threshold 
model with additive and non additive noise that seems to fit well the yuan/dollar rate 
behavior. 
 The paper is organized as follows.  Section 2 presents the data, Section 3 
analyzes them, and Section 4 concludes. 
 

2.  Data 
 
The data set of daily Chinese yuan/US dollar rates was collected by the Federal Reserve 
Bank of New York from a sample of market participants.  The yuan/dollar rates are 
noon buying rates in New York from cable transfers payable in the foreign currency.  
The data set is available online from http://www.federalreserve.gov/releases/H10/hist/.  
The sample covers the time period ranging from 2 January 1981 to 1 November 2002 
and constitutes a series of 5426 data points.  As standard, “holes” from weekends and 
holidays are ignored and analysis concentrates on trading days. 
 Price changes X(t) = Z(t) – Z(t – 1) are initially taken, where Z(t) is a yuan/dollar 
rate at time t.  Figure 1 displays the time evolution of Z(t) and X(t) where the spikes 
correspond to episodes of foreign exchange intervention from the part of the Chinese 
monetary authorities. 
  

3.  Analysis 
 
Figure 2 displays the logarithm of the probability density of the yuan/dollar price 
changes by dropping four major episodes of intervention.  We define these four 
structural breaks to occur whenever X(t) > 0.05.  Since a symmetric joint distribution 
emerges, Gaussian stationary ARMA models are not appropriate to describe the data.  
Indeed there is marked asymmetry as well as a peak higher than that expected for a 
Gaussian distribution. 
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 Figure 3 shows the autocorrelation function and partial autocorrelation function 
of X(t).  The autocorrelations are not significantly different from zero after the first lag.  
Thus we cannot discard that X(t) is a uncorrelated random process.  We also carried out 
other statistical tests to further check for randomness.  Results are in Table 1.  The extra 
tests all fail to identify known autocorrelation structures.  There is no evidence against 
the hypothesis of pure randomness. 
 By contrast, an IFS clumpiness test gives us a different result and casts doubt on 
the complexity of the series.  In a picture displaying an IFS clumpiness test, white noise 
fills it uniformly whereas correlated noise generates localized clumps.  For white noise, 
the figure generated tends toward the orbit.  For correlated noise, the plot reveals 
suggestive particular features. The test was carried out using Chaos Data Analyzer 
(Sprott 1995).  Clumps appear for the entire period (upper panel in Figure 4).  
Surprisingly, the data happen to idiosyncratically clump together and form a Sierpinski 
triangle.  We checked for and found that this fractal emerges for some transformations 
of the original data.  This is the case for log differences (logZ(t) – logZ(t – 1)), natural 
log differences (lnZ(t) – lnZ(t – 1)), relative differences ((Z(t) – Z(t – 1))/Z(t)), and 
relative changes ((Z(t) – Z(t – 1))/{(Z(t) + Z(t – 1))/2}). 
 It is reasonably well established that the presence of a Sierpinski triangle is 
somewhat suggestive that a system is locally random and globally deterministic because 
the Sierpinski triangle is a self-similar fractal that results from a deterministic rule 
implemented in a random fashion.  In literature, this feature is dubbed “the chaos game” 
(Barnsley 1988; also Peitgen, Jurgens and Saupe 1992, Chapter 6).  Details on the 
implementation of the IFS together with its relation to the chaos game can be found 
elsewhere (e.g. Mata-Toledo and Willis 1997).  The finding that the Sierpinski triangle 
appears in the yuan/dollar returns may be explained by the fact that the Chinese 
authorities might have been playing the chaos game when pegging their currency.  The 
yuan is convertible for current account transactions in the balance of payments but not 
convertible for capital transactions.  Thus it is not come as a surprise that the Chinese 
authorities might have been engaging in stable rules of intervention in the current 
account. 
 The intricate nested pattern of the Sierpinski triangle can also result from simple 
rules set at each step in a computer program known as “cellular automaton”.  Here a 
particular rule might be as follows.  A cell should be black whenever one or the other, 
but not both, of its neighbors were black on the step before (Wolfram 2002, p. 25).  One 
might think of “black” or “white” as “sell” or “buy” dollars and try to accurately infer 
the rule actually pursued by the Chinese monetary authorities.  But we leave this 
suggestion for future research. 
 Figure 5 shows a plot of X(t) against X(t – 1) where points are not tracked and 
the four jumps are left out.  First, a great deal of data points cluster at X(t) ≈ 0.  
Secondly, some observations seem to follow rule X(t) = X(t – 1).  Also, a straight line 
obtains in a regression of X(t) on X(t – 1); and this is suggestive of an autoregressive 
state.  We put forward that these distinct features seem to suggest that the data can be 
captured by a threshold model with both additive and non additive noise.  As observed, 
realizations of these models can be fractals. 
 The random mechanism we empirically assessed in the yuan/dollar price change 
is a sequence of independent trials with four states, namely 

(1) X(t) ≈ 0 with approximate probability of 0.6; 
(2) X(t) = X(t – 1) with probability of 0.12; 
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(3) X(t) = 0.5 X(t – 1) + 0.0003 + ε(t) (where ε(t) is an independent white noise 
process with zero mean and standard deviation equaling 0.006) with probability 
of 0.279; and 
(4) X(t) = 1.5 η(t) with probability of 0.001 (η(t) is also an independent white 
noise process with zero mean and standard deviation of 1). 

Table 2 summarizes the four states. 
 We assume that such a mechanism is independent of X(s), ε(s) and η(s) at time t 
for s < t.  States 1 and 2 are deterministic whereas states 3 and 4 are stochastic.  State 3 
is a first order autoregressive process with the first autocorrelation set to 0.5, and state 4 
is supposed to capture the four episodes of intervention leading to the vertical shifts. 
 To assess the validity of our model, Figure 6 presents a simulated realization 
using 5000 data points.  The lower panel in Figure 4 shows that the Sierpinski triangle is 
able to emerge with the simulated realization of our model.  Also, Figure 7 shows a 
phase diagram with no jumps that almost entirely replicates the one at the bottom in 
Figure 5.  Thus our threshold model with additive and non additive noise seems to 
model the yuan/dollar returns well. 
 

4.  Conclusion 
 
Price changes of the Chinese yuan/US dollar rate display a Sierpinski triangle in an IFS 
clumpiness test. An explanation tentatively advanced for the presence of this type of 
determinism in data is that the Chinese authorities might have been playing “the chaos 
game” with their currency. 
 Since the Sierpinski triangle is a self-similar fractal that results from a 
deterministic rule implemented in a random fashion, we employ a model to capture both 
determinism and randomness.  Our threshold model with additive and non additive 
noise seems to replicate the essential features of the yuan/dollar rate series in general, 
and the emergence of the Sierpinski triangle in particular. 
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Test 
Null 

Hypothesis 
H0 

Alternative 
Hypothesis 

HA 

Statistic of the 
Test P-Value Decision 

Ljung-Box Type1 White Noise Non White Noise 
4.67 With 120 

Degrees of 
Freedom 

~1.000 

Durbin-Watson2 

ρ(h) = 0 
Where ρ(h) is 
the Correlation 
Between X(t) 
and X(t + h) 

ρ(h) ≠ 0 About 2.00 For h 
= 1, 2, 3,...200. > 0.5000 

McLeod–Li3 
Data Set is an  
IID Gaussian 

Sequence 

Data Set is Not an 
IID Gaussian 

Sequence 

0.07 With 50 
Degrees of 
Freedom 

~1.000 

Turnings Points3 501 ~1.000 
Difference–Sign3 405 ~1.000 

Rank Test3 

Data Set is an 
IID Sequence 

Data Set is Not an 
IID Sequence 489.248 ~0.9965 

We Cannot 
Reject H0 

 
Table 1.  Autocorrelation check for the presence of white noise. 
 
Notes: 
1 SAS/ETS/PROC ARIMA Version 8.2 
2 SAS/ETS/PROC AUTOREG Version 8.2 
3 ITSM96, Program PEST (Brockwell and Davis 1991) 
 
 
 
 
 
 
X(t) Probability 
X(t) ≈ 0  0.600 
X(t) = X(t – 1)  0.120 
X(t) = 0.5 X(t – 1) + 0.0003 + ε(t) 0.279 
X(t) = 1.5 η(t) 0.001 
 
Table 2.  Model of four states for the data.  
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Figure 1. Daily observations of the yuan/dollar rate (upper panel) together with their 
price changes (lower panel) from 2 January 1981 to 1 November 2002. 
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Figure 2.  Logarithm of the probability density function of the yuan/dollar price changes 
with the four major episodes of intervention dropped. 
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Figure 3.  Autocorrelation function (upper panel) and partial autocorrelation function 
(lower panel) of the yuan/dollar price changes.  Autocorrelations do not significantly 
departure from zero after the first lag. 
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Figure 4. IFS clumpiness test for price changes of the Chinese yuan/US dollar rate 
(upper panel) together with the same test for realizations of our model (lower panel).  A 
Sierpinski triangle emerges in both cases. 
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Figure 5. Phase diagram of the yuan/dollar rate at X(t) plotted against X(t – 1) (upper 
panel) together with the same plot with the four major episodes of intervention (X(t), X(t 
– 1) > 0.05) dropped (lower panel). 
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Figure 6. Realization of 5000 values of X(t) = 0 with probability ∼0.600; X(t) = X(t – 1) 
with probability ∼0.120; X(t) = 0.5 X(t – 1) + 0.0003 + ε(t) with probability ∼0.279; X(t) 
= 1.5 η(t) with probability ∼0.001 (lower panel) together with the realization for Z(t) = 
Z(t – 1) + X(t) (upper panel).  
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Figure 7. Phase diagrams for the simulated realization with the four major episodes of 
intervention dropped.  The structure replicates that for the original data in Figure 5. 
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