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Abstract

It seems from what is explained in some textbooks that, for a given demand function, price
and total revenue move in the same direction when elasticity is smaller than one and move in
opposite directions when elasticity is greater than one, with elasticity from point (p, q) to
point (p', q') of a demand function defined as – [(q' – q) / q] / [(p'– p) / p]. Since these two
results turn out to be false, this comment clarifies the relationship between elasticity (as
previously defined), price movements and changes in total revenue.

This paper is the result of the following allocation of tasks: Ted Bergstrom did the part that is interesting, correct and worth
reading, whereas I did the rest.
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1. Introduction

When one is interested in defining a price elasticity measure between two arbitrary

points of a demand function, the concept of price elasticity of demand at a point is not

useful1. Textbooks then offer two possible measures: the price elasticity from one point

to another and the arc price elasticity between two points.

Let a = (p0, q0) and b = (p1, q1) be two arbitrary points of a demand function. Define ∆p

= p1 – p0, ∆q = q1 – q0, p* = (p0 + p1) / 2 and q* = (q0 + q1) / 2. The price elasticity of

demand ε from a to b is ε = – (∆q /  q0) / (∆p / p0), whereas the arc price elasticity of

demand α between a to b is α = – (∆q / q*) / (∆p / p*). As in the elasticity at a point case,

it would be desirable to have an unambiguous relationship between elasticity values,

price changes and changes in total revenue. In this respect, the treatment of the elasticity

concept ε in many introductory and intermediate textbooks2 may lead the student to

believe that rules R1 and R2 are true.

R1. If ε < 1 then the price change and the change in total revenue have moved in the

same direction.

R2. If ε > 1 then the price change and the change in total revenue have moved in

opposite directions.

Examples 1 and 2 prove R1 and R2 to be false.

Example 1. Let (p0, q0) = (1, 10) and (p1, q1) = (2, 4). In this case, ε = 3/5 < 1 and the

price has increased but total revenue has not increased, which disproves R1.

                                                
1 If the term “infinitesimal change” has any economic meaning at all, the elasticity at a point concept is

relevant for “infinitesimal changes”. Unfortunately, it is not always made clear the scope of usefulness of

the concept. For instance, in results (a), (b) and (c), McKenna and Rees (1992, p. 25) speak of “changes in

price” and “reduction in price”, as if they could be arbitrary.
2 It could be inferred that R1 and R2 hold true (at least, for “small” price changes) from what is explained

in, for instance: (i) Miller (1982, ch. 6); (ii) Miller and Meiners (1986, pp. 158-159); (iii) Chacholiades

(1986, pp. 25-26); (iv) Wonnacott and Wonnacott (1986, ch. 20); (v) Fischer, Dornbusch and

Schmalensee (1988, sec. 5.2); (vi) Lipsey (1989, ch. 6); (vii) Eaton and Eaton (1991, p. 94); (viii) Frank

(1991, p. 145); (ix) Hirshleifer and Glazer (1992, p. 123); (x) Stiglitz (1994, ch. 5); (xi) Hardwick, Khan

and Langmead (1994, ch. 3); (xii) Bowden and Bowden (1995, pp. 393-394); (xiii) Lipsey and Chrystal

(1995, ch. 5); (xiv) Varian (1996, sec. 15.7); (xv) Mankiw (1998, ch. 5); (xvi) Mochón (2000, pp. 75-76);

and (xvii) Pindyck and Rubinfeld (2001, sec. 4.3).
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Example 2. Let (p0, q0) = (10, 1) and (p1, q1) = (4, 2). In this case, ε = 5/3 > 1 and the

price has diminished but total revenue has not increased, which disproves R2.

It may appear that R1 and R2 fail in these examples because the price changes are not

“small”. This intuition is not correct. Section 2 clarifies from an algebraic point of view

the relationship between price elasticity of demand ε, price changes and variations in

total revenue, while Section 3 clarifies this relationship from a geometric point of view.

Finally, Section 4 shows that there are elasticity concepts defined for arbitrary price

changes for which R1 and R2 hold. The elasticity concept α is an example.

2. Price elasticity of demand and total revenue: the algebra

Let a = (p0, q0) and b = (p1, q1) be two different points of a strictly decreasing demand

function defined for positive prices and whose values are positive. Reproducing a

development by Ted Bergstrom, define ∆p = p1 – p0, ∆q = q1 – q0 and ∆R = p1q1 – p0q0

so that the price elasticity of demand from a to b is ε = – (∆q /  q0) / (∆p / p0) = – p0∆q /

q0∆p. Since ∆R = p1q1 – p0q0 = q1∆p + p0∆q, it follows that ∆R / ∆p = q1 + (p0∆q / ∆p)

= q1 – εq0. Therefore, recalling that either ∆p > 0 or ∆p < 0,

∆R / ∆p  =  q0 (1 –  ε  +  ∆q / q0).           (1)

The relationship between price elasticity of demand and changes in total revenue caused

by price changes can be easily established from (1). For instance, (2)-(5) make apparent

what can and what cannot be inferred from the fact that ε < 1, whereas (6)-(9) make

apparent what can and what cannot be inferred from the fact that ε > 1. Observe that

Example 1 proves both (3) and (5), whereas Example 2 proves both (7) and (9).

ε < 1   ⇒   [∆R > 0  ⇒  ∆p > 0 ]          (2)

ε < 1    /⇒   [∆p > 0  ⇒  ∆R > 0 ]          (3)

ε < 1   ⇒   [∆p < 0  ⇒  ∆R < 0 ]          (4)

ε < 1    /⇒   [∆R < 0  ⇒  ∆p < 0 ]          (5)

ε > 1   ⇒   [∆R > 0  ⇒  ∆p < 0 ]          (6)

ε > 1    /⇒   [∆p < 0  ⇒  ∆R > 0 ]          (7)

ε > 1   ⇒   [∆p > 0  ⇒  ∆R < 0 ]          (8)

ε > 1    /⇒   [∆R < 0  ⇒  ∆p > 0 ]          (9)
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To illustrate how (2)-(9) follow from (1), consider (2) and (3). As regards (2), suppose

that ε < 1 and ∆R > 0 but ∆p < 0. Thus, the left side of (1) is negative. Since ∆p < 0

implies ∆q > 0 and since 1 – ε > 0, the right side of (1) is positive: contradiction. With

respect to (3), ε < 1 and ∆p > 0 (which implies ∆q < 0) do not ensure that (1 – ε + ∆q /

q0) is positive: a percentage change ∆q /  q0 sufficiently high (in absolute terms) may

make the right side of (1) negative, so that ∆R / ∆p < 0 and ∆R < 0.

Equation (1) also helps to clarify what can and what cannot be inferred from a change in

price. In particular, it is easy to prove (10)-(17) from (1).

∆p > 0   ⇒   [∆R > 0  ⇒  ε < 1 ]         (10)

∆p > 0    /⇒   [ ε < 1  ⇒  ∆R > 0 ]         (11)

∆p > 0   ⇒   [ ε > 1  ⇒  ∆R < 0 ]         (12)

∆p > 0    /⇒   [∆R < 0  ⇒  ε > 1 ]         (13)

∆p < 0   ⇒   [∆R > 0  ⇒  ε > 1 ]         (14)

∆p < 0    /⇒   [ ε > 1  ⇒  ∆R > 0 ]         (15)

∆p < 0   ⇒   [ ε < 1  ⇒  ∆R < 0 ]         (16)

∆p < 0    /⇒   [∆R < 0  ⇒  ε < 1 ]         (17)

It is finally worth noticing that it is not possible to ascertain whether ε > 1 or ε < 1 from

the fact that a change in the price in a certain direction causes a change in total revenue

in a certain direction. In particular, having price and total revenue move in the same

direction does not guarantee that ε > 1 and, in addition, having price and total revenue

move in opposite directions does not guarantee that ε < 1. More specifically, it follows

from (1) that: (i) [∆p > 0 ⇒ ∆R > 0 ]   /⇒  ε < 1; (ii) [∆p < 0 ⇒ ∆R < 0 ]   /⇒  ε < 1; (iii)

[∆p < 0 ⇒ ∆R > 0 ]   /⇒  ε > 1; and (iv) [∆p > 0 ⇒  ∆R < 0 ]   /⇒  ε > 1.

3. Price elasticity of demand and total revenue: the geometry

The aim of this section is to present a geometric analysis of the relationship between ε,

∆p and ∆R. Set Q = q1/q0 and P = p1/p0. Notice that P > 1 implies Q < 1 and that P < 1

implies Q > 1. Consider first the case in which ∆p > 0. This is equivalent to having P >

1 and Q < 1, so regions A, B and C in Figure 1 represent the fact that ∆p > 0; that is, if

∆p > 0 occurs then the values of P and Q can only be found in regions A, B or C. When

∆p > 0, it can be easily verified that (ε < 1  ⇔  P + Q > 2) and (ε > 1  ⇔  P + Q < 2). As

a result, when ∆p > 0, B and C represent ε < 1, whereas A represents ε > 1. Finally,
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given that (∆R > 0  ⇔  PQ > 1) and (∆R < 0  ⇔  PQ < 1), if ∆p > 0 then A and B

represent ∆R < 0 and C represents ∆R > 0.

The case in which ∆p < 0 is similar. Now, ∆p < 0 is equivalent to P < 1 and Q > 1, so D,

E and F in Figure 1 represent ∆p < 0. If ∆p < 0 then (ε < 1 ⇔ P + Q < 2) and (ε > 1 ⇔
P + Q > 2). Accordingly, when ∆p < 0, E and F represent ε > 1 and D represents ε < 1.

Lastly, if ∆p < 0 then D and E represent ∆R < 0 and F represents ∆R > 0.

1

1

P

Q

P + Q = 2

PQ = 1

A

B

C

D
E

F

Fig. 1

With this information, (2)-(17) can be illustrated and proved geometrically by means of

Figure 1. Consider, for instance, (2) and (3). As regards (2), suppose ε < 1 and ∆R > 0.

The regions representing ε < 1 are B, C and D, while those representing ∆R > 0 are C

and F. Consequently, the only common region is C, where ∆p > 0 occurs. With respect

to (3), suppose ε < 1 and ∆p > 0. The regions consistent with ε < 1 are B, C and D.

Those consistent with ∆p > 0 are A, B and C. The intersection is given by B and C,

where ∆R > 0 does not necessarily occur: all points in B (which satisfy P + Q > 2 and

PQ < 1) disprove the statement “ε < 1 and ∆p > 0 imply ∆R > 0”. Observe that the

corresponding P and Q in Example 1 lie in B. Observe as well that no matter how close

P is to 1 from above (that is, how close p1 > p0 is to p0), one can still found some Q in

region B.
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4. Concluding comments

Some introductory and intermediate textbooks do not introduce both ε and α, but only

introduce the latter3. This is the approach followed, for instance, by Samuelson and

Nordhaus (1992), Schiller (1993) and Pashigian (1995). In a footnote, Pashigian (1995,

sec. 1.6) even proves that R2 holds for α. To see that both R1 and R2 hold for α, note

first that p1q0 – p0q1 = q0∆p – p0∆q = q0∆p(1 – p0∆q / q0∆p) = q0∆p(1 + ε). Hence, α = –

(∆q / ∆p) (p* / q*) = – (p0∆q + p1∆q) / (q0∆p + q1∆p) = (p1q0 – p0q1 – p1q1 + p0q0) /

(p1q0 – p0q1 + p1q1 – p0q0) = (p1q0 – p0q1 – ∆R) / (p1q0 – p0q1 + ∆R) = (q0∆p(1 + ε) –

∆R) / (q0∆p(1 + ε) + ∆R). As a consequence,

      q0(1 + ε)   –  ∆R / ∆p
α  =    .         (18)

     q0(1 + ε)   +  ∆R / ∆p

It follows from (18) that (α < 1  ⇔  ∆R / ∆p > 0) and (α > 1  ⇔  ∆R / ∆p < 0). Thus,

when α < 1, price changes and changes in total revenue move in the same direction and,

when α > 1, price changes and changes in total revenue move in opposite directions.

In view of this result, α could be deemed a more satisfactory elasticity definition than ε.

The problem then lies in the arbitrariness of choosing the average as the value against to

which measure absolute changes. This consideration leads to the following open

problem: identify those merging real-valued functions f(x, y) such that the elasticity

concept e = – (∆q /  f(q0, q1)) / (∆p / f(p0, p1)) satisfies both R1 and R2. Two examples of

such functions are f(x, y) = (x + y)/ 2 and f(x, y) = x + y.
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