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Abstract

Using efficient Monte Carlo methods, the performance of two—-step Generalized Least
Squares (GLS) estimators for the one-way error components models in small samples is
analyzed. In our approach, we focus on the two-step GLS estimators provided by the
programs LIMDEP, RATS and TSP, which mainly differ in the solution of negative variance
components problem. Our main result is that the use of non negative first—step estimators, as
RATS, produces a considerably efficiency loss. We greatly improve the efficiency of
simulations using a control variate that can be implemented with no virtually computational
cost.
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1 INTRODUCTION.

The simple static random-effects panel regression model has been one of the main workhorses
in the analysis of longitudinal data. However, many problems arise in the application of the
two-step GLS estimator, since it requires a prior estimation of the variance of the two random
components (an individual specific effect and a remainder disturbance). Firstly, there exists a
bewildering variety of estimators and criteria to obtain first-step estimators, which are asymp-
totically equivalent but have a different performance in finite samples. As a result, an infinite
number of two-step GLS estimators with different finite sample efficiency are available. The
problem is that the finite properties of competing estimators are unclear, since they are highly
sensitive to the sample size together with the true values of the parameters of the variance
components (see Maddala and Mount (1973) and Taylor (1980)). Another important problem
is that the variance of the individual specific effects is usually obtained residually, and it may
take negative values. There exist several practical procedures to solve this problem, but their
effects in the efficiency of slope regression parameters surprinsingly have been overlooked in the
literature!.

The lack of evidence about the best choice of first-step estimator provokes that the most
used econometric packages, among then LIMDEP, RATS and TSP, rely on different procedures
to estimate the variance components. Furthermore, they also differ in practical solutions to the
negative variance component problem. TSP and LIMDEP propose alternative first-step estima-
tors, and, as final option, they provide estimators that are always non negative, although they
are not the optimal either. In contrast, RATS directly uses estimators that never yield nega-
tive values, although they are biased. Several authors have recently considered these problems.
Blanchard (1993) detected the problem, but his study did not provide numerical applications
and Maudés and Uriel (1996) obtained that LIMDEP offered better estimations for a restricted
data set.

In this note we analyze how much efficiency gain can be obtained in two-step GLS estimator
by using alternative estimators of variance components, in the context of random individuals
effects uncorrelated with explanatory variables. Moreover, we are interested in evaluating prac-
tical solutions to negative variance components problem. For these reasons, we focus on the
two-step GLS estimators provided by LIMDEP (7.0), RATS for Windows and TSP (4.5). The
work most closely to ours is Bruno and De Bonis (2000), that also compare these econometric
packages®. However, we restrict our attention to the most problematic cases, that is, where some
estimators of variance of individuals effects can take negative values and panels in which the
cross-section dimension, NNV, and the time dimension, 7', are small®>. Monte Carlo experiments
were performed for these purposes. Moreover, we use variance reduction techniques in order to
mitigate their inherently imprecision, specifically, control variates (see Hendry (1984), and more
recently Davidson and Mackinnon (1993)).

We show that the choice of first-step estimators affects substantially the efficiency of two-step
GLS estimators. More specifically, we observe that the use of non negative estimators of variance
components, as RATS, yields a considerable efficiency loss. Moreover, the performance of RATS

LAn exception could be Baltagi (1981) and Maddala and Mount (1973), that analyze the effects of some
procedures used to solve practically the former problem by means of Monte Carlo experiments.

?They analyze STATA instead of RATS.

3The one way random-effects model can also be estimated by maximum-likelihood estimation (MLE), see Hsiao
(1986). Although MLE estimator is asymtotically efficient, the finite sample efficiency is also unclear. Moreover,
sometimes the problem of negative value of variance of individuals components arises. We could also analyze its
finite sample performance, but the goal of this work is to provided a practical guide for users and we consider
that is more interesting to analyze estimators offered by econometric softwares.
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is closer to within-groups estimator than LIMDEP and TSP. In addition to this, we observe that
LIMDEP offers a more efficient estimator if N grows whereas TSP estimator has less variance
if the sample size is smaller. Finally, we greatly improve the efficiency of simulations using a
control variate that can be implemented with no virtually computational cost.

The estimation procedures for the random-effects model are reviewed in section 2. In section
3, we explain control variates. In section 4, Monte Carlo results are provided.

2 ESTIMATION OF RANDOM-EFFECTS MODEL.

Consider the simple static random-effects model *

Yit = p+ B %y +ui +eq, i=1,....... SN, t=1,...... , T, (1)
where y;; is the model variable, x;; is a (K x 1) vector of explanatory variables and u; is the
random variable of individual effects that is independent of x;;. We assume that u; and ;; are

normally random distributed with mean 0 and variance o2 and o2 . In this model, the covariance
matrix of the combined unobservables is

Q=02 Iyt + 02 [Iy ® erel],

where e denotes a T x 1 vector of ones. Under these assumptions, the Gauss-Markov estimator
of the slope coefficients (Maddala (1971)) is the GLS estimator, that can be expressed as a
matrix weighted average of between-groups and within-groups estimators

~GLS ~B ~W
B = AB +(Ix—-A)B
N T N “Irn
A = AT DY (xu—%)(xa—%:) +9T Y (Xi—X) (ii—i)’] [Z (X —X)(X; —i)’] (2)
i=1t=1 i=1 i=1
~W ~B 0'2
where B is the within-groups estimator, 3 is the between-groups estimator and v = 2—52
oc:+To;

BB is the estimator obtained pre-multiplying the initial model (1) by the matrix operator B =
Iy ® %eTei[ and then estimating it by OLS.

In order to be operative the former estimator, it is required to estimate the variance compo-
nents (giving rise to the two-step GLS estimator). As there exist many estimators and criteria®,
that have different small-sample properties, it can be obtained a bewildering variety of two-
step GLS estimators. For this reason, the most used econometric packages propose alternative
estimators of variance components.

TSP’ proposes two procedures to estimate the variance of error components. Firstly, it uses
small sample estimators

~ o~ ~! ~
~ ViuVw ~ v VTot ~
0_2 _ w and 0_2 _ Tot % 2 (3)

cTNT-1)-K “TNT - (K+1) '

where v,, denotes the within-groups residuals vector and v, the total residuals vector obtained
by estimating the initial model (1) directly by OLS. If negative values are computed using the

*See Hsiao (1986).
°See Swamy and Arora (1972) and Maddala and Mount (1973).
See Hall (1997).
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former estimator of the variance of individuals effects, the program switches over to large sample
formulas. The differences between them are just the correction of the degree of freedom in order
to obtain positive values for all the possible cases. For this reason, they are consistent, though
biased. These can be written as

PUADN ~ o~ ~ o~
V..V 22 Vo VTot — V., Vu
w and o = Tot w

—_ . 4

~2

On the other hand, LIMDEP proposes three alternative procedures to estimate the variance
of the individual effects. Firstly, in contrast with TSP, it estimates o2 using between-model and

~I ~

2% __ VoV

€ NT-1) - (KD’ This estimator takes the form

the estimator &

~ ~ o~
VEVB ol

3]
- — 5
where Vg is the between-groups residuals vector. In case of expression (5) yields a negative
result, LIMDEP applies a second criteria consisting of replacing the sum of the squares of the
model between-groups by

~ 2%

N

DU _ ~To ~Tot__

VRTVBT ZZ i — (A" + B8], (6)
i=1

where 7% and BTOt are the estimators obtained by regressing the total model. Unfortunately,
this estimator may not be positive. When this occurs, LIMDEP uses as a third procedure the
estimator proposed by Nerlove (1971), which consists of estimating o2 directly by means of the
sample variance of the fixed effects (obtained in the within-groups model), «;, i.e.

> (@i —a)?
2 i—1
N/\
_ e
where a = 1]:\[1 . It becomes evident that, by construction, this third estimator can never be

negative.
Finally, the RATS” program uses the decomposition of analysis of variance of total residuals
in order to obtain estimators of 02 and o2. Consequently, the estimations of 02 and 02 are given

by

SSRy, N SSRy
2R __ 2R _
S ] and Oy N1 (8)

where SSR;, is the sum of the squares of the between-groups residuals and SSR,, is the sum
of the squares of the within-groups residuals. But the main difference with LIMDEP and TSP
is that RATS does not apply the correct degrees of freedom. This fact provokes that these
estimators are biased for small samples, although it always obtains non-negative estimations of

2
o5

o

"See Doan (1996).



3 Variance reduction method: control variates.

The principle of control variates is to find an auxiliary statistic, 8%, called control variate, with
some known distribution properties, specifically the population mean, and which is also highly
correlated with the estimator or statistical test being studied, 6. The divergence between the
population mean and the sample mean of the control variates is precisely used to improve the
estimation obtained in the small sampling experiments. It should be pointed out that control
variates require knowledge of statistics that can only be observed in a Monte Carlo setting. Such
Monte Carlo estimators for the bias and the variance can be constructed as follows.

In each Monte Carlo experiment are obtained 5]-, j =1,....M, one realization of the estimator
the interest, where M is the number of replications, and 67, the control variate. Using control

-~

variates, the optimal control variates estimator of E(6), are given by

0 (\)=0-X@ —E®6"), (9)

= 10 —
where 0:%, 6" is the sample means of 9;’ s, and )\ is a parameter that has to be determined.

6 is the commonly called naive estimator and, although this estimator is not the most efficient,

-~

it has become the conventional method for evaluating E(0). The natural choice of A is the value

that minimizes the variance of (9), V(6 (X)) = V(0) + N2V (0") — 2/\Cov(§*,z), that is,

Cov(6,0"
= Gov0.8) (10)
Var(0")
By using a control variate, we achieve a efficiency gain which we clearly observe from (9)
and (10). The neat proceeding to obtain efficiency gain by using control variates will be

__ve __1
Fe= Ve ) 1=p) -

where p is the coefficient of correlation between 5, a M-vector with typical element Aéj, and 6%,
a M-vector with typical element 7. In (11), it is easily observed that if p is nonzero, then, the

use of control variates produces some gains with respect to the naive estimator, 0. When the
number of observations, n, grows, the correlation between the control variates and the quantity
of interest must increase, as then the finite-sample of the latter distribution approaches the
asymptotic distribution. Consequently, (9) is increasingly efficient with increasing n, offsetting
the rising cost of experimentation (see Hendry (1984)).

In much of the literature on control variates (e.g., Henry (1984)), A is set equal to 1. It
is reasonable if ¢ and Aéj are highly correlated and have similar variances, but it is not the
best choice in general. Therefore, we alternatively proceed to estimate® \*. The easiest way
to estimate this value is by means of the OLS estimator, 3\, obtained by regressing 6 on e, an
M-vector of ones, and 6*.

We can also use control variates to estimate the variance of 8. The optimal control variates
estimator of variance (see Hendry (1984) and Campos (1986)) is

LA 1 M ey
]W_ljzl(gj_e) _1\1—1]-21(9"_9) + Var(6). (12)

¥See Davidson and Mackinnon (1993) for a detailed analysis of this question.



To estimate the bias and the variance of two-step GLS by means of Monte Carlo experiments
9 it is natural to use the following expression as control variate '

B =AB" + (Ix — A)B", (13)
N T N —“1rn
A=y T3> (zi —F)* +7,T > (@ — 5)21 lz (T; — 5)21 :
i=1t=1 7=1 1=1
T5e

where y, = , 02. and 03, are the true values of the variance components. This control

og. + Tog,
variate has known mean that is equal to the true value of parameter of interest and variance
Var(0*) = 005(2 Z (it — %)% + T Z (%; —7)?)~L. In addition, it is highly correlated with

1=1t=1

the estimator of interest (notice that 1t is 1mp0551b1e to compute [3* from a real data set).

4 Monte Carlo Experiments.
We consider the following generating data process
yit:#+5$it+5it+ui7 tzl? """ 7T7 izl?""7N7 (14)

where 1 = 4, 3 = 1, git ~ N(0,02) and u; ~ N(0,02). We have kept the observations on z;
fixed over replications. Furthermore, x;; are uncorrelated with the individuals effects.

In these simulations, we study the performance of the two-step GLS estimators and we also
compare it with within-groups. Furthermore, we compute the number of times it is used each
of the procedures proposed by LIMDEP and TSP for the estimation of 02. The experiments
were carried out for various panel size. Specifically, we consider that N takes values of 20, 25,
30 and 40 and T is assigned values of 5 and 10. For each sample size, we restrict our attention

for the three different ratios of variance components: % = 1, 20,40, since we are interested in
the cases where the estimators of 02 yield negative valueus. We also set R? = 0.9 1. In addition,
the control variate (13) is used to obtain Monte Carlo estimators.

Table 1A of the appendix shows the percentage of times LIMDEP and TSP programs applied
the estimation procedures of o2 for each sample size and ratio 02/02. The two methods used
by TSP are called respectively T1 and T2 and the three estimators used by LIMDEP are called
L1, L2 and L3.

The data show that, depending on the ratio 02/02 the first estimators of 02 yield negative
values, either in LIMDEP and TSP (the maximal negative frequency arises for 7' = 5 and
N = 25). Furthermore, the problem of negative values is really important, because it appears
in the 46 per cent of times. Specifically, the negative values arise when this ratio is greater than
or equal to 20, or in other terms, when the heterogeneity effects are less important. For a lower
proportion no negative results are observed in any of the cases studied. It is important to point
out, that the second procedure proposed by LIMDEP, (L2), is applied to a small number of
cases. When N and T are increased, the percentage of cases in which T1 and L1 offer negative

results decreases. Moreover, this effect is reinforced for T' = 10.

In our experiments we only have a regressor.
""The formulae can be found in Hendry and Harrison (1974).
Results for other values of R? are qualitatively similar to those. These can be reported upon requested.
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Table 1 summarizes the performance of two-step GLS and within-groups estimators. Bias and
variance of each estimator are estimated by using the optimal control variates estimators (9) and
(12), respectively. The tabulated results show that LIMDEP and TSP provide estimators with
better properties in all performed experiments. Their estimated variances present no significant
differences (under 1 %). RATS, which used biased estimators to calculate variance of error
components, always presents worse results, and, surprisingly, it has a performance very close to
within-groups estimator. It is also important to note that, all estimators perform worst as the
ratio 02 /02 increases. An interesting result is that TSP offers the most efficient estimator for
small samples (T'=5 and N=20). In contrast, LIMDEP estimator becomes the most efficient
when N grows.

RATS presents up to 25 (%) higher variance than LIMDEP and TSP (the maximum differ-
ences arise for T=5, N=40 and ¢?/02= 20). However, notice that differences depend strongly
on the ratio of the two variance parameters. When o2 equal 02, all estimators perform in the
same way (even the within-groups estimator). In contrast, if 02/02 increases, there exists a
substantial efficiency gain in practice by using LIMDEP and TSP as opposed to RATS. Further-
more, the differences between the estimated variance of estimators change with sample sizes.
When N grows, the performance of LIMDEP and TSP considerably improves as opposed to
RATS. In contrast, if T becomes large, all estimators behave similar.

It is important to note that the performance of RATS is closer to within-groups estimator
than LIMDEP and TSP. Whereas LIMDEP has a estimated variance up to 35 % smaller than
within-groups, RATS presents a maximum difference of 10 % in efficiency with respects to
within-groups.

To conclude, we found that the first-step estimators affect substantially the efficiency of two-
step GLS estimators. The use of biased estimators as unique procedure to avoid the problem
of negative values of o2 (as RATS) produces a considerably efficiency loss in two-step GLS
estimator (around 25%). In addition, finite-sample differences depends on either sample size
and the true values of the ratio o2/0?2.

Table 2A of the appendix summarizes the empirical efficiency gains using the optimal control
variates estimator of the bias (9). The empirical efficiency gains are obtained by the ratio
1/(1 — p%), where p is the empirical coefficient of correlation between the naive estimator and
the control variate. The gains are apparently very large (being 71.68 its maximum value).
To get a efficiency gain of this magnitude it will be necessary to perform a highly number of
replications. In particular, the efficiency gains are greater for LIMDEP and TSP estimators.
However, the gain strongly depends on the ratio of true values of variance components (see
Davidson and Mackinnon (1993)): the lower is the ratio 02/02, the greater are the efficiency
gains. Finally, gains grow with sample size, as the theory predicts. Table 3A of the appendix
shows the empirical correlations between the naive estimator and the control variate.
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Table 1.

Results of Monte Carlo experiments. Bias and variance of two-step GLS and
within-groups estimators.

@ N

T N 2—2 TSP LIMDEP  RATS W-G
u

1 5 20 1 Bias -0,000046 -0,000091 0,000196 0,000260

Variance  0,000767 0,000771 0,000792 0,000804

20 Bias 0,000377 0,000271 0,000650 0,000695

Variance  0,001410 0,001420 0,001550 0,001640

40 Bias 0,000082 -0,000104 -0,000399 -0,000383

Variance  0,001428 0,001429 0,001550 0,001650

2 25 1 Bias -0,000215 -0,000298 0,000590 0,000805

Variance  0,000628 0,000630 0,000646 0,000657

20 Bias -0,000794 -0,000702 -0,002330 -0,003010

Variance  0,001090 0,001080 0,001190 0,001280

40  Bijas -0,000124 -0,000056 -0,000177 -0,000256

Variance  0,001090 0,001090 0,001170 0,001260

3 30 1 Bias 0,000005 0,000012 0,000285 0,000357

Variance  0,000533 0,000533 0,000528 0,000532

20 Bias -0,000062 -0,000069 -0,000100 -0,000085

Variance  0,000953 0,000957 0,001060 0,001140

40 Bias 0,000048 0,000069 -0,000548 -0,000784

Variance  0,000930 0,000930 0,001050 0,001130

4 40 1 Bias 0,000134 0,000074 -0,000015 -0,000046

Variance  0,000387 0,000386 0,000411 0,000421

20 Bias 0,000398 0,000271 0,002250 0,002780

Variance  0,000697 0,000697 0,000866 0,000932

40 Bias -0,000032 0,000019 0,000175 0,000104

Variance  0,000701 0,000694 0,000758 0,000823

5 10 20 1 Bias 0,000136 0,000251 -0,000220 -0,000261

Variance  0,000349 0,000347 0,000350 0,000351

20 Bias -0,000054 -0,000071 -0,001020 -0,001130

Variance  0,000684 0,000680 0,000709 0,000718

40 Bias 0,000166 0,000181 0,000113 0,000149

Variance  0,000670 0,000672 0,000644 0,000644

(i) The number of replications computed are 200, 150, 130 and 100 for the experiments 1, 2, 3, 4 respectively and 100

for5.



APPENDI X

Table 1A
Estimation proceduresof s 2 (%) in TSP and LIMDEP.
T=5 N=20 T=5 N=25 T=5 N=30 T=5 N=40 T=10 N=20
2
S_ez 1 20 40 1 20 40 1 20 40 1 20 40 1 20 40
SU
T1 1000 665 560 1000 753 540 1000 776 640 1000 770 710 1000 870 730
T2 00 335 440 00 246 460 00 224 360 00 230 290 00 130 27,0
L1 1000 665 590 1000 740 520 1000 792 624 1000 780 730 1000 870 710
L2 00 40 30 00 20 40 00 16 32 00 10 10 00 30 30
L3 00 295 380 00 240 440 00 192 344 00 210 260 00 100 260
Tabla 2A
Empirical efficiency gains by using optimal control variates
estimator (9) in Monte Carlo experiments.
T=5 N=20 T=5 N=25 T=5 N=30 T=5 N=40 T=10 N=20
2
S_ez 1 20 40 1 20 40 1 20 40 1 20 40 1 20 40
SIJ
TSP 558l 5025 2525 6275 558l 2657 62,75 5581 2657 7168 6275 2803 7168 71,68 50,25
LIMDEP 50,25 50,25 3359 62,75 5581 2803 6275 5581 2657 71,68 5581 2803 6275 71,68 5581
RATS 3359 919 1067 3597 795 740 3359 693 684 3871 987 819 5025 1811 1811
W-G 2966 608 711 2803 542 494 2109 48l 465 3150 693 547 4571 1496 1454
Table 3A.
Empirical correlations between control variate and naive estimator .
T=5 N=20 T=5 N=25 T=5 N=30 T=5 N=40 T=10 N=20
2
S_ez 1 20 40 1 20 40 1 20 40 1 20 40 1 20 40
SLI
TSP 0991 0990 0980 0992 0991 0981 0992 0,991 0981 0993 0992 0,982 0,993 0,993 0,990
LIMDEP 0990 0990 0985 0992 0991 0982 0992 0991 0981 0993 0991 0982 0,992 0,993 0,991
RATS 0985 0944 0952 0986 0935 0,930 0,985 0925 0,924 0,987 0948 0937 0990 0,972 0972
W-G 0983 0914 0927 0982 0903 0893 0976 0890 0886 0984 0925 0904 0989 0966 0,965




