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Abstract

The article analyzes the Dynkin (1975) stochastic model of economic equilibrium. We solve
a question regarding this model that was open for a long time. We provide arguments
yielding a complete proof of Dynkin's existence theorem for equilibrium paths.
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1. Introduction

In this article, we consider a stochastic model of dynamic economic equilib-
rium proposed by E.B. Dynkin (1975,1976). Dynkin’s study was aimed at the
integration – in a stochastic context – of the Arrow-Debreu general equilibrium
theory and the theory of economic growth1. As the background for his analysis,
he used the work of Polterovich (1973,1978), focusing on some specialized (”fixed
income”) models.

In his paper (Dynkin 1975), presented at the Congress of Mathematicians in
Vancouver in 1974, Dynkin described the model and stated an existence theorem
for equilibrium. The results and their proofs were set out in detail in a subsequent
publication (Dynkin 1976). To obtain the results, it turned out to be necessary
to overcome substantial technical difficulties and to develop new general methods
and concepts (regular conditional expectations of correspondences depending on
parameters, Dynkin and Evstigneev (1976)).

The argumentation in Dynkin (1976) was quite sophisticated, and it turned
out later that one of the stages in the proof of the main result – the existence
theorem for equilibrium – contained a gap. The purpose of our note is to fill this
gap. We hope that our comments will complete Dynkin’s elegant and deep study.

2. The model

Let st, t ∈ {1, 2, ..., T + 1}, be a stochastic process such that, for each t, the
random variable st takes values in a measurable space (St,Ft). Elements of St

describe ”states of the world”, which might influence the economic system at
time t. In the economy under consideration, there are m commodities. Vectors
x = (x1, ..., xm) in the non-negative cone Rm

+ of the Euclidean space Rm represent
commodity bundles. There are I producers and J consumers. A producer i at
time t is characterized by the technology set Tti(s

t) ⊆ Rm
+ × Rm

+ depending on
the history st = (s1, ..., st) of the process {st} up to time t. Elements (x, y) ∈
Tti(s

t) are construed as feasible technological processes (with input x and output
y). A consumer j at time t is described by a consumption set Ctj(s

t) ⊆ Rm
+ ,

a utility function utj(s
t, c), c ∈ Ctj(s

t), and income wtj(s
t) ≥ 0. For each price

vector p ∈ Rm
+ , we denote by φtj(s

t, p) the (possibly empty) set of those c ∈ Ctj(s
t)

which maximize the utility function utj(s
t, c) over consumption vectors c ∈ Ctj(s

t)
satisfying the budget constraint pc ≤ wjt(s

t). The mapping p 7→ φtj(s
t, p) is the

demand correspondence of consumer j.
Define (St,F t) = (S1,F1)×...×(St,Ft) and consider the distribution µt on the

random element st in the space St. Denote by F t the completion of the σ-algebra
F t with respect to the measure µt. A sequence of vector functions (xti(s

t), yti(s
t)),

1Various approaches to this subject are surveyed, e.g., in Radner (1982), Grandmont (1988),
and Mas-Colell, Whinston and Green (1995).
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t ∈ {1, ..., T}, is called a plan of producer i if xti and yti are measurable with

respect to F t and
(xti(s

t), yti(s
t)) ∈ Tti(s

t) (1)

for all t, st. A sequence of vector functions ctj(s
t), t ∈ {1, ..., T + 1}, is called a

plan of consumer j if ctj is F t -measurable and

ctj(s
t) ∈ Ctj(s

t) (2)

for all t, st. Conditions (1) and (2) mean that the mappings (xti(·), yti(·)) and
ctj(·) are selectors of the correspondences Tti(·) and Ctj(·), respectively.

Let p1(s
1), ..., pT+1(s

T+1) be a sequence of functions with values in Rm
+ such

that pt is F t -measurable. We shall interpret {pt} as a price system. For a
commodity vector x ∈ Rm

+ , the scalar product pt(s
t)x expresses the cost of the

commodity bundle x at time t in the random situation st. Given the price system
{pt}, we shall say that a plan (xti, yti), t ∈ {1, ..., T}, of producer i is optimal if
it maximizes the expected profit

E
T∑

t=1

(pt+1yt − ptxt) (3)

over all plans (xt, yt), t ∈ {1, ..., T}, of producer i for which the expectation in (3)
is well-defined. A plan ctj, t ∈ {1, ..., T + 1}, of consumer j is said to be optimal
if ct(s

t) ∈ φt(s
t, pt(s

t)) for all t and st.
Throughout the paper, we will assume a nonnegative vector y0 ∈ Rm

+ (the
initial stock) to be fixed. Let

pt, t ∈ {1, ..., T + 1}, (4)

be a price system and let

(xti, yti), t ∈ {1, ..., T}, i ∈ {1, ..., I}, (5)

ctj, t ∈ {1, ..., T + 1}, j ∈ {1, ..., J}, (6)

be optimal programs of producers and consumers. We shall say that the price
system (4) and the programs (5), (6) form an equilibrium (with initial stock y0)
if, for all t and st, we have

∆t(s
t) ≥ 0 and pt(s

t)∆t(s
t) = 0, (7)

where ∆t =
∑I

i=1(yt−1,i − xt,i) −
∑J

j=1 ctj, t ∈ {2, ..., T + 1}, and ∆1 = y0−∑I
i=1 x1,i−

∑J
j=1 c1j. Conditions (7) mean that each component of the vector

∆t(s
t) (describing excess supply) is nonnegative, and it is strictly positive if and

only if the corresponding component of the price vector pt(s
t) is zero.
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3. The assumptions and the result

Assume the following.
(A.1) The correspondences Tti(s

t) and Ctj(s
t) are measurable2 with respect

to F t. Their values are closed convex sets containing the origin. There exists a
constant K such that |z| ≤ K for all z ∈ Tti(s

t), t, i and st.
Here and in what follows, we write |z| for the sum of the absolute values of

the coordinates of the vector z.
(A.2) The functions utj(s

t, c) are F t-measurable in st ∈ St and continuous in
c ∈ Rm

+ . For each st, the function utj(s
t, ·) is concave on Ctj(s

t).

(A.3) The real-valued functions wtj(s
t) are strictly positive and F t-measurable.

The expectation L := E
∑

t,j wtj(s
t) is finite.

Define Tt(s
t) =

∑
i Tti(s

t) (the aggregate technology set).
(A.4) There exists a strictly positive non-random vector x̂ such that (x̂, x̂) ∈

Tt(s
t) for all t and st.
Put φt(s

t, p) =
∑

j φtj(s
t, p) (aggregate demand correspondence).

(A.5) For every sT+1, t and k, either the kth commodity is necessary for
consumers at time t, or it is indispensable for the production at a later period
t′ ∈ {t + 1, ..., T + 1} of another commodity necessary for consumers at t′.

Here, the expression ”the kth commodity is necessary for consumers at time t”
means that, for any price vector p, the kth component of every vector c ∈ φt(s

t, p)
is strictly positive. ”The kth commodity is indispensable for the production of
the lth commodity at time t′ ” means that the relations

xk
t = 0, (xt, yt) ∈ Tt(s

t); xt+1 ≤ yt, (xt+1, yt+1) ∈ Tt+1(s
t+1); ...

xt′ ≤ yt′−1, ..., (xt′ , yt′) ∈ Tt′(s
t′)

imply yl
t′ = 0. In view of (A.5), if

ct ∈ φ(st, pt), (xt, yt) ∈ Tt, xt + ct ≤ yt−1, t = 1, ..., T, and cT+1 ≤ yT , (8)

then all the vectors yt are strictly positive.
Finally, we introduce, following Dynkin (1976), some technical assumptions

regarding the underlying stochastic process st and the spaces St.
(A.6) For every t, the measurable space (St,Ft) is standard (i.e. isomorphic

to a Borel subset of a complete separable metric space). The conditional distri-
butions of st+1 given st are atomless.

The main result is as follows (see Dynkin 1976, Theorem 4.2).
Theorem 3.1. For every strictly positive vector y0 ∈ Rm

+ , there exists an
equilibrium with initial stock y0.

2If A(u) is a correspondence assigning a set A(u) in a Euclidean space E to each point u of
a measurable space (U,U), then A(·) is said to be measurable if {u : A(u) ∩ M 6= ∅} ∈ U for
any closed set M ⊆ E.
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We describe the plan of proving this theorem as proposed by Dynkin (1976).
First of all, we may assume in what follows that I = 1. Indeed, the case of several
producers can be reduced to the case of a single producer. To this end, it suffices
to replace the system of technology sets Tti(s

t), 1 ≤ i ≤ I, by the aggregate
technology set Tt(s

t) (see above).
For every p, q ∈ Rm

+ and st ∈ St, consider the set Tt(s
t, p, q) of all pairs

(x, y) ∈ Tt(s
t) for which

qy − px = sup
x′,y′∈Tt(st)

(qy′ − px′).

It follows from the definition that, in order to construct an equilibrium, it is

sufficient to find, for every t ∈ {1, 2, ..., T + 1}, a collection of F t -measurable
functions xt,yt,ct,pt,qt, possessing the following properties:

(A) (xt, yt) ∈ Tt(s
t, pt, qt) almost surely (a.s.) for each t ∈ {1, ..., T}; xT+1 =

yT+1 = 0.
(B) ct ∈ φt(s

t, pt) for all st ∈ St, t ∈ {1, ..., T + 1}.
(C) qt = E(pt+1|st) (a.s.) for t ∈ {1, ..., T}.
(D) ct + xt ≤ yt−1, pt(ct + xt) = ptyt−1 for all st ∈ St, t ∈ {1, ..., T + 1}.
We shall identify sequences {xt, yt, ct, pt, qt} described above with equilibria

and use the same term for referring to them.
Let ξ = {ε1(s

1), ..., εT (sT )) be a sequence of strictly positive real-valued func-

tions ε1(s
1), ..., εT (sT ) such that εt is F t-measurable. Define T ξ

t (st) as the class
of all technological processes (x, y) ∈ T ξ

t (st) satisfying y ≥ εte, where e =
(1, 1, ..., 1) ∈ Rm. Consider the model in which the technology sets Tt(s

t) are
replaced by T ξ

t (st). Equilibria in this model will be called ξ-equilibria.
Fix a strictly positive vector y0 ∈ Rm

+ . Denote by κ the smallest coordinate of
the strictly positive vector x̂ described in assumption (A.4) and by ε0 the minimal
coordinate of y0. It can be proved (Dynkin 1976, Section 3) that a ξ-equilibrium
exists if the set of functions ξ = {ε1, ..., εT} satisfies the following conditions:

ε1(s
1) ≤ κ, εt(s

t) ≤ θεt−1(s
t−1) (t ∈ {1, ..., T}), (9)

where θ = κ/2K and K is the constant specified in (A.1). Clearly, for each
y0 > 0, one can find a ξ with properties (9). Consequently, for every y0 > 0, one
can construct a ξ-equilibrium with initial stock y0.

Remarkably, it turns out that, for every ξ-equilibrium with given initial stock
y0 > 0, the production output vectors yt are bounded away from zero by certain
strictly positive random vectors independent of ξ. This makes it possible to
deduce the existence of an equilibrium from the existence of a ξ-equilibrium. We
will present detailed proofs of these statements in the next section.
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4. From ξ-equilibrium to equilibrium

The main goal of this section is to prove the following assertion (see Dynkin
1976, Theorem 4.1).

Theorem 4.1. For every γ > 0 there exist functions δ1(s
t), ..., δT (sT ) such

that δt are F t-measurable and the following conditions are fulfilled: (a) for all
t, we have δt > 0 almost surely; (b) under condition (9), the inequalities yt ≥
δte (a.s.), t = 1, ..., T , are satisfied for every ξ-equilibrium with initial stock
y0 ≥ γe.

We provide arguments which fill a gap in the proof of this result in Dynkin
(1976). The corrections are concerned with sections 4.3 and 4.4 of the paper
cited. We follow the plan of the proof briefly outlined in Evstigneev (2000).

Theorem 3.1 is a consequence of Theorem 4.1. The former can be derived
from the latter rather easily (see Dynkin 1976, Section 4). We do not repeat
this derivation here and proceed to the proof of Theorem 4.1, which is based on
Lemma 4.1 below.

Consider the random variable w
(
sT+1

)
=

∑
tj wtj (st) involved in (A.3) and

define W =
∑T+1

t=1 Etw
(
sT+1

)
, where Et (·) stands for the conditional expectation

E (· | st) . By virtue of (A.3), we have EW < ∞. Let us write η(b) for the smallest
coordinate of the vector b. For any strictly positive vector y0 ∈ Rm

+ , denote by

Ξ (y0) the class of sequences ξ =
(
ε1 (s1) , ..., εT

(
sT

))
of functions such that εt is

F t-measurable, εt > 0, and condition (9) holds with ε0 = η (y0) and θ = κ/2K.
For any real δ > 0, define W (δ) = 2W/[(θδ) ∧ κ], where a ∧ b means the least of
the numbers a, b.

Lemma 4.1. Let t ≤ T + 1 be a natural number and let δ (st−1) be a strictly

positive F
t−1

-measurable function (a constant if t = 1). Let y0 > 0 and ξ =
(ε1 (.) , ..., εT (·)) ∈ Ξ (y0) . Then for every sequence {(xt, yt, ct, pt, qt)} forming a
ξ-equilibrium with initial stock y0 and satisfying yt−1 ≥ δe (a.s.), we have

Et |pl| ≤ W (δ) (a.s.), l = t, ..., T + 1. (10)

Proof: Consider a sequence {(x′t, y′t), ..., (x′T , y′T )} such that (x′j, y
′
j) is an F j-

measurable selector of T εj

j (sj). We have qjy
′
j − pjx

′
j ≤ qjyj − pjxj, j = t, ..., T ,

and Etqjy
′
j = Etpj+1y

′
j, j = t, ..., T , since Ejpj+1 = qj, j = t, ..., T + 1. Con-

sequently, Et

(
pj+1y

′
j − pjx

′
j

)
≤ Et (pj+1yj − pjxj), j = t, ..., T . By summing up

these inequalities from j = t to j = T and adding ptyt−1 to both sides, we obtain

Et

T+1∑
j=t

pj

(
y′j−1 − x′j

)
≤ Et

T+1∑
j=t

pj (yj−1 − xj) ,
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where y′t−1 is defined as yt−1, and x′T+1 = xT+1 = 0. According to (D), pj (yj−1 − xj) =

pjcj ≤ w
(
sT+1

)
, and hence

Et

T+1∑
j=t

pj

(
y′j−1 − x′j

)
≤ W. (11)

Consider now the F
t−1

-measurable random vector v = x̂ · (1 ∧ θκ−1η (yt−1)).
Choose some l = t + 1, ..., T and set (x′t, y

′
t) = ... = (x′l−1, y

′
l−1) = (v, v), (x′l, y

′
l) =

... = (x′T , y′T ) = 1
2
(v, v). We have (x′j, y

′
j) ∈ Tj (sj) for any j. Let us show that

y′j ≥ εje for each j = t, ..., T . To this end it is sufficient to check the inequality
v ≥ εte. Indeed, we then have

y′j = v ≥ εte ≥ εje for t ≤ j < l, y′j =
1

2
v ≥ 1

2
εte ≥ θεte ≥ εje for j ≥ l.

To verify that v ≥ εte, we observe v ≥ [κ∧ θη(yt−1)]e, and we consider two cases:
t > 1 and t = 1. In the former case, θη(yt−1) = κη(yt−1)/2K ≤ κ by virtue of
(A), and so v ≥ θη(yt−1)e ≥ θεt−1e ≥ εte. In the latter case, v ≥ [κ ∧ θη(y0)]e =
[κ ∧ θε0]e ≥ ε1 in view of (9). Thus, y′j ≥ εje and hence (x′j, y

′
j) is a selector of

T εj

j (sj) for all j = 1, ..., T . By substituting (x′j, y
′
j) into (11), we get

Et[pt(yt−1 − v) +
1

2
plv +

1

2
pT+1v] ≤ W. (12)

Since |v| ≤ |x̂| η(yt−1)θκ
−1 = (|x̂| /2K) η(yt−1) ≤ η(yt−1)/2, we find yt−1 − v ≥

η(yt−1)e/2, and so yt−1 − v ≥ v. Thus, (12) implies the inequalities Etpjv ≤
2W for j = t, ..., T + 1. But v ≥ κ∧ θη(yt−1)e ≥ κ∧ (θδ) e. Therefore (10) holds.
2

To obtain Theorem 4.1 it suffices to prove the following lemma.
Lemma 4.2. For any t = 0, ..., T and γ > 0, there exists a constant δ0 > 0

and functions δ1 (s1) > 0,...,δt (st) > 0 such that δj is F j-measurable and the
inequalities yj ≥ δje, j = 0, ..., t, hold for every ξ-equilibrium with y0 ≥ γe,
ξ ∈ Ξ(y0).

For t = 0, the above assertion is trivial (put δ0 = γ). If this assertion is
established for t = T , we immediately obtain Theorem 4.1.

Let us prove Lemma 4.2 for some t ∈ {1, ..., T} assuming that it is already

proven for t − 1. We will construct a strictly positive F t-measurable function
δt (st) such that yt ≥ δte for every ξ-equilibrium with y0 ≥ γe, ξ ∈ Ξ(y0).

It is well-known (see, for example, Neveu 1965, Proposition II.4.1) that from
any classH of non-negative measurable functions on a probability space (Ω,F , P ),
it is possible to select a sequence of functions hn with the property

h ≥ inf hn a.s. for every h ∈ H. (13)
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Let us apply this proposition to the space (St,F t, µt) and the class H defined
as follows. Let us write (y0, ζ) ∈ C if ζ is a ξ-equilibrium with the initial stock
y0 ≥ γe and ξ ∈ Ξ(y0). Let h ∈ H if there exists (y0, ζ) ∈ C such that h (st) =
η(yt (st)).

Choose a sequence hn with property (13) and denote by δt an F t-measurable
function for which δt = inf hn (a.s.). Condition (b) is satisfied by virtue of (13).
It remains to prove that condition (a) holds.

Consider elements (yn
0 , ζn) of C corresponding to hn. Here, ζn = {(xn

t , y
n
t , cn

t ,

pn
t , q

n
t )} is a ξ-equilibrium. Define Λn

(
sT+1

)
=

∑T+1
1

∣∣∣pn
j (sj)

∣∣∣ and λn (st) =∫
π(dσ | st)Λn (st, σ), where π(dσ | st) is the conditional distribution of the col-

lection of random parameters σ = (st+1, ..., sT+1) given st (this conditional distri-

bution exists since the spaces St are standard). We have λn (st) =
∑t

1

∣∣∣pn
j (sj)

∣∣∣ +
Et

∑T+1
t+1

∣∣∣pn
j (sj)

∣∣∣, and, by virtue of Lemma 4.1,

sup λn
(
st

)
≤ (T + 1) [W (δ0) + W (δ1) + ... + W (δt−1)] < ∞ a.s.

Therefore the set Γ = {st : sup λn (st) < ∞, inf hn = δt} has measure 1, and it
is sufficient to show that δt > 0 on Γ.

Fix s̄t = (s̄0, ..., s̄t) ∈ Γ. By passing to a subsequence, we may assume without
loss of generality that

sup λn
(
s̄t

)
< ∞, (14)

η
(
yn

t

(
s̄t

))
= hn

(
s̄t

)
→ inf hn

(
s̄t

)
= δt

(
s̄t

)
. (15)

By Fatou’s lemma, (14) implies lim inf Λn (s̄t, σ) < ∞ for π(dσ | s̄t)-almost all
σ = (st+1, ..., sT+1). Consequently, there exist σ̄ = (s̄t+1, ..., s̄T+1) and {nk} such

that the sequence Λnk

(
s̄T+1

)
= Λnk (s̄t, σ̄) is bounded. This means that the sets

of vectors pnk
j (s̄j), j = 1, ..., T + 1, are bounded.

Let x̄tk, ȳtk, c̄tk, p̄tk be the values of the functions xnk
t , ynk

t , cnk
t , pnk

t at the point
s̄t. By (B) and (D),

(x̄tk, ȳtk) ∈ Tt

(
s̄t

)
for t = 1, ..., T, (16)

c̄tk = φt

(
st, p̄tk

)
, x̄tk + c̄tk ≤ ȳt−1,k for t = 1, ..., T + 1. (17)

The sets of vectors x̄tk, ȳtk, and c̄tk (t = 1, ..., T ; k = 1, 2, ...) are bounded by virtue
of (16), (A) and (17). The boundedness of p̄tk was established above. Therefore
for some sequence ki, there exist limits limi→∞ (x̄tki

, ȳtki
, c̄tki

, p̄tki
) = (x̄t, ȳt, c̄t, p̄t)

for t = 1, ..., T . It follows from (16) and (17) that these limits satisfy conditions
(B) and (8). Hence η (ȳt) > 0. But, by virtue of (15), δt (s̄t) = η(ȳt). 2
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