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Abstract 

This note derives the bias of the quantile regression estimator in the presence of classical additive measurement error, 
and show its connection to least squares models. The bias structure suggests that the instrumental variables estimator 
proposed for least squares can be applied to the quantile regression case.

The author would like to express his appreciation to two anonymous referees, Antonio Galvao, Anil Bera, John Conley, Roger Koenker, 
Arthur Lewbel, Steve Portnoy, participants in the seminars at Cass Business School, University of Alicante, University of Illinois at Urbana-
Champaign, 2008 Midwest Econometrics Group Meeting, 15th Panel Data Conference (Bonn), 2009 Far East and South Asia Meeting of the 
Econometric Society, and 2010 Econometric Society World Congress for helpful comments and discussions. All the remaining errors are mine. 
Citation: Gabriel Montes-Rojas, (2011) ''Quantile Regression with Classical Additive Measurement Errors'', Economics Bulletin, Vol. 31 
No. 4 pp. 2863-2868. 
Contact: Gabriel Montes-Rojas - gabriel.montes-rojas.1@city.ac.uk. 
Submitted: May 24, 2011.   Published: October 11, 2011. 

 

     



Economics Bulletin, 2011, Vol. 31 No. 4 pp. 2863-2868

1 Introduction

When the regressors are subject to measurement errors (ME), it is well known that

the slope coefficient of the least squares (LS) regression estimator is inconsistent because

the measurement error induces endogeneity in the model. In the one regressor case (or

the multiple regressor case with uncorrelated regressors), under standard assumptions, the

ordinary LS estimator is biased toward zero, a problem often denoted as attenuation. The

most common remedy to reduce this bias caused by the endogeneity problem is to use

either economic theory or intuition to find additional observable variables that can serve as

instrumental variables (IV). Most of the literature on the estimation of models with ME

is based on LS with IV. See for instance Hsiao and Taylor (1991), Wansbeek and Koning

(1989), Griliches and Hausman (1986) and Wansbeek (2001).

Recently, the topic of ME in variables has also attracted considerable attention in the

quantile regression (QR) literature. Chesher (2001) studies the impact of covariate ME

on quantile functions using small variance approximation, and Schennach (2008) discusses

identification and estimation issues for general quantile functions based on Fourier trans-

forms and previous results for nonlinear models (see Schennach 2004,2008). Wei and Carroll

(2009) proposes a method to correct measurement error induced bias by constructing joint

estimating equations that simultaneously hold for all the quantile levels.

This paper derives the bias in the QR estimator in the presence of a classical additive

ME in covariates using Angrist, Chernozhukov and Fernandez-Val (2006) omitted variables

formula. This representation provides an explicit formulation for the bias in the slope co-

efficients and complements the results in Chesher (2001) and Wei and Carroll (2009). The

QR representation of the ME problem as an omitted variable determines that the corre-

sponding endogeneity bias has a similar structure to that in LS estimation, and therefore it

suggests that LS-based IV strategies in the QR framework as in Chernozhukov and Hansen

(2006,2008) solve the ME problem.

2 Additive measurement error bias in quantile

regression

In this section we show that ME causes endogeneity bias in the QR estimator. Consider
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the following representation of a model with classical additive ME,

yi = x∗′i β + z′iα + ui i = 1, ..., N, (1)

where yi is the response variable, x∗i is a dim(x) = p-vector of the well-measured regressors,

β is a p×1 vector of parameters of interest to be estimated, zi is a dim(z)-vector of covariates

without ME and coefficients α, and ui is the residual. Suppose that we do not observe x∗i ,

but rather xi, which is a noisy measure of x∗i subject to an additive ME εi,

xi = x∗i + εi. (2)

It is assumed that εi is independent and identically distributed (iid). Moreover, εi is

independent of x∗i , zi and ui. Using equation (2) we can express (1) in terms of the observed

y and x as

yi = x′iβ + z′iα + ui − ε′iβ. (3)

It follows that the observed regressor xi in (3) will be correlated with the composite error,

ui − εiβ, inducing endogeneity in the model. This problem is of practical significance since

the resulting bias may be large. The standard result for the LS estimator with ME can be

seen as an omitted variables problem, where −εi is the omitted variable.

In the following paragraphs, we derive the bias in the QR estimator in the presence

of ME using Angrist, Chernozhukov and Fernandez-Val (2006) (denoted ACFV hereafter)

approach. As in LS, ME bias in QR can be derived analytically as an endogeneity bias, and

provides a simpler representation than that in Chesher (2001).

Define v∗ = [x∗′, z′]′, Λε = [ε′, 0′]′, v = [x′, z′]′ = v∗ + Λε and ϕ = [β′, α′]′ (here we omit

the indexes i to simplify the notation). Let ϕ∗ be the probability limit of the LS estimator

without ME (i.e. using the well-measured covariate, x∗), and ϕ◦ be the probability limit of

the LS estimator with ME (i.e. using x). It is well known that ME produce the following

relation between these two estimators,

ϕ◦ = ϕ∗ − (E [(v∗v∗′ + ΛεΛ
′
ε)])
−1
E[Λεε

′β]. (4)

The bias in the variable with measurement error parameter depends on the noise to signal

ratio, thus generating attenuation bias.

Consider now the τth conditional quantile function of the response y,

Qy(τ |v∗) = x∗′β∗(τ) + z′α∗(τ). (5)
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Using equation (2) one can rewrite (5) as

Qy(τ |v∗) = (x− ε)′β∗(τ) + z′α∗(τ) = x′β∗(τ)− ε′β∗(τ) + z′α∗(τ) = Qy(τ |v, ε). (6)

As in the standard LS case with ME, the QR counterpart can be seen as an omitted

variable problem, where −ε is the omitted variable. We derive the approximate bias using

the ACFV omitted variable bias formula. The QR estimator without ME solves

ϕ∗(τ) = argmin
ϕ

E[ρτ (y − v∗′ϕ)], (7)

where ρτ (u) := u(τ − I(u < 0)). However, the QR estimator, as in the LS case, is biased in

the presence of the ME. In this case, in the problem of solving (6) omitting −ε, the standard

QR solves

ϕ◦(τ) = argmin
ϕ

E[ρτ (y − v′ϕ)]. (8)

Here ϕ∗(τ) and ϕ◦(τ) are the parameters that solve the population minimization problem,

defined in an analog way to ACFV paper.

The following Lemma shows that the ME bias in QR can be approximated to an expres-

sion similar to that in OLS.

Lemma 1 Assume that: (i) the conditional density function fy(y|v, ε) exists and is bounded

a.s.; (ii) E[y], E[Qy(τ |v, ε)2], and E‖[v′, ε′]′‖2 are finite; (iii) ϕ∗(τ) and ϕ◦(τ) uniquely solves

equations (7) and (8) respectively; (iv) ε is independent of (x∗, z, u). Then,

ϕ◦(τ) = ϕ∗(τ)− (E [ωτ (v, ε) · (vv′)])−1
E[ωτ (v, ε) · vε′β∗(τ)]. (9)

where ωτ (v, ε) :=
∫ 1

0
fu(τ) (u ·∆τ (v, ε;ϕ

◦(τ))|v, ε) du/2 is a weighting function, and ∆τ (v, ε;ϕ
◦(τ)) =

v′ · (ϕ◦(τ)− ϕ∗(τ))′ + ε′β◦(τ) is the QR specification error.

Proof. The proof follows ACFV results for partial QR and omitted variables bias (p.545–

548). Since the conditional quantile function is linear, Qy(τ |v, ε) = v′ϕ∗(τ)− ε′β∗(τ), where

ϕ∗(τ) is defined as in (7). Then, the conditional QR model in equation (5) can be seen

as one with [v′, ε′]′ as covariates. Moreover, the conditional QR with measurement error

Qy(τ |v) = vϕ◦(τ), obtaining the coefficient ϕ◦(τ) from equation (8), can be seen as a model

with omitted variable ε.
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Recall that ωτ (v, ε) :=
∫ 1

0
fu(τ) (u ·∆τ (v, ε;ϕ

◦(τ))|v, ε) du/2 where fu(τ)(.|.) is the condi-

tional density function of u(τ) := y − Qy(τ |v, ε), and ∆τ (v, ε;ϕ) := v′ϕ − Qy(τ |v, ε) is the

bias in the estimated quantile function for a given ϕ. Then,

∆τ (v, ε;ϕ
◦(τ)) = v∗′ · (ϕ◦(τ)− ϕ∗(τ)) + ε′β◦(τ).

Under the stated assumptions, by Theorem 2 in ACFV, ϕ◦(τ) uniquely solves the equation

ϕ◦(τ) := argminϕE[ωτ (v, ε)∆
2
τ (v, ε;ϕ)].

Solving for ϕ◦(τ) we have

ϕ◦(τ) = ϕ∗(τ)− (E [ωτ (v, ε) · (vv′)])−1
E[ωτ (v, ε) · vε′β∗(τ)].

Note that the weighting function ω(.) depends on both v and ε and it is a distinctinve

feature of QR when compared with LS case. However, it can be shown that the leading term

in the QR bias has the same form as that in LS. In order to show this, assume that fy(y|v, ε)
has a first derivative in y that is bounded in absolute value by f̄ ′(v, ε) and consider a Taylor

expansion of the weights as in ACFV, p.546,

ωτ (v, ε) = 1/2 · fy(Qτ (y|v, ε)|v, ε) + ς(v, ε),

where

|ς(v, ε)| ≤ 1/4 · |∆τ (v, ε;ϕ
◦(τ))| · f̄ ′(v, ε).

Note that by independence of y and ε, fy(Qτ (y|v, ε)|v, ε) = fy(Qτ (y|v∗)|v∗) (with first

derivative bounded by f̄ ′(v∗)). Then, when either ∆τ (v, ε;ϕ
◦(τ)) or f̄ ′(v∗) is small,

ωτ (v, ε) ≈ 1/2 · fy(Qτ (y|v∗)|v∗).

Then, the ACFV weighted LS approximation to QR implies that

ϕ◦(τ) ≈ ϕ∗(τ)− (E [fy(Qτ (y|v∗)|v∗) (v∗v∗′ + ΛεΛ
′
ε)])
−1
E[fy(Qτ (y|v∗)|v∗)Λεε

′β∗(τ)]. (10)

It is important to note that a key factor in the coefficient bias approximation given by

(10) is the conditional density function fy(.|v∗). As in the LS case, the bias in the variable

with measurement error parameter in the QR framework depends on the noise to signal

ratio, thus generating attenuation bias (compare with equation (4)). However, in the QR

case, this bias is weighted by the conditional density function fy(.|v∗).
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3 Conclusions

This paper frames measurement error problems in quantile regression models. The results

in this paper show that measurement error problems is a subset of endogeneity bias, which

in turn can be solved using instrumental variables techniques.
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