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Abstract

This paper identifies a class of symmetric coordination games in which the presence of
envious people helps players to coordinate on a particular strict Nash equilibrium. In these
games, the selected equilibrium is always risk−dominant. We also find that envious
preferences are evolutionary stable when they lead to Pareto−efficiency.
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1 Introduction

Coordination games are representative of many interesting economic situations,
including for instance macroeconomic coordination failure, cooperation in teams and
arms races.1 However, due to the presence of strategic uncertainty, these games
exhibit multiple (strict) Nash equilibria which leaves economic analysis without sharp
predictions.

This equilibrium selection problem has been addressed in several and various
ways, using therisk-dominancecriterion (Harsanyi and Selten (1988)),global games
(Carlsson and van Damme (1993)) andevolutionary processes.2 Nevertheless,
game theorists have still not reached a consensus regarding the predicted issue. In
particular, in coordination games with Pareto-ranked Nash equilibria Harsanyi and
Selten consider risk-dominance to be irrelevant to equilibrium selection, partly because
Pareto-optimality and risk dominance may diverge and partly because the authors
argue that payoff dominance is a crucial aspect of their intuition. On the other hand,
stochastic evolutionary models favor either risk or Pareto dominance depending on the
adaptive rule (imitation or best-reply) as well as the number of rounds of matching per
period.3

The present paper considers another approach to investigating equilibrium selec-
tion problem in symmetric coordination games with Pareto-ranked Nash equilibria. In
a common knowledge framework, it is assumed that players may experienceenvy. This
negative emotion is incorporated into the framework by constructing apsychological
gamein the sense of Geanakoplos et al. (1989). In such a game utility is a function of a
player’s own payoff and his relative payoff. An envious player suffers if his opponent
earns a higher payoff and has some pleasure in the opposite situation. Thus, players
care about their relative position in a given outcome. Motivations for studying envy
in coordination games rely on several empirical and theoretical studies which have
emphasized the importance of envy and spitefulness as a motive for Pareto-efficiency
rejection.4

We identify a class of symmetriccoordinationgames for which the presence of
enviouspeople generates coordination on a particular strict Nash equilibrium. This
happens when the magnitude of asymmetry in payoff inout-of-coordinationoutcomes
is sufficiently large. We also establish a link with risk dominance, showing that the
equilibrium selected by envious players is alwaysrisk-dominant, but may be either
Pareto-efficient or not.

The model predicts Pareto-gains rejection in some classes of symmetric coordi-
nation games. In these games, the psychological gain of deviation from the Pareto-
inferior equilibrium overcomes its cost. This is because the deviating player obtains a
higher status (relative to his opponent) in the out-of-coordination outcome than in the
Pareto-inferior equilibrium. Moreover, and perhaps surprisingly, the reverse also holds
in some other classes of coordination games, meaning that Pareto-optimality may be

1For more details see Milgrom and Roberts (1990) as well as Cooper and John (1988).
2See Kim (1996) for a survey.
3Wei-Torng (2002) provides an interesting comparison of the Kandoriet al. (1993) and Robson and

Vega-Redondo (1996) models.
4see Beckmanet al. (2002), Cason and Muy (2002) and Mui (1995).
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sustained by envious players. We then investigate theevolutionarystability of envi-
ous preferences in coordination games, and find that they are evolutionary stable when
they favor Pareto-efficiency.

The next section provides the general analysis. Evolutionary stability of envious
preferences is examined in Section 3, and Section 4 concludes the paper.

2 Symmetric coordination games with envious agents

Consider two players,i = 1,2, who interact in the2×2 symmetric gameG described
in the table below. Letsi ∈ {A,B}, πi andui respectively denote playeri’s strategy,
materialpayoff and utility.

A B
A a,a b,c
B c,b d,d

Assuming thata > c and d > b, G represents a coordination game with two strict
Nash equilibria(A,A) and(B,B). In strict Nash equilibria, players have no alternative
best reply so that they are particularly robust (for instance, they are subgame-perfect).
Coordination games describe perfectly contexts in which game theory is confronted
with an equilibrium selection problem.5 For our purpose, we consider situations in
which Nash-equilibria are Pareto-ranked. This is obtained by lettinga > d, so that
(A,A) Pareto dominates(B,B).

Beside Pareto-dominance,risk-dominanceis another solution concept proposed to
resolve the multiplicity problem of Nash equilibria.6 Equilibrium (A,A) is saidrisk
dominantif (a−c)2 > (d−b)2. Similarly, (B,B) risk dominates(A,A) if the reverse
inequality holds.

Incorporatingenvyinto the analysis amounts to constructing apsychological game
as defined in Geanakoplos et al. (1989). In this game,ui is not only governed by
material payoffπi but also integrates opponent’s payoffπ j . Concerning envy, such
subjectivepreferences may be simply defined as follows.7

ui = πi +αi(πi−π j). (1)

It is assumed that0≤ αi < 1 meaning that players are not too envious, in particular
none has a higher regard for his opponents than for himself. Forαi = 0, players have
selfish preferences and only maximize their material payoffs. The (psychological)
Nash equilibrium ofG, denoted by(s∗1,s

∗
2), is solution of the pair of programs

s∗1 ∈ argmax
s1

u1(s1,s
∗
2), s∗2 ∈ argmax

s2
u2(s2,s

∗
1),

in which each player seeks to maximize his subjective preferences, taking the strategy
of the other as given.

5See Section 1.
6See Harsanyi and Selten (1988).
7See Bolle (2000), or Kirchsteiger (1994) or Bethwaite and Tompkinson (1996).
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The main objective here is to show that, in presence of envy, i.e., for0 < αi < 1,
one may restrict the set of Nash equilibria in some classes of coordination games. This
is stated in the following theorem.

Theorem 1 Consider any symmetric2× 2 coordination games with Pareto-ranked
Nash equilibria. If there is someb > c so that(d− b)/(b− c) < αi , then(A,A) is
the unique (psychological) Nash equilibrium of the game. On the other hand,(B,B)
constitutes the unique Nash outcome if there is someb< c so that(a−c)/(c−b) < αi .

Proof. Let b > c and considerui(A,B) > ui(B,B). This inequality holds for
b+αi(b−c) > d, that is when

0 <
d−b
b−c

< αi .

In that case, playeri choosesA when playerj ’s strategy isB, for all i 6= j. On the other
hand,b> c does not prevent playeri from playing strategyA when his opponent plays
A (asui(B,A) < ui(A,A)). Thus,∀α j and j 6= i, player j ’s best reply isA. As a result,
(A,A) is the only Nash equilibrium of the game.

Consider nowb< c. In that case, playeri = 1,2 has no (psychological) incentive to
playA againstB, but may experience sufficient envy to playB againstA. This happens
whenui(B,A) > ui(A,A), that is when

0 <
a−c
c−b

< αi .

At the same time,b< c does not involveui(A,B) > ui(B,B) and thus(B,B) is here the
only Nash equilibrium of the game.

Finally, in games withb = c, envious preferences are equivalent to selfish ones (as
payoffs of both players are equal in all possible outcomes), so that coordination games
remain with two strict Nash equilibria. ¤

Theorem 1 identifies a class of coordination games in which the presence of
envious agents generates coordination.8 This depends on payoffs players can earn
in out-of-coordination outcomes. In particular, these outcomes have to present some
sufficientasymmetriesin payoffs (b < c or b > c) to generate coordination. Notice
that this process does not necessary induce efficiency, as envy may lead to the Pareto-
dominated Nash equilibrium.

Conditions in Theorem 1 inform us that coordination happens when the psycho-
logical gain of deviation, from a particular Nash equilibrium, overcomes thecostof
this deviation. This does not mean that thematerial gain from deviation has to be
higher and, in fact, it turns out to be lower in coordination games (by assumption).
Thus, an envious player is willing to incur a cost provided that his strategy sufficiently
degrades the payoff of his opponent. For instance, coordination on Pareto-efficiency
requires that the gain of deviation from(B,B), αi(b− c) > 0, is higher than its cost
d−b. The psychological gain comes from the fact that the player who deviates may

8Notice that it is sufficient thatone player fulfills conditions in Theorem 1 to ensure this result,
meaning that only oneenviousplayer is sufficient.
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reach a higher status, relative to his opponent in outcome(A,B), even if he incurs a cost
in term of material payoff. In that caseA becomes adominantstrategy (under envious
preferences), and thus(A,A) constitutes the only issue of the game. This mechanism
is also at work when(B,B) represents the unique issue of the coordination game.

Notice that coordination through envy favors outcomesequalizingpayoffs, which
in some cases may reveal to befairer9 than coordination failures(A,B) or (B,A)
(whose occurrence has a positive probability under selfish preferences). This is clearly
true for(A,A) but may also hold when envy selects the Pareto-dominated equilibrium
(B,B). This happens whenc< d since here both players earn a higher payoff in(B,B)
than in(A,B) or (B,A).

Finally one can establish a connexion between theorem 1 and the risk-dominance
criterion. This is stated in the following corollary.

Corollary 1 In symmetric 2× 2 coordination games with Pareto-ranked Nash
equilibria, if a (psychological) Nash equilibrium constitutes the unique outcome of
the game, then it is also risk-dominant.

Proof. Assume that(A,A) is the unique psychological Nash equilibrium and(B,B)
risk-dominates(A,A). From theorem 1, we know thatb > c so that(d−b)/(b−c) <

αi . By definition of risk-dominance, we also havea− c < d− b which contradicts
(d−b) < αi(b−c) asa > b (recall thata > d butd > b). The same reasoning applies
when(B,B) is the unique psychological Nash equilibrium and(A,A) risk-dominates
(B,B), which completes the proof. ¤

The intuition behind Corollary 1 is as follows. The occurrence of an unique
equilibrium requires (as a necessary condition) some asymmetries in payoffs,b < c
or b > c (Theorem 1). These asymmetries have to be sufficiently high to reduce the
cost of deviation from thediscardedNash equilibrium, which amounts to say that it is
less risky to deviate from this equilibrium. As a result, theselectedNash equilibrium
has to be risk-dominant (under restrictions defined in Theorem 1).

3 The evolution of envious preferences

In the previous section, we have investigated when envious preferences could favor
coordination assuming envy as given. To complete the analysis, one may ask what
sustains the presence of such preferences in coordination games. In particular, the
question is whether envy can prevail and dominate in a (polymorphic) population
composed of both selfish and envious preferences.

One way for analyzing the latter question is to resort to theindirect evolutionary
approach.10 Here, selfish and envious preferences compete and evolve through an
evolutionary process selecting in the long-run preferences giving higher expected
success. In this framework, the common knowledge assumption is maintained
and evolutionary stability applies to preferences not to strategies, as defined in the
traditional evolutionary game theory.

9In the egalitarian sense.
10See for instance Bester and Güth (1998).
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Let R(α,β) represent a player’s success when he has the envious parameterα and
his opponent has the parameterβ. A preference parameterα∗ ∈ [0,1] is said to be
evolutionary stableif it satisfies
(1) R(α∗,α∗)≥ R(α,α∗) ∀α,
(2) if R(α∗,α∗) = R(α,α∗) for α 6= α∗, thenR(α∗,α) > R(α,α).
Letk= (d−b)/(b−c) and consider two types of preferences,0≤α < k andk< α < 1.
Call these types respectively the non-envious and the envious types. We can then state
the following result.

Theorem 2 In coordination games where(A,A) is the unique psychological Nash
equilibrium,α is the unique evolutionary stable type of preferences.

Proof. Let (A,A) be the unique psychological Nash equilibrium. By Theorem 1,b > c
so that(d−b)/(b− c) < 1 which implies thatR(α,α) = a. However, we also have
R(α,α) = a since common knowledge ensures that a non-envious player (α) perfectly
knows that his opponent (who is of the envious-typeα) always playA.

It remains to show thatR(α,α) > R(α,α). Due to uncertainty concerning the oppo-
nent’s strategy when both players are of typeα, coordination failure occurs with a non
negative probability. Then,R(α,α) has to be lower thanR(α,α), that isR(α,α) < a,
because
(1) a > b,c,d and,
(2) R(α,α) represents the expected payoff of aα-type when confronted to a large pop-
ulation ofα-players, and then coordination failure will occur with a non-zero proba-
bility. ¤

This result indicates that the envious-type may prevail in the long-run in a
population playing a coordination game in which Pareto-efficiency is the unique
psychological Nash equilibrium. The reason why is the uncertainty non-envious types
generate on coordination which, in turn, gives a positive probability to the occurrence
of coordination failure and then limit success of these preferences. A similar result
cannot be establish in coordination games where(B,B) is the unique psychological
Nash equilibrium. To see why, observe that althoughR(α,α) = R(α,α) = d, one
may haveR(α,α) ≥ d asa > d. As a result, a population of envious-players may be
invaded by non-envious agents. Obviously, one could find a subclass of coordination
games selecting(B,B) in which envy can survive. However, this would correspond to
a very restricted subclass of games.

4 Conclusion

This paper has shown that incorporating envy into the analysis allows to solve the
problem of multiple Nash equilibria in some classes of coordination games. This
happens in games where the magnitude of asymmetry in payoff inout-of-coordination
outcomes is sufficiently important to ensure that psychological gains from deviation
overcomes its cost. One interesting result here is that the selected Nash equilibria is
also risk-dominant.
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For convenience we have restricted our attention to2×2 symmetric coordination
games. It would be interesting to extend the analysis ton-person generalized
coordination games. One of the main difficulties in carrying such an extension resides
in the choice of the reference payoff to be used in the formalization of envious
preferences: do agents compare themselves with all others or only with the average
payoff of the group? One way to solve this selection problem would be to use the
indirect evolutionary approach to evaluate the survival of envious preferences when
both types of reference payoff are present in the population.
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