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Abstract

Generalized linear models (GLMs) are generalizations of linear regression models, which
allow fitting regression models to response data that follow a general exponential family.
GLMs are used widely in social sciences for fitting regression models to count data,
qualitative response data and duration data. While a variety of specification tests have been
developed for the linear regression model and are routinely applied for testing for
misspecification of functional form, omitted variables, and the normality assumption, such
tests and their applications to GLMs are uncommon. This paper develops a regression error
specification test (RESET) for GLMs as an extension of the popular RESET for the linear
regression model (Ramsey (1969)). Applications of the RESET to three economic data sets
are presented and the finite sample power properties are studied via a Monte Carlo
experiment.
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I. Introduction

Inference procedures for regression models assume that the response variable y follows the
normal distribution. There are, however, many situations in social sciences where this
assumption fails to hold. Common examples are count data models, qualitative response
models, and duration data models. The data may involve such variables as the number of
trips to a doctor’s office during a year, choice of a mode of transportation, decision to
purchase an item at a given time, or the duration of unemployment or a strike. The
generalized linear models (GLMs) deal with such situations involving non-normal data.

Several specification tests have been developed for testing various types of
misspecification in linear and nonlinear regression models including tests for normality of the
error distribution, omitted variables, and misspecification of the functional form. Use of such
tests for GLMs, however, is not too common with few exceptions such as a test for
overdispersion in count data models and specification tests for qualitative response models
developed by Davidson and MacKinnon (1984). This paper extends the popular regression
specification error test (RESET) (Ramsey (1969)) to GLMs. The RESET test was developed
to detect omitted variables and incorrect functional form in the linear regression model. The
paper applies the RESET test to three different economic data sets and studies the power
properties of the test via a Monte Carlo experiment.

This paper is organized as follows. Section II presents the GLM and develops two
versions of the RESET test for GLMs. Section III presents three applications of the test to
count and qualitative response data. Section IV presents the results of a Monte Carlo
experiment on the power properties of the test. Section V provides some concluding remarks.

II. The GLM and the RESET test for the GLM

      The GLM is a generalization of linear regression model to fit data in situations where the
response variable follows a distribution, which is a member of the linear exponential family.

The probability density function for the GLM is
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RESET Tests for GLMs

Our proposed RESET tests compare a GLM with no higher order terms with a GLM with
higher order terms.  Specifically, RESET1 compares a GLM with no higher order terms with
a GLM with the second power of the predicted link function and RESET2 compares the
former with a GLM with the third power of the predicted link function. Consider the
following three GLMs with the same stochastic component but different systematic
components.
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III. Empirical Examples

In this section, we present three empirical applications of  RESET1 and RESET2 tests.

III a. Application to Capital Punishment Data

The data on capital punishment in 17 states in the US are from Gill (2001). The outcome
variable is the number of times capital punishment is implemented in on a state level in the
United States for the year 1997. The explanatory variables are median per capita income in
dollars, the percent of the population classified as living in poverty, the percent of Black
citizens in the population, the rate of violent crimes per 100,000 residents for the year before
(1996), a dummy variable to indicate whether the state is in the South, and the proportion of
the population with a college degree of some kind. The Poisson regression model with the
log link was fitted to the data. The results are summarized in Table 1.
Table 1. Capital Punishment in the United States
Variables                              Coefficient            Standard Error
Intercept                             -6.8014798             4.1468731
Median Income                   .0002611                 .000519
Percent Poverty                   .077818                  .0794026
Percent Black                     -.0949311                .0229193
Log(Violent Crime)            .2969349                .43751757
South                                   2.3011833              .4283838
Degree Proportion             -18.722068             4.2839793
RESET1: λ1 = 4.62914, RESET2: λ2 = 7.36024
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The values of chi-squared statistics for both RESET1 and RESET2 indicate that the squares
and cubes of the predicted values of the link function are significant at 5% and 10%
significance levels. The null hypothesis is rejected under both tests indicating that the
Poisson model with log link is inadequate.  

III b. Application to Transportation Data

The data on automobile and public transportation travel times and the alternative chosen for
21 individuals are from Ben-Akiva and Lerman (1985). The dependent variable y = 1 if
automobile transportation is chosen and 0 if public transportation is chosen. The explanatory
variable is x = bus time - auto time. A logistic regression model was fitted to the data. The
results are presented in Table 2.
Table 2. Transportation Data
Variables                              Coefficient            Standard Error
Intercept                             -.23757544             .75047663
X                                        .055310983            .020642279
RESET1: λ1 = 1.020384, RESET2: λ2 = 12.183274_________

The value of chi-squared statistics for RESET1 is too small and the predicted value of the link
function is insignificant at 5% and 10% significance levels indicating that the logit model is
adequate. However, RESET2 indicates that the squares and cubes of the predicted values of
the link function are significant at 5% and 10% significance levels suggesting that the logit
model is inadequate.

III c. Application to Multiple Bids Data

The data on multiple bids are from Jaggia and Thosar (1993) and are also analyzed in
Cameron and Trivedi (1998). The data consist of 126 observations on U.S. firms that were
targets of tender offers during the period from 1978 through 1985 and were taken over within
52 weeks of the initial offer. As in these studies, the dependent variable is the number of bids
after the initial bid (NUMBIDS) received by the target firm and the explanatory variables are
LEGLREST, REALREST, FINREST, WHITEKNT, BIDPREM, INSTHOLD, SIZE,
SIZESQ, and REGULATN. A Poisson regression model with logarithmic link was fitted to
the data. The results of Poisson MLE are presented in Table 3.
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Table 3. Multiple Bids Data*
Variables                              Coefficient            Standard Error
Intercept                               .9860599              .53392014
LEGLREST                        -.6776959              .37673724
REALREST                       -.36199125             .42432924
FINREST                            .17850260             .060022105
WHITEKNT                       .26014637             .15095939
BIDPREM                         -.19565974             .19263088
INSTHOLD                       .074030059            .21652194
SIZE                                  -.029439199           .16056816
SIZESQ                             .4813821684          .15886982
REGULATN                     -.00756935             .00312170
RESET 1: λ1 = 1.1154, RESET 2: λ2 = 1.191_____________

* The coefficient estimates and standard errors reported are based on Poisson MLE, while those reported in Cameron and Trivedi (1998) (p.
148) are based on Poisson pseudo MLE.

The values of the chi-squared statistics are too small under both RESET1 and RESET2 and
the predicted values of the link function are insignificant at 5% and 10% significance levels.
The null hypothesis is not rejected under either test indicating that the Poisson model with
log link is adequate.  

IV. Monte Carlo Experiment

100 samples of sizes 50, 100 and 200 on the variable y were generated according to the
Poisson law with log link based on the mean functions
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The sample on the right-hand side variable x was generated according to the uniform law

U(0,2) and held fixed once it was generated. The model under the null hypothesis was the
incorrect Poisson model with the link function
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      The results on the power properties are presented in table 4.
Table 4. Power properties of RESET1 and RESET2 Tests for α =.05
Sample size (n)            Estimated power of  RESET1    Estimated Power of RESET 2
       50                                    .76                                                    .61
      100                                   .97                                                    .86
       200                                  .99                                                    .99
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Table 5. Power properties of RESET1 and RESET2 Tests for α =.01
Sample size (n)            Estimated power of  RESET1    Estimated Power of  RESET 2
       50                                    .53                                                    .44
      100                                   .84                                                    .78
       200                                  .97                                                    .97

Table 6. Power properties of RESET1 and RESET2 Tests for α =.10
Sample size (n)            Estimated power of  RESET1    Estimated Power of  RESET2
       50                                    .88                                                  .69
      100                                   .99                                                  .95
       200                                  .99                                                  .99

At all of the significance levels in the tables above, the powers of both RESET1 and RESET2
tests tend to increase as the sample size increases from 50 to 200. Furthermore, the power of
each test increases as the significance level increases. It is also clear that for each
significance level and sample size, RESET1 has higher power than RESET2. This finding
simply reflects the well-known result that the power of a chi-squared test at any given
significance level is a strictly decreasing function of degrees of freedom (Das Gupta and
Perlman (1974)). Finally, the power of RESET2 approaches that of  RESET1 as the sample
size increases.

V. CONCLUSION

Motivated by specification tests for testing for functional form and omitted variables in linear
regression model, this paper has developed two versions of the regression error specification
tests (RESET) for GLMs. The tests were applied to some data sets from economics and other
social sciences. Our limited simulation results suggest that the RESET tests for GLMs have
reasonable power properties in medium to large samples. These tests are computationally
convenient and require only the predicted value of the link function and maximum values of
the log-likelihood functions under the null and alternative hypotheses, which can be easily
computed using common econometric and statistical software packages. Applications of such
tests to count, qualitative response and duration data models in the GLM family should
become routine given their computational convenience and good power properties.
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