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Abstract

In this note, I show that the ordered and sequential probit models are special cases of the
multinomial probit model where the disturbance terms in the latent variables degenerate or
those variances converge to zero at a certain rate.
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1. Introduction 
The ordered, sequential, and multinomial probit models are widely used in analyzing discrete 
choice problems (See Davidson and MacKinnon, 2004, and Amemiya, 1985, for details of 
these models). These three models have been considered as different types of models, i.e., it 
is not believed that one of them nests other two as special cases. In this note, I show that the 
ordered and sequential probit models are obtained as special cases of the multinomial probit 
model where the disturbance terms in the latent variables are degenerated or those variances 
converge to zero at a certain rate.  
 

2. Definitions of the three models 
First, let us state the definitions of these three models. Let the number of alternatives be J. 
Define the unobserved latent variable as * γt ty ′= x + tη , ~ (0, )t NID ηη σ , where xt is a k × 1 
observable explanatory vector without a constant term, and γ  is a k × 1 coefficient vector. 
Let yt be a discrete random variable whose value ranges from 1 to J. Then, the ordered probit 
model with J alternatives is defined as follows: 
 

Definition 1 (ordered probit model) 
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where 1 2 1Jd d d −< < < . 
 
The parameter dk is called “threshold parameter”. It is customary to set ησ =1 for 
identification of parameters. The estimation can be easily done by the maximum likelihood 
estimation. 

Second, I shall define the sequential probit model. The J−1 latent variables for the model 
are given by δj t j tjtjy φ ζ+ ′= + +x , tjζ ~NID(0,1) for j =1,…, J−1, where jφ  is a scalar 
constant term, and δ j  is a k × 1 coefficient vector. Then, the sequential probit model is 
defined as follows: 
 

Definition 2 (sequential probit model) 
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In the sequential probit model, each decision is made sequentially according to a binary 
probit model. Whether or not an alternative j is selected is determined before an alternative k 
( >j ) is considered. See Amemiya (1985, p310) for details of this model. 

Third, I shall give the definition of the multinomial probit model. The J latent variables for 
the model is defined as tjy = jα + βt j′x + tjε , εt ~N(0,Ω ) for j =1,…, J , where jα  is a 
scalar constant term, β j  is a k × 1 coefficient vector, and εt  is a J × 1 normal random 
vector with typical element tjε  and the covariance matrix  
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where jσ  is the standard deviation of jε  and kjρ  ( jkρ= ) is the correlation coefficient 
between jε  and kε . The definition of the multinomial probit model is given as follows: 
 

Definition 3 (multinomial probit model) 

ty j=  when tj tiy y>  i∀ ,  i≠ j . 
 
We usually set 0rα = , βr = 0 , 0rσ = , 1sσ =  for some r and s, for parameter 
identification (Note that εt  becomes J 1−  × 1 normal random vector by this normalization).  
 

2. Main results 
Hereafter, the subscript t is suppressed for the sake of notational simplicity.  
 

Proposition 1: The multinomial probit model reduces to the ordered probit mode with 
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satisfied for some k: 
(A) kjρ = 1 or −1 j∀ 1,  (B) 1 γ = βkj j jkρ σ σ−  j∀ ,  
(C) 1 1 2 2k k k kJ Jρ σ ρ σ σ ρ σ< < < < < , 
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Proof. It can be easily shown that the conditional distribution of jε  conditioned on kε  is 

1 2 2( , (1 ))kj j k jk kjN ρ σ σ ε σ ρ− − . Under the condition (A), the conditional variance becomes 
zero and jε  is perfectly correlated with kε , i.e., 

                                                 
1 When this is the case, other correlation coefficients also become positive or negative one. 
2 It can be shown that this condition is equivalent to r j s j
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1
j kj j kkε ρ σ σ ε−=                                                   (1) 

Additionally, if the condition (B) is satisfied, the condition for y = j in the multinomial probit 
model becomes as follows: 

j iy y>  i∀ , i j≠  β βj j j i i iα ε α ε′ ′⇔ + + > + +x x  i∀ , i j≠  
⇔  ( )β βj i j i i jε ε α α′ − + − > −x  i∀ , i j≠  
⇔  

1( )( )γkj j ki i k i jkσ ρ σ ρ σ ε α α− ′− + > −x  i∀ , i j≠  (From (1) and (B)), 

where the notation ⇔  means that the conditions on the both sides are equivalent.  
Furthermore, from the condition (C), the above is equivalent to 

( )γ + k
k jicε′ >x

 
for i < j  and  ( )γ k

k jicε′ + <x  for i > j,                (2) 
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1
k
j jc + . Thus, (2) is rewritten as3:  

( ) ( ) ( )
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Note that the inequalities in (3) reduce to only one side for j =1 and J. 
Setting kε η= , it have been shown that when the conditions (A)~(D) are satisfied, the 

 
multinomial probit model reduces to the ordered probit model with 1
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for j =1,…, J 1− .4       □ 
 

The conditions for j =1, 2, and 3 are illustrated in figure 1 (a), (b), and (c), respectively. 
The shaded area is the area which satisfies the all required conditions, i.e., y = j when 
γ η′ +x  falls into this area. Note that kjρ  can be negative one for j < k, but it must be 

positive one for k < j. For example if we set k =1, 1 1jρ =  for all j. 
 
Example: Set 4J = , 2 1jρ =  for all j, 1 0σ =  2 1σ = , 3 2σ = , 4 3σ = , 1 0α = , 

2 2α = , 3 2.6α = , 4 3α = , 1 0β = , 2 1β = , 3 2β = , and 4 3β =  in the multinomial 
probit model5. Notice that the conditions (A), (C) and (D) in Proposition 1 are satisfied. Then 
this reduces to the ordered probit model with 1γ = , 1ησ = , 1 2d = − , 2 0.6d = − , and 

3 0.4d = − .  

                                                 
3 ( ) ( )

1 1
k k
j j j jc c− +<  is obvious from the condition (D). 

4 The equality in the definition 1 (and 2) is not essentially important because the latent variable is a continuous 
random variable, hence the equality holds with probability zero. 
5 This multinomial probit model is a normalized one by the previously mentioned way. 
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The next proposition states the relationship between the sequential and the multinomial 
probit models. 
 
Proposition 2: The sequential probit model can be obtained as a limiting case of the 
multinomial probit model if the following conditions are satisfied: 

(E) 1 1σ = , 1 1α φ= , 1 1δ β= , 0kα → , 0βk → , 0kσ →  so that  
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and  (F) 0ijρ =  , ,i j i j∀ ≠ . 

Proof. Multiplying the both sides by jσ  or iσ , the condition for y = j in the multinomial 
probit model can be rewritten as 

j iy y>  ,i∀  i j≠  
⇔  1 1 1 1 1 1β βi j i j i j i i i i i iσ α σ σ ε σ α σ σ ε− − − − − −+ + > + +x x , for i < j and 

    1 1 1 1 1 1β βj j j i i ij j j j j jσ α σ σ ε σ α σ σ ε− − − − − −′+ + > + +x x  for i > j. 

Under the condition (E), the above reduces to 

10 δi i iiφ σ ε−′> + +x  for i < j,  and 1 0δj j jjφ σ ε−′+ + >x  for i > j 

because 1
lkσ α− , 1

lkσ
− β , and the variance of 1

lkσ ε−  (l > k) converge to zero. Set 
1

k kkζ σ ε−= , then the condition (F) ensures that ~ (0,1)k NIDζ . This completes the proof. 
□ 
 
Intuitively, this is because the terms which converge to zero can be neglected compared with 
other terms which also converge to zero but at less rapid rate so that the condition (E) holds. 
To confirm the analytical proof of Proposition 2, I conduct a small Monte Carlo experiment. 
The number of choices is set at three. Samples for a multinomial probit model, ( )m

ty t 
=1,…,30, are generated following the definition 3 with 1ty = 1tε , 2ty = 0.5 / s + 2 /t sε , 
and 3ty =1/ s + 3 /t sε , where tjε  j =1,2,3 are random draws from NID(0,1) and s is some 
constant. Samples for a sequential probit model, ( )s

ty t =1,…,30, are generated following the 
definition 2 with 1 1t ty y+ = , and 2 2t ty s y+ = . According to Proposition 2, ( )m

ty  should 
converge to ( )s

ty as s becomes large. Figure 2 (a), (b), (c) shows the actual values of ( )m
ty  

for s =1, 10, and 1000, respectively, and those of ( )s
ty are shown in Figure 2(d). The same 

tjε  for t =1,…,30, j =1,2,3 are used for each value of s to make the result clearer. Observe 
that ( )m

ty  actually converges to ( )s
ty  as s becomes large, as insisted in Proposition 2. 
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3. Conclusion 

I have shown that the ordered and sequential probit models are special cases of the 
multinomial probit model where the disturbance terms in the latent variables degenerate or 
those variances converge to zero at a certain rate. Which probit model should be used is an 
important problem in an empirical analysis. The results obtained in this note are useful for 
comparing these three models; specification tests for these models will be developed based 
on the results. For example, Kobayashi (2001) have proposed a test for ordered probit models 
against multinomial probit models in the case of three alternatives. The results of this note 
can be used for extending the test to the case of more than three alternatives. Also, a test for 
sequential probit models in this context has not been proposed as far as I know. These are the 
subjects of further research. Finally, I note that the conditions I have shown in this note are 
sufficient conditions, so the same results may be obtained under weaker conditions. 
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Figure 1. Conditions of the degenerated multinomial probit model 
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Figure 2. Actual values of the samples from the multinomial and 
sequential probit models 

 
 
 
 
 
 
 

                (a) samples from the multinomial probit model when s =1. 
 
    
 
 
 
 
 

                (b) samples from the multinomial probit model when s =10. 
 
 
 
 
 
 
 

                (c) samples from the multinomial probit model when s =1000. 
 
 
 
 
 
 
 

               (d) samples from the sequential probit model when s =1, 10 ,1000 

 

Note: x axis indicates the no. of a sample, and y axis is for an actual value of a 

sample. 
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