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1 Introduction

Black (1948) has argued that, in practice, there are many social choice prob-
lems in which the set of alternatives A is one-dimensional (and so can be
thought of as being a subset of the real line R) and individual preferences
are single-peaked. For example, this is the case when the alternatives are ei-
ther quantities of a divisible public good or a finite set of political candidates
arrayed on a left-right ideological spectrum. Black was interested in the prop-
erties of pairwise majority rule when preferences are single-peaked. For an
odd number of individuals, Black demonstrated that pairwise majority rule
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selects the alternative that is the median of the individual preference peaks
and, furthermore, that this rule is strategy-proof.1

There is now a substantial literature dealing with strategy-proof social
choice with single-peaked preferences and multidimensional generalizations of
single-peakedness. For introductions to this literature, see Sprumont (1995)
and Barberà (2011).

A social choice function that only depends on each individual’s most-
preferred alternative is said to satisfy the tops-only property. Black’s median-
voter rule has this property. Moulin (1980) has characterized the set of all
strategy-proof social choice functions that satisfy the tops-only property when
the domain consists of all profiles of single-peaked preferences on the set of
alternatives A. When there are n individuals, each of these functions is char-
acterized by 2n parameters each of which is either one of the alternatives in A
or the infinim or supremum of this set, with one parameter assigned to each
subset of the set of individuals.2 For each profile of preferences, the chosen al-
ternative is determined by (i) first identifying for each subset S of individuals,
the maximum of the parameter value assigned to S and the largest preference
peak of the individuals in S and (ii) then choosing the smallest of these val-
ues over all subsets of individuals. Sprumont (1995) calls such a social choice
function a min-max rule. Alternative, but equivalent, ways of specifying this
class of social choice functions have been developed by Barberà, Gul, and
Stacchetti (1993) and Ching (1997).

Moulin (1980) has also characterized the strategy-proof social choice func-
tions satisfying the tops-ony property that are (i) anonymous and (ii) anony-
mous and Pareto efficient. In case (i), a rule satisfying these properties is
characterized by n + 1 parameters drawn from the same set of admissible pa-
rameters as is used for the min-max rules. For each profile of preferences, this
rule chooses the median of the individual preference peaks and these n + 1
parameters. Because the median is being determined from 2n + 1 numbers,
this rule is well defined. Black’s median-voter rule is the special case in which
half of the parameters are set equal to the infinim of A and half are set equal
to the supremum of A. In case (ii), the rules are constructed in the same
way, but use only n − 1 parameters. These two classes of rules are known as
generalized median social choice functions.

Because generalized median social choice functions are strategy-proof and
satisfy the tops-ony property, they must be min-max rules. Curiously, Moulin
did not establish his theorems about generalized median social choice func-
tions as corollaries of his min-max social choice function theorem; he instead
provided independent proofs of his generalized median and min-max results.
1 When there are an even number of individuals, there may be two median peaks.

In this case, Black supposed that one of the individuals is given the power to
break ties.

2 If A is unbounded from below (resp. above), then −∞ (resp. ∞) is used instead
of the infinim (resp. supremum).



Strategy-Proofness for Single-Peaked Preferences 3

The main purpose of this article is to show how Moulin’s generalized median
theorems can be obtained from his min-max theorem. In order to do this, I
establish two results that show that the median of 2n + 1 numbers can be
expressed using a combination of minimization and maximization operations
applied to subsets of these numbers when either these subsets or the numbers
themselves are restricted in a particular way.

A subset S of A ⊆ R is an interval of A if for any two alternatives in S,
all alternatives in A that lie between them are also in S. It is now known from
the work of Barberà and Jackson (1994), Sprumont (1995), Ching (1997), and
Weymark (2008) that if the range of a strategy-proof social choice function f
whose domain is the set of all profiles of single-peaked preferences on A is an
interval of A, then f satisfies the tops-only property. I show that, in fact, the
tops-only property is equivalent to the range being an interval of A.

Moulin (1980) established his results for the case in which the set of alter-
natives A is all of R, but noted that they also apply to the case in which A
is a finite set. Moulin’s theorems are often applied to situations in which A is
a closed interval of R. I show that they are valid when A is any subset of A
containing at least two alternatives. The special structure placed on A in the
previous literature is not needed.

Moulin’s proof of the min-max characterization theorem omits many of
the details of the argument. In view of the importance of Moulin’s min-max
theorem for the subsequent literture, I also provide a more complete proof of
this result.

In Section 2, I introduce the model and present some background results. In
Section 3, I consider the tops-only property. Moulin’s min-max social choice
functions are introduced in Section 4. In Section 5, I prove Moulin’s min-
max theorem when the set of alternatives is an arbitrary subset of R and
characterize the set of all min-max social choice functions that are also Pareto
efficient. In Section 6, I first establish two propositions that identify situations
in which a median can be expresed in terms of minimization and maximization
operations and then use these results to show how Moulin’s generalized median
theorems can be obtained as corollaries of his min-max theorem. Finally, I
provide some concluding remarks in Section 7.

2 The Model and Background Results

The set of alternatives A is assumed to be a nonempty subset of R containing
at least two alternatives. As the examples in Section 1 illustrate, it is often
natural to suppose that A is either connected or discrete, but this is not
assumed in the subsequent analysis. Let a− = inf A if this infinum exists and
let a− = −∞ otherwise. Similarly, let a+ = supA if this supremum exists and
let a+ = ∞ otherwise. Let A∗ = A ∪ {a−, a+} and R

∗ = R ∪ {−∞} ∪ {∞}
(the extended real line). For an odd number of alternatives x1, . . . , xm in A,
let med {x1, . . . , xm} denote the median.
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For any x, y ∈ R
∗, [x, y] denotes the closed interval of R

∗ that has x and
y as its endpoints. A subset S of A is an interval of A if [x, y]∩A ⊆ S for all
x, y ∈ S. Even though an interval S of A need not be connected relative to
R, relative to A it includes all points in A that lie between any two distinct
points in S. The closure of any subset of A is understood to be relative to A.
Thus, for all x, y ∈ A∗, [x, y]∩A is a closed interval of A. It is denoted by xy.
Henceforth, it is understood that x ≤ y when I write xy.

Let R denote the set of all orderings (that is, reflexive, complete, and
transitive binary relations) on A. An ordering R ∈ R is interpreted as being
a preference. For any R ∈ R and any nonempty set S ⊆ A, the top set of R
in S is

τ(R, S) = {x ∈ S | xRy for all y ∈ S}.
In other words, τ(R, S) is the set of best alternatives in S according to the
preference R. A preference R ∈ R is single-peaked if there exists an alternative
π(R) = τ(R, A) ∈ A, the peak of R, such that π(R)PxPy whenever x, y ∈ A
and y < x < π(R) or π(R) < x < y. Let S denote the set of single-peaked
preferences on A.

The set of individuals is N = {1, . . . , n}, where n is finite. While there is
no social choice problem unless n ≥ 2, the results in this article also hold for
n = 1. This special case is used as part of an induction proof and provides
some insight into the structure of the social choice rules considered here. A
profile is an n-tuple of individual preference orderings R = (R1, . . . , Rn).

A social choice function is a function f : Dn → A, where D ⊆ R is the
common set of admissible preferences for each individual. Thus, the domain
of f is Dn. In this article, D = S, the set of all single-peaked preferences. The
range of f is

Af = {x ∈ A | f(R) = x for some R ∈ Dn}.

Let RS = (Ri)i∈S denote the subprofile of preferences of the individuals
in S, where ∅ ⊂ S ⊂ N . A profile is sometimes written as R = (RS ;R−S),
where −S is the complement of S. For the social choice function f , the option
set generated by RS is

Of
−S(RS) = {x ∈ A | x = f(RS ;R−S) for some R−S ∈ Dn−|S|}.

The option set Of
−S(RS) is the set of alternatives that are attainable given

that the individuals in S have the subprofile RS . The widespread use of option
sets to characterize properties of strategy-proof social choice functions is due
to the influence of the seminal article of Barberà and Peleg (1990). The option-
set methodology was first introduced by Laffond (1980), Satterthwaite and
Sonnenschein (1981), and Barberà (1983).

A social choice function f is manipulable by individual i ∈ N at the
profile R ∈ Dn via R̄i ∈ D if f(R1, . . . , Ri−1, R̄i, Ri+1, . . . , R

n)Pif(R). A
social choice function is strategy-proof if it is never manipulable.
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Definition. A social choice function f is strategy-proof if there is no indi-
vidual i ∈ N , no profile R ∈ Dn, and no preference R̄i ∈ D such that f is
manipulable by individual i at R via R̄i.

Any strategy-proof social choice function for which the domain is the
Cartesian product of the same set of individual preferences has the prop-
erty that if everybody agrees that the same alternative is best on the range,
then this alternative must be chosen. See Le Breton and Weymark (1999,
Proposition 2). For the domain Sn, this property of a social choice function
also follows from Zhou (1991, Lemma 2) and Barberà and Jackson (1994,
Lemma A-1).

Lemma 1. If f : Sn → A is strategy-proof, then for all R ∈ Sn, if τ(Ri, A
f ) =

{x} for all i ∈ N , then f(R) = x.

Strategy-proofness by itself also places structure on the range of a social
choice function. For the domain Sn considered here, note that for any x ∈ A,
there is a preference R ∈ S such that π(R) = x. It therefore follows from
Le Breton and Weymark (1999, Proposition 5) that the range of a strategy-
proof social choice function must be a closed set when its domain is Sn.3

Lemma 2. If f : Sn → A is strategy-proof, then Af is closed.

The option set Of
−S(RS) generated by the subprofile RS , where ∅ ⊂ S ⊂

N , is the range of the (n − |S|)-person social choice function g : Dn−|S| → A
defined by setting, for all RS ∈ Dn−|S|,

g(RS) = f(RS ;R−S).

If f is strategy-proof, so is g. Therefore, Lemma 2 implies that is Of
−S(RS) is

closed when D = S and f is strategy-proof.4

Lemma 3. If f : Sn → A is strategy-proof, then for all nonempty S ⊂ N and
all RS ∈ Dn−|S|, Of

−S(RS) is closed.

Anonymity is the requirement that a social choice function treats individ-
uals symmetrically.

Definition. A social choice function f is anonymous if for all R,R′ ∈ Dn

for which R′ is a permutation of R, f(R) = f(R′).

An alternative x ∈ A is Pareto optimal if there does not exist an alternative
y ∈ A such that yPix for all i ∈ N .5 Pareto efficient social choice functions
always choose Pareto optimal alternatives.
3 Lemma 2 is also a special case of Lemma 1 in Barberà and Jackson (1994). See

also Zhou (1991, p. 113).
4 Lemma 3 is a special case of Le Breton and Weymark (1999, Proposition 6).
5 More precisely, this is the definition of a weakly Pareto optimal alternative. For

the problem considered here, the sets of weakly and strongly Pareto optimal
alternatives coincide.
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Definition. A social choice function f is Pareto efficient if for all R ∈ Dn,
f(R) is Pareto optimal.

3 The Tops-Only Property

For a single-peaked preference, the top set on any closed interval of A can be
identified either (i) by performing a combination of minimization and maxi-
mization operations that only consider the endpoints of the interval and the
peak of the preference or (ii) by determing the median of these three alter-
natives. Furthermore, in the first of these cases, the two operations can be
employed in either order.

Lemma 4. For any closed interval xy of A and any R ∈ S,

τ(R, xy ) = min{y, max{π(R), x}}, (1)

τ(R, xy ) = max{x,min{π(R), y}}, (2)

and
τ(R, xy ) = med{x, y, π(R)}. (3)

Proof. If x < π(R) < y, then τ(R, xy ) = π(R). Because max{π(R), x} =
π(R) and min{π(R), y} = π(R), (1) and (2) are satisfied.

If π(R) ≤ x, then τ(R, xy ) = x. Because max{π(R), x} = x and x ≤ y,
(1) holds. Because min{π(R), y} = π(R) and π(R) ≤ x, (2) holds.

If π(R) ≥ y, then τ(R, xy ) = y. Because max{π(R), x} = π(R) ≤ y, (1)
holds. Because min{π(R), y} = y ≥ x, (2) holds.

The characterization of the median in (3) follows immediately from either
(1) or (2). ��

Thus, when S is a closed interval xy of A and R is single-peaked, the
top set τ(R, S) consists of a single alternative: x, y, or π(R). It also follows
from Lemma 4 that the median of three numbers can be computed using
a combination of minimization and maximization operations. If S is not an
interval, τ(R, S) may include two alternatives, but not more.

An immediate implication of Lemma 4 is that the top set of a single-peaked
preference on a closed interval of A only depends on the preference peak and
not on how non-peak alternatives are ordered.6

Lemma 5. For any closed interval xy of A and any R, R′ ∈ S, if π(R) =
π(R′), then τ(R, xy ) = τ(R′, xy ).

6 All preferences in S with the same peak order alternatives on the same side of
the peak in the same way, but they may order alternatives on opposite sides of
the peak differently.
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If a social choice function takes account of all of the information contained
in a preference profile, then, in general, it is manipulable. One way to restrict
the usable information in a preference profile is for the social choice function
to be sensitive only to the top sets of the individual preferences, what is known
as the tops-only property.

Definition. A social choice function f satisfies the tops-only property if for
all R,R′ ∈ Dn for which τ(Ri, A) = τ(R′

i, A) for all i ∈ N , f(R) = f(R′).

For a single-peaked preference R, τ(R, A) is simply the preference peak.
Hence, a social choice function f with domain Sn satisfies the tops-only prop-
erty if the social choice only depends on the peaks of the individual preferences.
Moulin (1980) restricts attention from the outset to social choice functions
that satisfy the tops-only property. For a strategy-proof social choice function
f with domain Sn, Theorem 1 demonstrates that the tops-only property is
equivalent to the range of f being an interval of A.7

Theorem 1. A strategy-proof social choice function f : Sn → A (a) has a
range Af which is an interval of A if and only if (b) it satisfies the tops-only
property.

Proof. For n ≥ 2, Weymark (2008, Theorem 1) has shown that for a strategy-
proof social choice function f : Sn → A, if Af is an interval of A, then f(R) =
f(R′) for any two profiles R,R′ ∈ Dn for which τ(Ri, A

f ) = τ(R′
i, A

f ) for
all i ∈ N .8 That is, the same alternative is chosen whenever two profiles have
the same individual peaks on the range of A. The same concluson holds for
n = 1 by Lemma 1. By Lemma 5, for any R, R′ ∈ S, τ(R, Af ) = τ(R′, Af )
if τ(R, A) = τ(R′, A). Hence, f satisfies the tops-only property if Af is an
interval of A.

Now suppose that f : Sn → A is strategy-proof and satisfies the tops-
only property, but that Af is not an interval of A. Because Af is closed
by Lemma 2, there therefore exist alternatives x, y, z ∈ A with x < y < z
such that x, z ∈ Af , but (x, z) ∩ Af = ∅. Let Rx ∈ S be such that
τ(Rx, A) = {y} and τ(Rx, Af ) = {x}. Similarly, let Rz ∈ S be such that
τ(Rz, A) = {y} and τ(Rz, Af ) = {z}. Clearly, such preferences exist. By
Lemma 1, f(Rx, . . . , Rx) = x and f(Rz, . . . , Rz) = z, which contradicts the
assumption that f satisfies the tops-only property. ��

If a social choice function f : Sn → A is Pareto efficient, then for any x ∈ A,
x is chosen if everybody has a preference with peak at x. Hence, the range
7 Barberà and Jackson (1994, Theorem 1) have shown that the restriction of

f : Sn → A to the domain of preference profiles that are single-peaked on the
range of A satisfies the tops-only property if it is strategy-proof.

8 Ching (1997, pp. 485–486) has shown that if A is a closed interval of R and
Af = A, then strategy-proofness implies the tops-only property when D = S.
Sprumont (1995, Lemma 2) has established the same implication for the case in
which A is a closed interval of R and the range is a closed interval of A.
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of f is all of A and, by Theorem 1, any strategy-proof social choice function
with domain Sn that is Pareto efficient satisfies the tops-only property.

Proposition 1. If a strategy-proof social choice function f : Sn → A is Pareto
efficient, then it satisfies the tops-only property.

4 Min-Max Social Choice Functions

A voting scheme is a function v : An → A, where A ⊆ A. The domain of v
is unrestricted if A = A. Let x = (x1, . . . , xn) for any (x1, . . . , xn) ∈ R

n. If
f : Dn → A is a social choice function that satisfies the tops-only property,
then f can be identified with the voting scheme vf : An → A, where A =
{x ∈ A | x = τ(R, A) for some R ∈ D}, by setting vf (x) = f(R1, . . . , Rn)
for any profile R ∈ Dn for which xi = τ(Ri, A) for all i ∈ N . If D = S
in this definition, then A = A and, hence, vf has an unrestricted domain.
For a social choice function f that satisfies the tops-only property, (i) f is
anonymous if and only if vf is symmetric (i.e., the value of vf is invariant to
a permutation of its arguments) and (ii) if D = S, f is Pareto efficient if and
only if mini∈N{xi} ≤ vf (x) ≤ maxi∈N{xi} for all x ∈ An.

Moulin (1980) introduced a class of voting schemes known as min-max
voting schemes.

Definition. For A ⊆ A ⊆ R, a voting scheme v : An → A is a min-max
voting scheme if for all S ⊆ N (including S = ∅), there exists an aS ∈ A∗

with (i) aT ≤ aS if S ⊆ T ⊆ N , (ii) aN 
= a+ if a+ 
∈ A, and (iii) a∅ 
= a− if
a− 
∈ A such that for all x ∈ An,

v(x) = min
S⊆N

[
max
i∈S

{xi, aS}
]

.9 (4)

Note that a min-max voting scheme is nondecreasing in its arguments and
that it is characterized by 2n parameters drawn from A∗, one for each subset
of N .

For a domain of profiles of single-peaked preferences, the corresponding
class of min-max social choice functions is defined as follows.

Definition. A social choice function f : Dn → A for which D ⊆ S is a min-
max social choice function if for all R ∈ Dn,

f(R) = vf (π(R1, . . . , π(Rn)), (5)

for some min-max voting scheme vf : An → A, where A = {x ∈ A | x =
τ(R, A) for some R ∈ D}.
9 This definition extends the definition in Moulin (1980) for A = R to an arbitrary

A ⊆ R. By convention, maxi∈∅{xi, a∅} = a∅.
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By definition, a min-max social choice function satisfies the tops-only property.
Without conditions (ii) and (iii) in the definition of a min-max voting

scheme, the function v defined in (4) need not be a voting scheme. If a+ 
∈ A
and aN is permitted to equal a+ (and, hence, for aS to equal a+ for all S),
then v(x) = a+ for all x ∈ An, in which case v is not a voting scheme because
a+ 
∈ A. Similarly, if a− 
∈ A and a∅ is permitted to equal a− (and, hence, for
aS to equal a− for all S), then v(x) = a− for all x ∈ An (because a∅ = a−)
and again v is not a voting scheme.

To show that the function v defined in (4) is in fact a voting scheme, it is
necessary to confirm that v(x) ∈ A for all x ∈ An. By definition, v(x) ∈ A∗.
There are four cases to consider.

(i) Suppose that a− ∈ A and a+ ∈ A. Then, aS ∈ A for all S ⊆ N . In this
case, v(x) must be in A because each xi and aS is then in A.

(ii) Suppose that a− ∈ A and a+ 
∈ A. Because aN 
= a+, maxi∈N{xi, aN} ∈
A and, therefore, by (4), v(x) 
= a+. For any S ⊂ N , either aS = a+ or aS ∈ A.
Hence, by (4), v(x) ∈ A.

(iii) Suppose that a− 
∈ A and a+ ∈ A. Because a∅ 
= a−, maxi∈S{xi, aS} ∈
A for all S ⊆ N . Hence, by (4), v(x) ∈ A.

(iv) Suppose that a− 
∈ A and a+ 
∈ A. Then, reasoning as in cases (ii) and
(iii), it follows that v(x) 
= a− and v(x) 
= a+, which implies that v(x) ∈ A.

If n = 1, then (4) simplifies to

v(x1) = min{a∅,max{x1, a{1}}}.

Note that v(x1) is the alternative that maximizes a single-peaked preference
with peak at x1 on the interval a{1}a∅ (of A). Hence, as has already been
observed, v(x1) is also the median of x1, a{1}, and a∅.

For later reference, the formula for v(x) in (4) when n = 2 is written out
in full. In this case,

v(x1, x2) = min{a∅,max{x1, a{1}},max{x2, a{2}},max{x1, x2, a{1,2}}}. (6)

In the characterization theorems for various classes of strategy-proof social
choice functions on the domain Sn, I only need to consider voting schemes
with an unrestricted domain. For simplicity, I henceforth restrict attention to
such voting schemes.

Consider a voting scheme v : An → A. For all S ⊆ N , let xS be the n-vector
defined by setting

xS
i =

{
a−, if i ∈ S,
a+, if i 
∈ S.

In Proposition 2, I show that when both a− and a+ are in A, for all S ⊆ N ,
the parameter aS that appears in the definition of a min-max voting scheme
v is v(xS). When either a− or a+ are not in A, then xS is not in the domain
of v. However, as I shall also show in Proposition 2, in such cases, aS is the
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limiting value of v(x) as x approaches xS . In order to establish these results,
I first need some additional notation.

For all S ⊆ N and all λ, μ ∈ A, define the n-vector xS(λ, μ) by setting

xS(λ, μ)i =

{
λ, if i ∈ S,
μ, if i 
∈ S,

the n-vector xS(λ) by setting

xS(λ)i =

{
λ, if i ∈ S,
a+, if i 
∈ S,

and the n-vector xS(μ) by setting

xS(μ)i =

{
a−, if i ∈ S,
μ, if i 
∈ S.

Note that

lim
λ→a−
μ→a+

xS(λ, μ) = lim
λ→a−

xS(λ) = lim
μ→a+

xS(μ) = xS .

Proposition 2. Let v : An → A be a min-max voting scheme. Then, for all
S ⊆ N ,

(i) if a− ∈ A and a+ ∈ A, then

v(xS) = aS ; (7)

(ii) if a− ∈ A and a+ 
∈ A, then

lim
μ→a+

v(xS(μ)) = aS ; (8)

(iii) if a− 
∈ A and a+ ∈ A, then

lim
λ→a−

v(xS(λ)) = aS ; (9)

(iv) if a− 
∈ A and a+ 
∈ A, then

lim
λ→a−
μ→a+

v(xS(λ, μ)) = aS . (10)

Proof. Each of the four cases is considered in turn.
(i) In this case, (4) is used to compute the value of v(xS). For any T ⊆ S,

maxi∈T {xS
i , aT } = aT because aT ≥ a− = xS

i for all i ∈ T . For any T 
⊆ S,
maxi∈T {xS

i , aT } = a+ because aT ≤ a+ and there exists a j ∈ T with aS
j =
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a+. Hence, v(xS) = minT⊆S aT . Because aS ≤ aT if T ⊆ S, it follows that
v(xS) = aS , which establishes (7).

(ii) For all μ ∈ A and all T ⊆ S, as in case (i), maxi∈T {xS(μ)i, aT } = aT .
For any T 
⊆ S, maxi∈T {xS(μ)i, aT } = a+. Because aT ≤ a+ if T ⊆ S,
limμ→a+ v(xS(μ)) = minT⊆S aT = aS , which establishes (8).

(iii) For all λ ∈ A and all T 
⊆ S, as in case (i), maxi∈T {xS(λ)i, aT } = a+.
For all T ⊆ S, limλ→a− maxi∈T {xS(λ)i, aT } = aT because aT ≥ a−. Hence,
limλ→a− v(xS(λ)) = minT⊆S aT = aS , which establishes (9).

(iv) Applying the argument in (ii) for the upper limit and the argument
in (iii) for the lower limit yields (10). ��

I now show that a min-max voting scheme v on an unrestricted domain
satisfies a kind of unanimity property. Specifically, for any alternative x ∈
aNa∅, v(x, . . . , x) = x. Moreover, I also show that for any other x ∈ A,
v(x, . . . , x) is the closest alternative to x in aNa∅. Thus, v(x, . . . , x) is the
median of x, aN , and a∅

Proposition 3. Let v : An → A be a min-max voting scheme. Then, for all
x ∈ A, (i) v(x, . . . , x) = x if x ∈ aNa∅, (ii) v(x, . . . , x) = aN if x < aN , and
(iii) v(x, . . . , x) = a∅ if x > a∅.

Proof. (i) For any x ∈ aNa∅, max{x, aN} = x. Because aS ≥ aN for all
S ⊆ N , it then follows from (4) that v(x, . . . , x) = min{x, a∅}. But, by
assumption, x ≤ a∅. Hence, v(x, . . . , x) = x.

(ii) The conclusion in this case follows from (4) and the assumption that
aN ≤ aS for all S ⊆ N .

(iii) The conclusion in this case follows from trivially from (4). ��
In Proposition 4, I show that the range of a min-max voting scheme on an

unrestricted domain is the closed interval of A defined by the parameters aN

and a∅. Hence, by Proposition 3, v(x, . . . , x) is the closest alternative to x in
the range of v.

Proposition 4. The range of a min-max voting scheme v : An → A is aNa∅.

Proof. Because aN ≤ aS for all S ⊆ N , it follows from (4) that v(x) ≥ aN

for all x ∈ An. Because a∅ is one of the values to which the minimization
operator in (4) is applied, v(x) ≤ a∅ for all x ∈ An. Hence, the range of v
is contained in aNa∅. For any x ∈ aNa∅, by Proposition 3, v(x, . . . , x) = x.
Thus, every x ∈ aNa∅ is in the range of v. ��
Definition. A voting scheme v : An → A is uncompromising if for all i ∈ N
and all x,x′ ∈ An for which xj = x′

j for all j 
= i, (i) v(x) = v(x′) if
x′

i > xi > v(x) and (ii) v(x) = v(x′) if x′
i < xi < v(x).

Unompromisingness was first considered by Border and Jordan (1983).
Informally, v is uncompromising if for any individual i and any vector x,
raising (resp. lowering) xi does not affect what is chosen whenever xi is larger
(resp. smaller) than v(x). Min-max voting schemes are uncompromising.
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Proposition 5. A min-max voting scheme v : An → A is uncompromising.

Proof. Consider any i ∈ N and any x,x′ ∈ An for which xj = x′
j for all j 
= i.

(i) Suppose that x′
i > xi > v(x). For any S ⊆ N , increasing xi to x′

i cannot
decrease the value of maxk∈S{ak, aS} and it can only increase this value if
i ∈ S. By the definition of a min-max voting scheme in (4), there exists an
S∗ ⊆ N such that v(x) = maxk∈S∗{ak, aS∗}. Because xi > v(x), this implies
that i 
∈ S∗. Hence, by (4), v(x′) = maxk∈S∗{ak, aS∗} = v(x).

(ii) Now suppose that x′
i < xi < v(x). Because v is nondecreasing in its

arguments, v(x′) ≤ v(x). Contrary to what is to be shown, suppose that
v(x′) < v(x). This is only possible if there exists an S̄ ⊆ N with i ∈ S̄ such
that both v(x) = maxk∈S̄{ak, aS̄} and max{x′

i,maxk∈S̄\{i} xk, aS̄} < v(x).
But this implies that xi = maxk∈S̄{ak, aS̄} = v(x), a contradiction to the
assumption that xi < v(x). ��

I now provide some examples of min-max voting schemes. In each of these
examples, the voting scheme v has the domain An.

Example 1. Let aS = x̄ for all S ⊆ N . Note that the restrictions on the
parameters of v imply that x̄ ∈ A. By Proposition 4, the range of v is {x̄}.
Hence, v is imposed. For the corresponding min-max social choice function, x̄
is chosen regardless of what the individual preferences are.

Example 2. Consider any k ∈ N . For all S ⊆ N , let aS = a+ if |S| < k and
let aS = a− otherwise. For any x ∈ An, let x̃ be a permutation of x for
which x̃1 ≤ x̃2 ≤ · · · ≤ x̃n, with ties broken arbitrarily. Then, for all x ∈ An,
v(x) = x̃k, the kth smallest component of x. The corresponding min-max
social choice function always chooses the kth smallest preference peak.

Example 3. Suppose that n = 2. Let a∅ = a+, aN = a−, and a{1} = a{2} = b.
Using (6), for all x ∈ A2,

v(x) = min{a+,max{x1, b},max{x2, b},max{x1, x2, a−}}
= min{max{x1, b},max{x2, b},max{x1, x2}}
= med{x1, x2, b}
= med{x1, x2, b, a−, a+}.

Thus, v first augments x with the parameter b and then chooses the median
value. Equivalently, v first augments x with the parameters b, a−, and a+

and then chooses the median value. The corresponding min-max social choice
function always chooses the median of the two preference peaks and b. Note
that the median of x1, x2, and b can be computed by first identifying the
maximum values in any two-element subset of these three alternatives and
then choosing the smallest of them.

Example 4. Suppose that n = 2.
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(i) Let a{2} = aN = α and a{1} = a∅ = β. Thus, the range of v is αβ.
Using (6), for all x ∈ A2,

v(x) = min{β,max{x1, β},max{x2, α},max{x1, x2, α}}
= min{β,max{x2, α}},

which is the alternative in the range that is closest to x2. That is, v(x) =
med{x2, α, β}.

(ii) Let a{1} = aN = α and a{2} = a∅ = β. Reasoning as in (i), for all
x ∈ A2, v(x) is the alternative in the range that is closest to x1.. That is,
v(x) = med{x1, α, β}.

For the corresponding min-max social choice function, person 2 is a dic-
tator on the range in case (i) and person 1 is a dictator on the range in case
(ii).

There is a duality between minimization and maximization operators that
allows one to rewrite the formula for the min-max voting scheme defined in
(4) as a max-min voting scheme in which the order in which the minimization
and maximization operations are employed is reversed. An illustration of this
kind of role reversal is provided by the equivalence of (1) and (2) in Lemma 4.

Barberà, Gul, and Stacchetti (1993) have proposed an alternative, but
equivalent, formulation of a min-max voting scheme v using left-winning coali-
tion systems. A left-winning coalition system assigns to each alternative a
(possibly empty) set of of subsets of N (the winning coalitions) satisfying
a number of restrictions. The value of v(x) is then the smallest alternative
x̄ for which the set {i ∈ N | xi ≤ x̄} is a winning coalition for x̄. Using
the duality between ≤ and ≥, this rule can also be expressed in terms of a
right-winning coalition system. Formal definitions of left- and right-winning
coalition systems may be found in Barberà, Gul, and Stacchetti (1993) when
A is discrete and in Barberà, Massó, and Serizawa (1998) when A is a closed
interval. Sprumont (1995), Barberà (2011), and Massó and Moreno de Barreda
(2011) have provided interpretations of these rules that highlight how these
constructions are related to the definition of min-max and generalized median
voting schemes.

Yet another equivalent formulation of a min-max voting scheme was pro-
vided by Ching (1997). An augmented median voting scheme is characterized
by 2n parameters, one for each subset of the individuals, as in the definition
of a min-max voting scheme. However, now the value of v(x) is computed by
taking the median of the components of x and n + 1 of the parameters, with
the choice of the parameters depending on x. See Sprumont (1995) and Ching
(1997) for a formal definition and discussion of this class of rules.

5 Strategy-Proof Min-Max Social Choice Functions

Theorem 2 generalizes the characterization of min-max social choice functions
in Moulin (1980, Proposition 3) by allowing A to be any subset of R containing
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at least two alternatives, not just R itself. It also replaces Moulin’s assumption
that f satisfies the tops-only property with the equivalent assumption that
the range of f is an interval of A.

Theorem 2. Let f : Sn → A be a social choice function whose range Af is an
interval of A. Then, (a) f is strategy-proof if and only if (b) f is a min-max
social choice function.

Proof. (a) First, suppose that f is strategy-proof. By Lemma 2, Af is closed.
Hence Af = αβ for some α, β ∈ A∗ with α ≤ β. Furthermore, if a+ 
∈ A, then
α 
= a+ and if a− 
∈ A, then β 
= a−, for otherwise Af would be empty. By
Theorem 1, f satisfies the tops-only property and, hence, can be identified by
its associated voting scheme vf . For all x ∈ A, there exists an R ∈ S such
that τ(R, A) = {x}. Thus, vf has the unrestricted domain An. We proceed
by induction on n. Let fn denote the social choice function when there are n
individuals.

(i) Suppose that n = 1. By Lemma 1, f1(R1) = τ(R1, αβ) for all R1 ∈ S.
By (1), τ(R1, αβ) = min{β,max{π(R1), α}}. Letting a∅ = β and v{1} = α,
we conclude that f1 is a min-max social choice function.

(ii) Now suppose that n ≥ 2 and that (a) imples (b) when the number of
individuals is less than or equal to n. Also suppose that fn+1 is strategy-proof.
We need to show that fn+1 is a min-max social choice function.

Consider any x ∈ An. Because fn+1 has the tops-only property, by
Lemma 3, for all (R1, . . . , Rn) ∈ Sn for which π(Ri) = xi for all i = 1, . . . , n,
the option set O{n+1}(R1, . . . , Rn) is a closed interval αxβx. Because this op-
tion set is the range of the strategy-proof one-person social choice function
obtained from fn+1 by fixing (R1, . . . , Rn), by case (i) this one-person social
choice function is a min-max social choice function. In terms of the voting
scheme vfn+1

associated with fn+1, we have

vfn+1
(x, xn+1) = min{βx,max{xn+1, αx}} (11)

for all (x, xn+1) ∈ An+1.
For any fixed xn+1 ∈ A, by the induction hypothesis,

vfn

xn+1
(x) := vfn+1

(x, xn+1) = min
S⊆{1,...,n}

[
max
i∈S

{xi, aS(xn+1)}
]

, (12)

for all x ∈ An, where now the parameters aS(xn+1) of the n-person voting
scheme vfn

xn+1
are conditional on xn+1.

Some of the details of the next part of the proof depend on whether a−
and a+ are in A. We provide the argument for the case in which they are not.
If either a− or a+ is in A, we instead use the relevant case in Proposition 2 to
determine the analogue of (13). If both a− and a+ are in A, then no limiting
arguments are needed.

By (12) and case (iv) of Proposition 2,
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lim
λ→a−
μ→a+

vfn+1
(xS(λ, μ), xn+1)) = aS(xn+1), (13)

for all xn+1 ∈ A and all S ⊆ {1, . . . , n}. It then follows from (11) and (13)
that for all xn+1 ∈ A and all S ⊆ {1, . . . , n},

aS(xn+1) = lim
λ→a−
μ→a+

min{βxS(λ,μ),max{xn+1, αxS(λ,μ)}},

or, equivalently,

aS(xn+1) = min

⎧⎨
⎩ lim

λ→a−
μ→a+

βxS(λ,μ),max{xn+1, lim
λ→a−
μ→a+

αxS(λ,μ)}

⎫⎬
⎭ . (14)

For all S ⊆ {1, . . . , n}, let

αxS = lim
λ→a−
μ→a+

αxS(λ,μ) (15)

and
βxS = lim

λ→a−
μ→a+

βxS(λ,μ).
10 (16)

Substituting (15) and (16) into (14), we obtain

aS(xn+1) = min{βxS ,max{xn+1, αxS}}, (17)

for all xn+1 ∈ A and all all S ⊆ {1, . . . , n}. Substituting (17) into (12), for all
(x, xn+1) ∈ An+1,

vfn+1
(x, xn+1) = min

S⊆{1,...,n}

[
max
i∈S

{xi,min{βxS ,max{xn+1, αxS}}}
]

= min
S⊆{1,...,n}

[
min

{
max
i∈S

{xi, βxS},max
i∈S

{xi, xn+1, αxS}
}]

(18)

because max{X, min{Y, Z}} = min{max{X, Y },max{X, Z}}.
For all S ⊆ {1, . . . , n}, let aS = βxS and aS∪{n+1} = αxS . Using these

definitions in (18), we obtain for all (x, xn+1) ∈ An+1,

vfn+1
(x, xn+1) = min

S⊆{1,...,n}

[
min

{
max
i∈S

{xi, aS}, max
i∈S∪{n+1}

{xi, aS∪{n+1}}
}]

.

Hence, for all (x, xn+1) ∈ An+1,

10 Note that if either a− and a+ are not in A, then xS is not in An. However, if
they are, then αxS and βxS are the values used in (11) when x = xS .
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vfn+1
(x, xn+1) = min

S⊆{1,...,n+1}

[
max
i∈S

{xi, aS}
]

. (19)

Consider any S ⊂ T ⊆ {1, . . . , n + 1}. If aS < aT , then for all (x, xn+1) ∈
An+1, maxi∈T {xi, aT } ≥ maxi∈S{xi, aS}. Reducing the value of aT so that
it equals aS preserves this inequality and has no effect on the value of
vfn+1

(x, xn+1) in (19). Hence, it can be assumed that if S ⊂ T ⊆ {1, . . . , n+1},
then aT ≤ aS .

By Proposition 4, aN∪{n+1} = α and a∅ = β, where αβ is the range of
vfn+1

. It has already been shown that α 
= a+ if a+ 
∈ A and β 
= a− if
a− 
∈ A. Therefore, vfn+1

is a min-max voting scheme and f is a min-max
social choice function.

(b) Now suppose that f is a min-max social choice function and vf is the
corresponding min-max voting scheme. Consider any R ∈ Sn and any i ∈ N .
Let x = (π(R1), . . . , π(Rn)).

(i) If vf (x) = xi, then individual i obtains his most-preferred alternative
and so cannot manipulate the outcome.

(ii) If vf (x) < xi, because preferences are single-peaked, a necessary con-
dition for individual i to be able to manipulate the outcome is that there
exists a preference with peak x′

i that he could report that would increase
what is chosen. By Proposition 5, vf is uncompromising. Because vf is also
nondecreasing in its arguments, individual i cannot increase what is chosen.

(iii) If vf (x) > xi, then individual i can only manipulate the outcome by
reducing its value, which by the reasoning in (ii) is not possible.

Thus, it has been shown that f is strategy-proof. ��

Moulin (1980) did not characterize the set of strategy-proof social choice
functions that are also Pareto efficient. By Proposition 1, such functions also
satisfy the tops-only property. Theorem 3 shows that the only restriction on
a min-max social choice function that Pareto efficiency imposes is that the
range must be all of A, which is ensured by setting a∅ = a+ and aN = a−.

Theorem 3. A social choice function f : Sn → A is (a) strategy-proof and
Pareto efficient if and only if (b) it is a min-max social choice function with
a∅ = a+ and aN = a−.

Proof. (a) First, suppose that f is strategy-proof and Pareto efficient. By
Proposition 1, f satisfies the tops-only property. Consider any x ∈ A and any
R ∈ S for which π(R) = x. Because f is Pareto efficient, f(R, . . . , R) = x.
Hence, Af = A and the range of f is trivially an interval of A. Theorem 2
then implies that f is a min-max social choice function. By Proposition 4,
Af = aNa∅. Therefore, a∅ = a+ and aN = a−.

(b) Now suppose that f is is a min-max social choice function with a∅ = a+

and aN = a− and let vf be the corresponding min-max voting scheme. By
Proposition 4, Af is the interval aNa∅. Hence, by Theorem 2, f is strategy-
proof.
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Because aN = a−, maxi∈N{xi, aN} = maxi∈N{xi} for all x ∈ An. Hence,
by (4), vf (x) ≤ maxi∈N{xi} for all x ∈ An. Because a∅ = a+, it follows
from (4) that for all x ∈ An there exists an S̄ ⊆ N with S̄ 
= ∅ such that
vf (x) = maxi∈S̄{xi, aS̄}. Hence, vf (x) ≥ xj for all j ∈ S̄, which implies that
vf (x) ≥ mini∈N{xi}. We have thus shown that for all x ∈ An, mini∈N{xi} ≤
vf (x) ≤ maxi∈N{xi}. Because preferences are single-peaked, these inequalities
imply that f is Pareto efficient. ��

6 Generalized Median Social Choice Functions

The objective in this section is to show how Moulin’s min-max theorem can be
used to help establish his two characterization theorems for generalized median
social choice functions. This demonstration makes use of two propositions
about the computation of medians using a combination of minimization and
maximization operations.

In Example 3, the computation of v(x) exploited the fact that the median
of three numbers can be determined by first identifying the maximum on any
two-element subset of these three numbers and then choosing the smallest of
these three maxima. Proposition 6 generalizes this observation. It shows that
for any positive integer n and any collection of 2n + 1 numbers, the median
can be computing by first identifying the maximum on any (n + 1)-element
subset of these numbers and then choosing the smallest of these maxima.

Proposition 6. Let n be a positive integer, Y = {a1, . . . , a2n+1} where ai ∈ R

for all i = 1, . . . , 2n + 1, and Yn+1 = {X ⊆ Y | |X| = n + 1}. Then,

med Y = min
X∈Yn+1

[max{ai | ai ∈ X}]. (20)

Proof. Without loss of generality, we can relabel the alternatives in Y so that
a1 ≤ a2 ≤ · · · ≤ a2n+1. Then med Y = max{a1, . . . , an+1} = an+1. For any
X ∈ Yn+1 with X 
= {a1, . . . , an+1}, max{ai | ai ∈ X} ≥ an+1. ��

In Proposition 6, no order structure was placed on the elements of Y .
Now suppose that Y = {a1, . . . , an, b0, b1, . . . , bn}, where bi ≥ bi+1 for
i = 1, . . . , n − 1. With this structure on the elements of Y , there is an al-
ternative way of characterizing the median alternative in Y . Before providing
this characterization for an arbitrary n, the general result is first illustrated
for the special cases in which n = 1 and n = 2.

When n = 1, from (20),

med{a1, b0, b1} = min{max{b0, b1},max{a1, b0},max{a1, b1}}. (21)

Because b0 ≥ b1, (21) can be simplified by replacing max{b0, b1} with b0

and by replacing {max{a1, b0},max{a1, b1}} with the minimum of these two
values, which is max{a1, b0}. Hence,



18 John A. Weymark

med{a1, b0, b1} = min{b0,max{a1, b1}}. (22)

When n = 2, from (20),

med{a1, a2, b0, b1, b2} = min{max{b0, b1, b2},max{a1, b0, b1},
max{a1, b0, b2},max{a1, b1, b2},max{a2, b0, b1},
max{a2, b0, b2},max{a2, b1, b2},max{a1, a2, b0},
max{a1, a2, b1},max{a1, a2, b2}}.

(23)

Because b0 ≥ b1 ≥ b2,

(i) max{b0, b1, b2} = b0;
(ii) min{max{ai, b0, b1},max{ai, b0, b2},max{ai, b1, b2}} = max{ai, b1}, for

i = 1, 2;
(iii) min{max{a1, a2, b0},max{a1, a2, b1},max{a1, a2, b2}} = max{a1, a2, b2}.
Hence, (23) simplifies to

med{a1, a2, b0, b1, b2} =
min{b0,max{a1, b1},max{a2, b1},max{a1, a2, b2}}.

(24)

When n = 1 and n = 2, as can be seen from (22) and (24), the median is
determined in two steps. First, for each S ⊆ N , maxi∈S{ai, b|S|} is computed.
Second, the minimum of these values is chosen. In order for this procedure
to identify the median, it is essential that bi ≥ bi+1 for i = 0, . . . , n − 1.
Proposition 7 shows that this is a general procedure for identifying the median
of Y = {a1, . . . , an, b0, b1, . . . , bn} when the bi are ordered in this way.

Proposition 7. Let n be a positive integer and Y = {a1, . . . , an, b0, b1, . . . , bn}
where ai ∈ R for all i = 1, . . . , n, bi ∈ R for all i = 0, . . . , n, and bi ≥ bi+1 for
i = 0, . . . , n − 1. Then,

med Y = min
S⊆N

[
max
i∈S

{ai, b|S|}
]

. (25)

Proof. Define Yn+1 as in Proposition 6. Let Y A = {a1, . . . , an} and Y B =
{b0, b1, . . . , bn}. For j = 1, . . . , n + 1, let Yn+1

j = {X ∈ Yn+1 | |X ∩ Y B | = j}.
By Proposition 6,

med Y = min
j∈{1,...,n+1}

{
min

X∈Yn+1
j

[max X]

}
. (26)

For each j = 1, . . . , n + 1, because b0 ≥ b1 ≥ · · · ≥ bn,

min
X∈Yn+1

j

[maxX] = min
S⊆N

|S|=n+1−j

[
max
i∈S

{ai, b|S|}
]

. (27)

Combining (26) and (27) establishes (25). ��
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An (n+1)-parameter generalized median voting scheme v is characterized
by n + 1 parameters drawn from A∗ with, for all x in the domain of v, the
value of v(x) given by the median of the components of x and these n + 1
parameters.

Definition. For A ⊆ A ⊆ R, a voting scheme v : An → A is an (n + 1)-
parameter generalized median voting scheme if there exist bi ∈ A∗ for i =
0, . . . , n with (i) not all bi = a+ if a+ 
∈ A and (ii) not all bi = a− if a− 
∈ A
such that for all x ∈ An,

v(x) = med{x1, . . . , xn, b0, . . . , bn}. (28)

For a domain of profiles of single-peaked preferences, the corresponding
class of (n+1)-parameter generalized median social choice functions is defined
as follows.

Definition. A social choice function f : Dn → A for which D ⊆ S is an
(n + 1)-parameter generalized median social choice function if for all R ∈
Dn, (5) holds for some (n + 1)-parameter generalized median voting scheme
vf : An → A, where A = {x ∈ A | x = τ(R, A) for some R ∈ D}.

Border and Jordan (1983) have interpreted the parameters in a generalized
medan social choice function as being the fixed preference peaks of “phantom”
voters. Examples 1, 2, and 3 are examples of such rules. In Example 1, bi = x̄
for all i. In Example 2, k of the bi are set equal to a+, with the rest of them
set equal to a−. In Example 3, the three parameter values are b, a−, and a+.
If n is odd, then by setting half of the parameters equal to a− and the other
half to a+, the median of x is always chosen, which is Black’s median-voter
rule when x is the profile of preference peaks.

Theorem 4 is my version of the characterization theorem for (n + 1)-
parameter generalized median social choice functions established by Moulin
(1980, Proposition 2).

Theorem 4. Let f : Sn → A be a social choice function whose range Af is
an interval of A. Then, (a) f is strategy-proof and anonymous if and only if
(b) f is an (n + 1)-parameter generalized median social choice function.

Proof. (a) First, suppose that f is strategy-proof and anonymous. By Theo-
rem 2, f is a min-max social choice function. Let vf : An → A be the corre-
sponding min-max voting scheme.

It is first shown that aS = aT for all S, T ⊆ N with |S| = |T |. Note
that because f is anonymous and, by Proposition 1, it satisfies the tops-
only property, the value of vf is invariant to a permutation of its arguments.
Consider the case in which neither a− nor a+ are in A. Because |S| = |T |, for
all λ, μ ∈ A, xS(λ, μ) is a permutation of xT (λ, μ). Hence, by anonymity,

vf (xS(λ, μ)) = vf (xT (λ, μ)) (29)
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for all λ, μ ∈ A. By (10), the limit of the left-hand side of (29) as λ goes to
a− is aS and the corresponding limit for the right-hand side of (29) is aT .
By (29), these two limits must be the same and, hence, aS = aT . If either
a− or a+ are in A, then the relevant case in Proposition 2 is used instead to
determine the analogue of (29). If both a− and a+ are in A, the conclusion
that aS = aT follows without taking any limits.

For j = 0, . . . , n, let bj = aS for any S ⊆ N for which |S| = j. By the
preceding argument, bj is well-defined. Substituting b|S| for aS in (4),

vf (x) = min
S⊆N

[
max
i∈S

{xi, b|S|}
]

. (30)

Note that b0 ≥ b1 ≥ · · · ≥ bn because vf is a min-max voting scheme and
aS ≥ aT whenever S ⊆ T . Furthermore, (i) if a+ 
∈ A, then bn 
= a+ and (ii)
if a− 
∈ A, then b0 
= a−. By (30) and Proposition 7, it then follows that vf is
an (n + 1)-parameter generalized median voting scheme and, hence, that f is
an (n + 1)-parameter generalized median social choice function.

(b) Now suppose that f is an (n+1)-parameter generalized median social
choice function. Without loss of generality, suppose that b0 ≥ b1 ≥ · · · ≥ bn.
By letting aS = b|S| for all S ⊆ N , it then follows from Proposition 7 that
f is a min-max social choice function. Because aS = aT if |S| = |T |, f is
anonymous. ��

Another class of generalized median rules can be obtained by using n − 1
instead of n + 1 parameters.

Definition. For A ⊆ A ⊆ R, a voting scheme v : An → A is an (n − 1)-
parameter generalized median voting scheme if there exist bi ∈ A∗ for i =
1, . . . , n − 1 such that for all x ∈ An,

v(x) = med{x1, . . . , xn, b1, . . . , bn−1}. (31)

Definition. A social choice function f : Dn → A for which D ⊆ S is an
(n − 1)-parameter generalized median social choice function if for all R ∈
Dn, (5) holds for some (n − 1)-parameter generalized median voting scheme
vf : An → A, where A = {x ∈ A | x = τ(R, A) for some R ∈ D}.

Because there are fewer parameters than individuals, for any generalized
median voting scheme v with n − 1 parameters, v(x) ∈ A for all x ∈ An

even if all bi = a− or all bi = a+. Thus, there is no need to place any
restrictions on the choice of these parameters other than that they are in A∗.
Note that a generalized median voting scheme (resp. social choice function)
with n−1 parameters can be rewritten as a generalized median voting scheme
(resp. social choice function) with n+1 parameters by adding the parameters
b0 = a+ and bn = a− (and using (31) instead of (28)).

When A = R, Moulin (1980, Theorem) has shown that the set of all social
choice functions on the domain Sn that are strategy-proof, anonymous, Pareto
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efficient, and satisfy the tops-only property is the set of all (n− 1)-parameter
generalized median social choice functions. Because the range of a strategy-
proof social choice function with domain Sn is all of A, by Theorem 1, the
tops-only property is redundant in this characterization. Theorem 5 shows
that Moulin’s theorem (without assuming the tops-only property) is valid for
any set A ⊆ R containing at least two alternatives.

Theorem 5. A social choice function f : Sn → A is (a) strategy-proof, anony-
mous, and Pareto efficient if and only if (b) it is an (n − 1)-parameter gen-
eralized median social choice function.

Proof. (a) First, suppose that f is strategy-proof, anonymous, and Pareto
efficient. By the argument in the proof of Theorem 3, Af = A, which is trivially
an interval of A. Hence, by Theorem 4, f is a generalized median social choice
function with n+1 parameters. In order for Af to be equal to A, at least one of
the parameters bi in (28) must be equal to a− and at least one of them must be
equal to a+. Without loss of generality, let b0 = a− and bn = a+. But then,
for all x ∈ An, med{x1, . . . , xn, b0, . . . , bn} = med{x1, . . . , xn, b1, . . . , bn−1}.
Hence, f is a generalized median social choice function with n−1 parameters.

(b) Now suppose that f is a generalized median social choice function
with n − 1 parameters and let vf be the corresponding voting scheme. By
adding the parameters b0 = a− and bn = a+ when computing medians, f is a
generalized median social choice function with n + 1 parameters because not
all of these n + 1 parameters bi can be equal to a−, nor can they all be equal
to a+. Therefore, by Theorem 4, f is strategy-proof and anonymous.

Because S = S, f is Pareto efficient if and only if mini∈N{xi} ≤ vf (x) ≤
maxi∈N{xi} for all x ∈ An. Because med{x1, . . . , xn, b1, . . . , bn−1} is the nth
smallest of these values (with ties broken arbitrarily) and because there are
fewer parameters than components of x, it follows that mini∈N{xi} ≤ vf (x) ≤
maxi∈N{xi} for all x ∈ An. Hence, f is Pareto efficient. ��

7 Concluding Remarks

Moulin (1980) has noted that his characterization theorems are also valid with
strategy-proofness replaced by the stronger requirement of group strategy-
proofness. A social choice function is group strategy-proof if for any profile
of preferences in the domain, there is no subgroup of individuals who could
manipulate the outcome in a way that would make them all better off by
jointly reporting different preferences. Recently, Le Breton and Zaporozhets
(2009) and Barberà, Berga, and Moreno (2010) have identified restrictions on
the domain of a social choice function for which strategy-proofness is satisfied
if and only group strategy-proofness is satisfied. The domain of single-peaked
preference profiles satisfies their conditions. Hence, all of the theorems in
this article that employ strategy-proofness could instead use group strategy-
proofness.
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A single-peaked preference is continuous on either side of its peak, but it
need not be continuous on the whole set of alternatives. The arguments used
here do not exploit possible discontinuities in preferences in any way. As a
consequence, the characterization theorems also hold for the smaller domain
of all profiles of continuous single-peaked preferences.

For the domain of all profiles of single-peaked preferences on the real line,
Barberà and Jackson (1994) have provided a characterization of the class of
all strategy-proof social choice functions when these functions are not a pri-
ori required to satisfy the tops-only property or, equivalently, for the range
to be an interval. This characterization employs strategy-proof tie-breaking
rules for selecting one of the alternatives from an individual’s top set on the
range when this set contains more than one alternative (recall that it can con-
tain at most two). Their description of these tie-breaking rules is expressed
in terms of a property that they must satisfy. For the subdomain of all pro-
files of Euclidean spatial preferences (i.e., single-peaked preferences that rank
alternatives in reverse order of their distances from the peak), Massó and
Moreno de Barreda (2011) have provided a characterization of the class of all
strategy-proof social choice functions on a closed interval of the real line that
explictly describes how these tie-breaking rules are constructed. This class
consists of Moulin’s min-max social choice functions agumented by additional
social choice functions that are obtained by perturbing the min-max social
choice functions so as to allow for specific kinds of discontinuities. The results
presented here help explain why when Massó and Moreno de Barreda require
anonymity in addition to strategy-proofness, the resulting class of rules are
based on generalized median social choice functions with n + 1 parameters.
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