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1 Glossary of terms
Following are short definitions of the keywords for this entry. These definitions
are slightly informal; formal definitions for most of the terms appear in the body
of the entry.

game A (cooperative) game (in characteristic form) is defined simply as a finite
set of players and a function or correspondence ascribing a worth (a nonnegative
real number, interpreted as an idealized money) to each nonempty subset of
players, called a group or coalition.
payoff vector A payoff vector is a vector listing a payoff (an amount of utility
or money) for each player in the game.
core The core of a game is the set (possibly empty) of feasible outcomes —
divisions of the worths arising from coalition formation among the players of
the game — that cannot be improved upon by any coalition of players. core
totally balanced game A game is totally balanced if the game and every
subgame of the game (a game with player set taken as some subset of players
of the initially given game) has a nonempty core.
market Amarket is defined as a private goods economy in which all participants
have utility functions that are linear in (at least) one commodity (money).
Shapley value The Shapley value of a game is feasible outcome of a game in
which all players are assigned their expected marginal contribution to a coalition
when all orders of coalition formation are equally likely.
pregame A pair, consisting of a set of player types (attributes or characteristics)
and a function mapping finite lists of characteristics (repetitions allowed) into
the real numbers. In interpretation, the pregame function ascribes a worth to
every possible finite group of players, where the worth of a group depends on
the numbers of players with each characteristic in the group. A pregame is used
to generate games with arbitrary numbers of players.
small group effectiveness A pregame satisfies small group effectiveness if
almost all gains to collective activities can be realized by cooperation only within
arbitrarily small groups (coalitions) of players.
per capita boundedness A pregame satisfies per capita boundedness if the
supremum of the average worth of any possible group of players (the per capita
payoff) is finite.
asymptotic negligibility A pregame satisfies asymptotic negligibility if van-
ishingly small groups can have only negligible effects on per capita payoffs.
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market games A market game is a game derived from a market. Given a
market and a group of agents we can determine the total utility (measured in
money) that the group can achieve using only the endowments belonging to the
group members, thus determining a game.
club A club is a group of agents or players that forms for the purpose of carrying
out come activity, such as providing a local public good.
an economy We use the term ‘economy’ to describe any economic setting,
including economies with clubs, where the worth of club members may de-
pend on the characteristics of members of the club, economies with pure public
goods, local public goods (public goods subject to crowding and/or conges-
tion), economies with production where what can be produced and the costs
of production may depend on the characteristics of the individuals involved in
production, and so on. A large economy has many participants.
price taking equilibrium A price taking equilibrium for a market is a set
of prices, one for each commodity, and an allocation of commodities to agents
so that each agent can afford his part of the allocation, given the value of his
endowment.

2 Definition of the subject
The equivalence of markets and games concerns the relationship between two
sorts of structures that appear fundamentally different — markets and games.
Shapley and Shubik (1969) demonstrates that: (1) games derived from markets
with concave utility functions generate totally balanced games where the players
in the game are the participants in the economy and (2) every totally balanced
game generates a market with concave utility functions. A particular form of
such a market is one where the commodities are the participants themselves, a
labor market for example.
But markets are very special structures, more so when it is required that

utility functions be concave. Participants may also get utility from belonging
to groups, such as marriages, or clubs, or productive coalitions. It may be that
participants in an economy even derive utility (or disutility) from engaging in
processes that lead to the eventual exchange of commodities. The question is
when are such economic structures equivalent to markets with concave utility
functions.
This paper summarizes research showing that a broad class of large economies

generate balanced market games. The economies include, for example, economies
with clubs where individuals may have memberships in multiple clubs, with in-
divisible commodities, with nonconvexities and with non-monotonicities. The
main assumption are: (1) that an option open to any group of players is to
break into smaller groups and realize the sum of the worths of these groups,
that is, essential superadditivity is satisfied and :(2) relatively small groups of
participants can realize almost all gains to coalition formation.
The equivalence of games with many players and markets with many par-

ticipants indicates that relationships obtained for markets with concave utility
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functions and many participants will also hold for diverse social and economic
situations with many players. These relationships include: (a) equivalence of
the core and the set of competitive outcomes; (b) the Shapley value is contained
in the core or approximate cores; (c) the equal treatment property holds — that
is, both market equilibrium and the core treat similar players similarly. These
results can be applied to diverse economic models to obtain the equivalence of
cooperative outcomes and competitive, price taking outcomes in economies with
many participants and indicate that such results hold in yet more generality.

3 Introduction
One of the subjects that has long intrigued economists and game theorists
is the relationship between games, both cooperative and noncooperative, and
economies. Seminal works making such relationships include Shubik (1959),
Debreu and Scarf (1963), Aumann (1964), Shapley and Shubik (1969,1975) and
Aumann and Shapley (1974), all connecting outcomes of price-taking behavior
in large economies with cores of games. See also Shapley and Shubik (1977) and
an ongoing stream of papers connecting strategic behavior to market behavior.
Our primary concern here, however, is not with the equivalence of outcomes
of solution concepts for economies, as is Debreu and Scarf (1963) or Aumann
(1964) for example, but rather with equivalences of the structures of markets
and games. Solution concepts play some role, however, in establishing these
equivalences and in understanding the meaning of the equivalence of markets
and games.
In this entry, following Shapley and Shubik (1969), we focus on markets

in which utility functions of participants are quasi-linear, that is, the utility
function u of a participant can be written as u(x, ξ) = bu(x) + ξ where x ∈ RL+
is a commodity bundle, ξ ∈ R is interpreted as money and bu is a continuous
function. Each participant in an economy has an endowment of commodities
and, without any substantive loss of generality, it is assumed that no money
is initially endowed. The price of money is assumed equal to one. A price
taking equilibrium for a market then consists of a price vector p ∈ RL for the
commodities and an assignment of commodities to participants such that: the
total amounts of commodities assigned to participants equals the total amount
of commodities with which participants are endowed and; given prices, each
participant can afford his assignment of commodities and no participant, subject
to his budget constraint, can afford a preferred commodity bundle.
We also treat games with side payments, alternatively called games with

transferable utility or, in brief, TU games. Such a game consists of a finite set
N of players and a worth function that assigns to each group of players S ⊂ N
a real number v(S) ∈ R+, called the worth of the group. In interpretation, v(S)
is the total payoff that a group of players can realize by cooperation. A central
game-theoretic concept for the study of games is the core. The core consists
of those divisions of the maximal total worth achievable by cooperation among
the players in N so that each group of players is assigned at least its worth. A
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game is balanced if it has a nonempty core and totally balanced if all subgames
of the game have nonempty cores. A subgame of a game is simply a group of
players S ⊂ N and the worth function restricted to that group and the smaller
groups that it contains.
Given an economy any feasible state of the economy generates a total worth

of each group of participants. The worth of a group of participants (viewed as
players of a game) is the maximal total utility achievable by the members of the
group using only those resources they control. In this way a market generates a
game — a set of players (the participants in the economy) and a worth for each
group of players.
Shapley and Shubik (1969) demonstrate that any market where all partic-

ipants have concave, monotonic increasing utility functions generates a totally
balanced game and that any totally balanced game generates a market, thus
establishing an equivalence between a class of markets and totally balanced
cooperative games. A particular sort of market is canonical; one where each
participant in the market is endowed with one unit of a commodity, his “type”.
Intuitively, one might think of the market as one where each participant owns
one unit of himself or of his labor.
In the last twenty years or so there has been substantial interest in broader

classes of economies, including those with indivisibilities, nonmonotonicities,
local public goods or clubs, where the worth of a group depends not only on the
private goods endowed to members of the group but also on the characteristics
of the group members. For example, the success of the marriage of a man and
a woman depends on their characteristics and on whether their characteristics
are complementary. Similarly, the output of a machine and a worker using
the machine depends on the quality and capabilities of the machine and how
well the abilities of the worker fit with the characteristics of the machine — a
concert pianist fits well with an high quality piano but perhaps not so well with
a sewing machine. Or how well a research team functions depends not only on
the members of the team but also on how well they interact. For simplicity,
we shall refer to these economies as club economies. Such economies can be
modelled as cooperative games.
In this entry we discuss and summarize literature showing that economies

with many participants are approximated by markets where all participants
have the same concave utility function and for which the core of the game is
equivalent to the set of price-taking economic equilibrium payoffs. The research
presented is primarily from Shubik and Wooders (1982), Wooders (1994) and
earlier papers due to this author. For the most recent results in this line of
research we refer the reader to Wooders (2007a,b, 2008). We also discuss other
related works throughout the course of the entry. The models and results are
set in a broader context in the conclusions.
The importance of the equivalence of markets and games with many players

relates to the hypothesis of perfect competition, that large numbers of partici-
pants leads to price-taking behavior, or behavior “as if” participants took prices
as given. Von Neumann and Morgenstern perceived that even though individ-
uals are unable to influence market prices and cannot benefit from strategic
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behavior in large markets, large “coalitions” might form. Von Neumann and
Morgenstern write:

It is neither certain nor probable that a mere increase in the number of par-
ticipants might lead in fine to the conditions of free competition. The
classical definitions of free competition all involve further postulates be-
sides this number. E.g., it is clear that if certain great groups of individuals
will — for any reason whatsoever— act together, then the great number of
participants may not become effective; the decisive exchanges may take
place directly between large “coalitions,” few in number and not between
individuals, many in number acting independently. ... Any satisfactory
theory ...will have to explain when such big coalitions will or will not be
formed —i.e., when the large numbers of participants will become effective
and lead to more or less free competition.

The assumption that small groups of individuals cannot affect market aggre-
gates, virtually taken for granted by von Neumann and Morgenstern, lies behind
the answer to the question they pose. The results presented in this entry suggest
that the great number of participants will become effective and lead to more
or less free competition when small groups of participants cannot significantly
affect market outcomes. Since all or almost all gains to collective activities
can be captured by relatively small groups, large groups gain no market power
from size; in other words, large groups are inessential. That large groups are
inessential is equivalent to small group effectiveness (Wooders (1992b). A re-
markable feature of the results discussed in this essay is they are independent
of any particular economic structure.

4 Transferable utility games; some standard de-
finitions

Let (N, ν) be a pair consisting of a finite set N , called a player set, and a
function v, called a worth function, from subsets of N to the real numbers
R with v(φ) = 0. The pair (N, ν) is a TU game (also called a game with
side payments). Nonempty subsets S of N are called groups (of players) and
the number of members of the group S is given by |S|. Following is a simple
example.

Example 1. A glove game: Suppose that we can partition a player set N
into two groups, say N1 and N2. In interpretation, a member of N1 is endowed
with a right-hand (RH) glove and a member of N2 is endowed with a left-hand
(LH) glove. The worth of a pair of gloves is $1, and thus the worth of a group
of players consisting of player i ∈ N1 and player j ∈ N2 is $1. The worth of a
single glove and hence of a one-player group is $0. The worth of a group S ⊂ N
is given by v(S) = min{|S ∩N1| , |S ∩N2|}. The pair (N, ν) is a game.
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A payoff vector for a game (N, ν) is a vector u ∈ RN . We regard vectors
in finite dimensional Euclidean space RT as functions from T to R, and write
ui for the ith component of u, etc. If S ⊂ T and u ∈ RT , we shall write
uS := (ui : i ∈ S) for the restriction of u to S. We write 1S for the element
of RS all of whose coordinates are 1 (or simply 1 if no confusion can arise.) A
payoff vector u is feasible for a group S ⊂ N if

u(S)
def
=
X
i∈S

ui ≤
KX
k=1

v(Sk) (1)

for some partition {S1, ..., SK} of S.
Given ε ≥ 0, a payoff vector u ∈ RN is in the weak ε-core of the game (N, ν)

if it is feasible and if there is a group of players N0 ⊂ N such that¯̄
N\N0

¯̄
|N | ≤ ε (2)

and, for all groups S ⊂ N0,

u(S) ≥ v(S)− ε|S| (3)

where |S| is the cardinality of the set S. (It would be possible to use two different
values for epsilon in expressions (2) and ( 3). For simplicity, we have chosen to
take the same value for epsilon in both expressions.) A payoff vector u is in the
uniform ε-core (or simply in the ε-core) if if is feasible and if (3) holds for all
groups S ⊂ N . When ε = 0, then both notions of ε-cores will be called simply
the core.

Example 1 continued. The glove game (N, ν) described in Example 1 has the
happy feature that the core is always nonempty. For the game to be of interest,
we will suppose that there is least one player of each type (that is, there is at
least one player with a RH glove and one player with a LH glove). If |N1| =
|N2| any payoff vector assigning the same share of a dollar to each player with a
LH glove and the remaining share of a dollar to each player with a RH glove is
in the core. If there are more players of one type, say |N1| > |N2| for specificity,
then any payoff vector in the core assigns $1 to each player of the scarce type;
that is, players with a RH glove each receive 0 while players with a LH glove
each receive $1.

Not all games have nonempty cores, as the following example illustrates.

Example 2. A simple majority game with an empty core. Let N = {1, 2, 3}
and define the function v as follows:

v(S) =

½
0 if |S| = 1,
1 otherwise.
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It is easy to see that the core of the game is empty. For if a payoff vector u
were in the core, then it must hold that for any i ∈ N, ui ≥ 0 and for any
i, j ∈ N , ui + uj ≥ 1. Moreover, feasibility dictates that u1 + u2 + u3 ≤ 1. This
is impossible; thus, the core is empty.
Before leaving this example, let us ask whether it would be possible to subsi-

dize the players by increasing the payoff to the total player set N and, by doing
so, ensure that the core of the game with a subsidy is nonempty. We leave it
to the reader to verify that if v(N) were increased to $3/2 (or more), the new
game would have a nonempty core.

Let (N, ν) be a game and let i, j ∈ N . Then players i and j are substitutes if,
for all groups S ⊂ N with i, j /∈ S it holds that

v(S ∪ {i}) = v(S ∪ {j}).

Let (N, ν) be a game and let u ∈ RN be a payoff vector for the game. If for
all players i and j who are substitutes it holds that ui = uj then u has the equal
treatment property. Note that if there is a partition of N into T subsets, say
N1, ...,NT , where all players in each subset Nt are substitutes for each other,
then we can represent u by a vector u ∈ RT where, for each t, it holds that
ut = ui for all i ∈ Nt.

4.0.1 Essential superadditivity

We wish to treat games where the worth of a group of players is independent of
the total player set in which it is embedded and an option open to the members
of a group is to partition themselves into smaller groups; that is, we treat
games that are essentially superadditive. This is built into our the definition of
feasibility above, (1). An alternative approach, which would still allow us to
treat situations where it is optimal for players to form groups smaller than the
total player set, would be to assume that v is the “superadditive cover” of some
other worth function v0. Given a not-necessarily-superadditive function v0, for
each group S define v(S) by:

v(S) = max
X

v0(Sk) (4)

where the maximum is taken over all partitions {Sk} of S; the function v is the
superadditive cover of v0. Then the notion of feasibility requiring that a payoff
vector u is feasible only if

u(N) ≤ v(N), (5)

gives an equivalent set of feasible payoff vectors to those of the game (N, v0)
with the definition of feasibility given by (1).
The following Proposition may be well known and is easily proven. This

result was already well understood in Gillies (1953) and applications have ap-
peared in a number of papers in the theoretical literature of game theory; see,
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for example (for ε = 0) Aumann and Dreze (1974) and Kaneko and Wooders
(1982). It is also well known in club theory and the theory of economies with
many players and local public goods.

Proposition 1: Given ε ≥ 0, let (N, v0) be a game. A payoff vector u ∈ RN

is in the weak, respectively uniform, ε-core of (N, v0) if and only if it is in the
weak, respectively uniform, ε-core of the superadditive cover game, say (N, ν),
where v is defined by (4).

5 A market
In this section we introduce the definition, from Shapley and Shubik (1969), of
a market. Unlike Shapley and Shubik, however, we do not assume concavity of
utility functions. Amarket is taken to be an economy where all participants have
continuous utility functions over a finite set of commodities that are all linear in
one commodity, thought of as an “idealized” money. Money can be consumed
in any amount, possibly negative. For later convenience we will consider an
economy where there is a finite set of types of participants in the economy and
all participants of the same type have the same endowments and preferences.
Consider an economy with T + 1 types of commodities. Denote the set of

participants by

N = {(t, q) : t = 1, · · ·, T, and q = 1, · · ·, nt}.

Assume that all participants of the same type, (t, q), q = 1, ..., nt have the same
utility functions given by but(y, ξ) = ut(y) + ξ

where y ∈ RT+ and ξ ∈ R. Let atq ∈ RT+ be the endowment of the (t, q)th player
of the first T commodities. The total endowment is given by

P
(t,q)∈N atq. For

simplicity and without loss of generality, we can assume that no participant is
endowed with any nonzero amount of the (T+1)th good, the “money” or medium
of exchange. One might think of utilities as being measured in money. It is
because of the transferability of money that utilities are called “transferable”.

Remark 1: Instead of assuming that money can be consumed in negative
amounts one might assume that endowments of money are sufficiently large so
that no equilibrium allocates any participant a negative amount of money. For
further discussion of transferable utility see, for example, Bergstrom and Varian
(1985) or Kaneko and Wooders (2004).

Given a group S ⊂ N , a S-allocation of commodities is a set

{(ytq, ξtq) ∈ RT+ ×R :
X

(t,q)∈S
ytq ≤

X
(t,q)∈S

atq and
X

(t,q)∈S
ξtq ≤ 0};
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that is, a S-allocation is a redistribution of the commodities owned by the
members of S among themselves and monetary transfers adding up to no more
than zero. When S = N , a S-allocation is called simply an allocation.
With the price of the (T + 1)th commodity ξ set equal to 1, a competitive

outcome is a price vector p in RT , listing prices for the first T commodities, and
an allocation {(ytq, ξtq) ∈ RT ×R : (t, q) ∈ N} for which

(a) ut(ytq)− p · (ytq − atq) ≥ ut(by)− p · (by − atq)
for all by ∈ RT+, (t, q) ∈ N,

(b)
P
(t,q)∈N ytq =

P
(t,q) a

tq = y,

(c) ξtq = p · (ytq − atq) for all (t, q) ∈ N and

(d)
P

(t,q)∈N ξtq = 0.

(6)

Given a competitive outcome with allocation {(ytq, ξtq) ∈ RT+ × R : (t, q) ∈ N}
and price vector p, the competitive payoff to the (t, q)th participant is u(ytq) −
p · (ytq − atq). A competitive payoff vector is given by

(u(ytq)− p · (ytq − atq) : (t, q) ∈ N).

In the following we will assume that for each t, all participants of type t
have the same endowment; that is, for each t, it holds that atq = atq

0
for all

q, q0 = 1, ..., nt. In this case, every competitive payoff has the equal treatment
property;

ut(y
tq)− p · (ytq − atq) = ut(y

tq0)− p · (ytq0 − atq
0
)

for all q, q0 and for each t. It follows that a competitive payoff vector can be
represented by a vector in RT with one component for each player type.
It is easy to generate a game from the data of an economy. For each group

of participants S ⊂ N , define

v(S) = max
P
tq∈S

ut(y
tq, ξtq)

where the maximum is taken over the set of S-allocations. Let (N, ν) denote a
game derived from a market.
Under the assumption of concavity and monotonicity of the utility functions

of the participants in an economy, Shapley and Shubik (1969) show that a com-
petitive outcome for the market exists and that the competitive payoff vectors
are in the core of the game. (Since Debreu and Scarf, 1963, such results have
been obtained in substantially more general models of economies.)

6 Market-game equivalence
To facilitate exposition of the theory of games with many players and the equiv-
alence of markets and games, we consider games derived from a common under-
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lying structure and with a fixed number of types of players, where all players of
the same type are substitutes for each other.

6.1 Pregames

Let T be a positive integer, to be interpreted as a number of player types. A
profile s = (s1, · · ·, sT ) ∈ ZT+, where ZT+ is the T -fold Cartesian product of the
non-negative integers Z+, describes a group of players by the numbers of players
of each type in the group. Given profile s, define the norm or size of s by

ksk def=
X
t

st,

simply the total number of players in a group of players described by s. A
subprofile of a profile n ∈ ZT+ is a profile s satisfying s ≤ n. A partition of
a profile s is a collection of subprofiles {sk} of n, not all necessarily distinct,
satisfying X

k

sk = s.

A partition of a profile is analogous to a partition of a set except that all members
of a partition of a set are distinct.
Let Ψ be a function from the set of profiles ZT+ to R+ with Ψ(0) = 0. The

value Ψ(s) is interpreted as the total payoff a group of players with profile s
can achieve from collective activities of the group membership and is called the
worth of the profile s.
Given Ψ, define a worth function Ψ∗, called the superadditive cover of Ψ, by

Ψ∗(s)
def
= max

X
k

Ψ(sk),

where the maximum is taken over the set of all partitions {sk} of s. The function
Ψ is said to be superadditive if the worth functions Ψ and Ψ∗ are equal.
We define a pregame as a pair (T,Ψ) where Ψ : ZT+ → R+. As we will now

discuss, a pregame can be used to generate multiple games. To generate a
game from a pregame, it is only required to specify a total player set N and
the numbers of players of each of T types in the set. Then the pregame can be
used to assign a worth to every group of players contained in the total player
set, thus creating a game.
A game determined by the pregame (T,Ψ), which we will typically call a

game or a game with side payments, is a pair [n; (T,Ψ)] where n is a profile. A
subgame of a game [n; (T,Ψ)] is a pair [s; (T,Ψ)] where s is a subprofile of n.
With any game [n; (T,Ψ)] we can associate a game (N, ν) in the form intro-

duced earlier as follows: Let

N = {(t, q) : t = 1, · · ·, T and q = 1, · · ·, nt}

12



be a player set for the game. For each subset S ⊂ N define the profile of S,
denoted by prof(S)∈ ZT+, by its components

prof(S)t
def
= |{S ∩ {(t0, q) : t0 = t and q = 1, · · ·, nt}|

and define
v(S)

def
= Ψ(prof(S)).

Then the pair (N, ν) satisfies the usual definition of a game with side payments.
For any S ⊂ N , define

v∗(S)
def
= Ψ∗(prof(S)).

The game (N, ν∗) is the superadditive cover of (N, ν).
A payoff vector for a game (N, ν) is a vector u ∈ RN . For each nonempty

subset S of N define
u(S)

def
=

X
(t,q)∈S

utq.

A payoff vector u is feasible for S if

u(S) ≤ v∗(S) = Ψ∗(prof(S)).

If S = N we simply say that the payoff vector u is feasible if

u(N) ≤ v∗(N) = Ψ∗(prof(N))

Note that our definition of feasibility is consistent with essential superadditivity;
a group can realize at least as large a total payoff as it can achieve in any
partition of the group and one way to achieve this payoff is by partitioning into
smaller groups.
A payoff vector u satisfies the equal-treatment property if utq = utq

0
for all

q, q0 ∈ {1, · · ·, nt} and for each t = 1, · · ·, T .
Let [n, (T,Ψ)] be a game and let β be a collection of subprofiles of n. The

collection is a balanced collection of subprofiles of n if there are positive real
numbers γ

s
for s ∈ β such that

P
s∈β

γ
s
s = n. The numbers γ

s
are called

balancing weights. Given real number ε ≥ 0, the game [n; (T,Ψ)] is ε-balanced
if for every balanced collection β of subprofiles of n it holds that

Ψ∗(n) ≥
X
s∈β

γ
s
(Ψ(s)− εksk) (7)

where the balancing weights for β are given by γ
s
for s ∈ β. This definition

extends that of Bondareva (1983) and Shapley (1967) to games with player
types. Roughly, a game is (ε) balanced if allowing “part time” groups does
not improve the total payoff (by more than ε per player). A game [n; (T,Ψ)] is
totally balanced if every subgame [s; (T,Ψ)] is balanced.
The balanced cover game generated by a game [n; (T,Ψ)] is a game [n; (T,Ψb)]

where
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1. Ψb(s) = Ψ(s) for all s 6= n and

2. Ψb(n) ≥ Ψ(n) and Ψb(n) is as small as possible consistent with the non-
emptiness of the core of [n; (T,Ψb)].

From the Bondareva-Shapley Theorem it follows that Ψb(n) = Ψ∗(n) if and
only if the game [n; (T,Ψ)] is balanced (ε-balanced, with ε = 0).
For later convenience, the notion of the balanced cover of a pregame is

introduced. Let (T,Ψ) be a pregame. For each profile s, define

Ψb(s)
def
= max

β

X
g∈β

γgΨ(g), (8)

where the maximum is taken over all balanced collections β of subprofiles of s
with weights γg for g ∈ β. The pair (T,Ψb) is called the balanced cover pregame
of (T,Ψ). Since a partition of a profile is a balanced collection it is immediately
clear that Ψb(s) ≥ Ψ∗(s) for every profile s.

6.2 Premarkets

In this section, we introduce the concept of a premarket and re-state results
from Shapley and Shubik (1969) in the context of pregames and premarkets.
Let L+1 be a number of types of commodities and let {but(y, ξ) : t = 1, ..., T}

denote a finite number of functions, called utility functions of the form

but(y, ξ) = ut(y) + ξ,

where y ∈ RL+ and ξ ∈ R. (Such functions, in the literature of economics, are
commonly called quasi-linear.) Let {at ∈ RL+ : t = 1, ..., T} be interpreted as
a set of endowments. We assume that ut(at) ≥ 0 for each t. For t = 1, ..., T

we define ct def= (ut(·), at) as a participant type and let C = {ct : t = 1, ..., T}
be the set of participant types. Observe that from the data given by C we can
construct a market by specifying a set of participants N and a function from N
to C assigning endowments and utility functions — types — to each participant
in N . A premarket is a pair (T,C).
Let (T,C) be a premarket and let s = (s1, ..., sT ) ∈ ZT+. We interpret s

as representing a group of economic participants with st participants having
utility functions and endowments given by ct for t = 1, ..., T ; for each t, that is,
there are st participants in the group with type ct. Observe that the data of a
premarket gives us sufficient data to generate a pregame. In particular, given a
profile s = (s1, ..., sT ) listing numbers of participants of each of T types, define

W (s)
def
= max

P
t
stut(y

t)

where the maximum is taken over the set {yt ∈ RL+ : t = 1, ..., T and
P
t
sty

t =P
t
atyt}. Then the pair (T,W ) is a pregame generated by the premarket.
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The following Theorem is an extension to premarkets or a restatement of a
result due to Shapley and Shubik (1969).

Theorem 1. Let (T,C) be a premarket derived from economic data in which
all utility functions are concave. Then the pregame generated by the premarket
is totally balanced.

6.3 Direct markets and market-game equivalence

Shapley and Shubik (1969) introduced the notion of a direct market derived
from a totally balanced game. In the direct market, each player is endowed
with one unit of a commodity (himself) and all players in the economy have
the same utility function. In interpretation, we might think of this as a labor
market or as a market for productive factors, (as in Owen 1975, for example)
where each player owns one unit of a commodity. For games with player types
as in this essay, we take the player types of the game as the commodity types of
a market and assign all players in the market the same utility function, derived
from the worth function of the game.
Let (T,Ψ) be a pregame and let [n; (T,Ψ)] be a derived game. Let N =

{(t, q) : t = 1, ..., T and q = 1, ..., nt for each t} denote the set of players in the
game where all participants {(t0, q) : q = 1, ..., nt0} are of type t0 for each t0 =
1, ..., T . To construct the direct market generated by a derived game [n; (T,Ψ)],
we take the commodity space as RT+ and suppose that each participant in the
market of type t is endowed with one unit of the tth commodity, and thus has
endowment 1t = (0, · · ·, 0, 1, 0, · · ·, 0) ∈ RT+ where “1” is in the tth position. The
total endowment of the economy is then given by

P
nt1t = n.

For any vector y ∈ RT+ define

u(y)
def
= max

X
s≤n

γsΨ(s), (9)

the maximum running over all {γs ≥ 0 : s ∈ ZT+, s ≤ n} satisfyingX
s≤n

γss = y. (10)

As noted by Shapley and Shubik (1969), but for our types case, it can be
verified that the function u is concave and one-homogeneous. This does not
depend on the balancedness of the game [n; (T,Ψ)]. Indeed, one may think
of u as the “balanced cover of [n; (T,Ψ)] extended to RT+”. Note also that
u is superadditive, independent of whether the pregame (T,Ψ) is superaddi-
tive. We leave it to the interested reader to verify that if Ψ were not neces-
sarily superadditive and Ψ∗ is the superadditive cover of Ψ then it holds that
max

P
s≤n γsΨ(s) = max

P
s≤n γsΨ

∗(s).
Taking the utility function u as the utility function of each player (t, q) ∈ N

where N is now interpreted as the set of participants in a market, we have
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generated a market, called the direct market, denoted by [n, u; (T,Ψ)], from the
game [n; (T,Ψ)].

Again, the following extends a result of Shapley and Shubik (1969) to pregames.

Theorem 2. Let [n, u; (T,Ψ)] denote the direct market generated by a game
[n; (T,Ψ)] and let [n; (T, u)] denote the game derived from the direct market.
Then, if [n; (T,Ψ)] is a totally balanced game, it holds that [n; (T, u)] and
[n; (T,Ψ)] are identical.

Remark 2. If the game [n; (T,Ψ)] and every subgame [s, (T,Ψ)] has a non-
empty core — that is, if the game is ‘totally balanced’— then the game [n; (T, u)] generated
by the direct market is the initially given game [n; (T,Ψ)]. If however the game
[n; (T,Ψ)] is not totally balanced then u(s) ≥ Ψ(s) for all profiles s ≤ n. But,
whether or not [n; (T,Ψ)] is totally balanced, the game [n; (T, u)] is totally bal-
anced and coincides with the totally balanced cover of [n; (T,Ψ)].

Remark 3. Another approach to the equivalence of markets and games is
taken by Garratt and Qin (1997), who define a class of direct lottery mar-
kets. While a player can participate in only one coalition, both ownership of
coalitions and participation in coalitions is determined randomly. Each player is
endowed with one unit of probability, his own participation. Players can trade
their endowments at market prices. The core of the game is equivalent to the
equilibrium of the direct market lottery.

7 Equivalence of markets and games with many
players

The requirement of Shapley and Shubik (1969) that utility functions be con-
cave is restrictive. It rules out, for example situations such as economies with
indivisible commodities. It also rules out club economies; for a given club struc-
ture of the set of players — in the simplest case, a partition of the total player
set into groups where collective activities only occur within these groups — it
may be that utility functions are concave over the set of alternatives available
within each club, but utility functions need not be concave over all possible club
structures. This rules out many examples; we provide a simple one below.
To obtain the result that with many players, games derived from pregames

are market games, we need some further assumption on pregames. If there
are many substitutes for each player, then the simple condition that per capita
payoffs are bounded — that is, given a pregame (T,Ψ), that there exists some
constant K such that Ψ(s)ksk < K for all profiles s — suffices. If, however, there
may be ‘scarce types’, that is, players of some type(s) become negligible in the
population, then a stronger assumption of ‘small group effectiveness’ is required.
We discuss these two conditions in the next section.
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7.1 Small group effectiveness and per capita boundedness

This section discusses conditions limiting gains to group size and their relation-
ships. This definition was introduced in Wooders (1983), for NTU, as well as
TU, games.

PCB A pregame (T,Ψ) satisfies per capita boundedness (PCB) if

PCB : sup
s∈ZT+

Ψ(s)

ksk is finite (11)

or equivalently,

sup
s∈ZT+

Ψ∗(s)

ksk is finite.

It is known that under the apparently mild conditions of PCB and essen-
tial superadditivity, in general games with many players of each of a finite
number of player types and a fixed distribution of player types have nonempty
approximate cores; Wooders (1977,1983). (Forms of these assumptions were
subsequently also used in Shubik and Wooders, 1982,1983; Kaneko and Wood-
ers, 1986; and Wooders 1992b,1994 among others.) Moreover, under the same
conditions, approximate cores have the property that most players of the same
type are treated approximately equally (Wooders 1977,1992b; see also Shubik
and Wooders 1982). These results, however, either require some assumption
ruling out ‘scarce types’ of players, for example, situations where there are only
a few players of some particular type and these players can have great effects
on total feasible payoffs. Following are two examples. The first illustrates that
PCB does not control limiting properties of the per capita payoff function when
some player types are scarce.

Example 3. (Wooders 2008a) Let T = 2 and let (T,Ψ) be the pregame given
by

Ψ(s1, s2) =

⎧⎨⎩ s1 + s2 when s1 > 0

0 otherwise

The function Ψ obviously satisfies PCB. But there is a problem in defin-
ing limΨ(s1,s2)s1+s2

as s1 + s2 tends to infinity, since the limit depends on how
it is approached. Consider the sequence (sν1 , s

ν
2) where (s

ν
1 , s

ν
2) = (0, ν); then

limΨ(s
ν
1 ,s

ν
2 )

sν1+s
ν
2
= 0. Now suppose in contrast that (sν1 , s

ν
2) = (1, ν); then lim

Ψ(sν1 ,s
ν
2 )

sν1+s
ν
2
=

1. This illustrates why, to obtain the result that games with many players are
market games either it must be required that there are no scarce types or some
some assumption limiting the effects of scarce types must be made. We return
to this example in the next section.
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The next example illustrates that, with only PCB, uniform approximate
cores of games with many players derived from pregames may be empty.

Example 4 . (Wooders 2008a) Consider a pregame (T,Ψ) where T = {1, 2}
and Ψ is the superadditive cover of the function Ψ0 defined by:

Ψ0(s)
def
=

½
|s| if s1 = 2,
0 otherwise.

Thus, if a profile s = (s1, s2) has s1 = 2 then the worth of the profile according
to Ψ0 is equal to the total number of players it represents, s1+s2, while all other
profiles s have worth of zero. In the superadditive cover game the worth of a
profile s is 0 if s1 < 2 and otherwise is equal to s2 plus the largest even number
less than or equal to s1.
Now consider a sequence of profiles (sν)ν where sν1 = 3 and sν2 = ν for all

ν. Given ε > 0, for all sufficiently large player sets the uniform ε-core is empty.
Take, for example, ε = 1/4. If the uniform ε-core were nonempty, it would have
to contain an equal-treatment payoff vector.1 For the purpose of demonstrating
a contradiction, suppose that uν = (uν1 , u

ν
2) represents an equal treatment payoff

vector in the uniform ε-core of [sν ; (T,Ψ)]. The following inequalities must hold:

3uν1 + νuν2 ≤ ν + 3,
2uν1 + νuν2 ≥ ν + 3, and

uν1 ≥ 3
4 .

which is impossible. A payoff vector which assigns each player zero is, however,
in the weak ε-core for any ε > 3

ν+3 . But it is not very appealing, in situations
such as this, to ignore a relatively small group of players (in this case, the players
of type 1) who can have a large effect on per capita payoffs. This leads us to
the next concept.¥

To treat the scarce types problem, Wooders (1992a,b,1994) introduced the
condition of small group effectiveness (SGE). SGE is appealing technically since
it resolves the scarce types problem. It is also economically intuitive and ap-
pealing; the condition defines a class of economies that, when there are many
players, generate competitive markets. Informally, SGE dictates that almost all
gains to collective activities can be realized by relatively small groups of players.
Thus, SGE is exactly the sort of assumption required to ensure that multiple,
relatively small coalitions, firms, jurisdictions, or clubs, for example, are optimal
or near-optimal in large economies.

1 It is well known and easily demonstrated that the uniform ε-core of a TU game is nonempty
if and only if it contains an equal treatment payoff vector. This follows from the fact that the
uniform ε-core is a convex set.
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A pregame (T,Ψ) satisfies small group effectiveness, SGE, if:

SGE :

For each real number ε > 0, there is an integer η0(ε) such that
for each profile s, for some partition {sk} of s with
kskk ≤ η0(ε) for each subprofile sk, it holds that

Ψ∗(s)−
P

k Ψ(s
k) ≤ εksk;

(12)
given ε > 0 there is a group size η0(ε) such that the loss from restricting
collective activities within groups to groups containing fewer that η0(ε)members
is at most ε per capita (Wooders 1992a).2

SGE also has the desirable feature that if there are no ‘scarce types’ — types
of players that appear in vanishingly small proportions— then SGE and PCB
are equivalent.

Theorem 3 (Wooders 1994). With ‘thickness,’ SGE=PCB.
(1) Let (T,Ψ) be a pregame satisfying SGE. Then the pregame satisfies PCB.
(2) Let (T,Ψ) be a pregame satisfying PCB. Then given any positive real

number ρ, construct a new pregame (T,Ψρ) where the domain of Ψρ is restricted
to profiles s where, for each t = 1, · · ·, T , either st

ksk > ρ or st = 0. Then (T,Ψρ)
satisfies SGE on its domain.

It can also be shown that small groups are effective for the attainment of
nearly all feasible outcomes, as in the above definition, if and only if small
groups are effective for improvement — any payoff vector that can be significantly
improved upon can be improved upon by a small group (see Proposition 3.8 in
Wooders 1992b).

Remark 4: Under a stronger condition of strict small group effectiveness, which
dictates that η(ε) in the definition of small group effectiveness can be chosen
independently of ε, stronger results can be obtained than those presented in this
section and the next. We refer to Winter and Wooders (1990) for a treatment
of this case.

Remark 5. On the importance of taking into account scarce types. Recall
the quotation from von Neumann and Morgenstern and the discussion follow-
ing the quotation. The assumption of per capita boundedness has significant
consequences but is quite innocuous — ruling out the possibility of average util-
ities becoming infinite as economies grow large does not seem restrictive. But
with only per capita boundedness, even the formation of small coalitions can
have significant impacts on aggregate outcomes. With small group effectiveness,
however, there is no problem of either large or small coalitions acting together
— large coalitions cannot do significantly better then relatively small coalitions.

2Exactly the same definition applies to situations with a compact metric space of player
types, c.f. Wooders (1988,1992a).
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Roughly, the property of large games we next introduce is that relatively
small groups of players make only “asymptotic negligible” contributions to per-
capita payoffs of large groups. A pregame (Ω,Ψ) satisfies asymptotic negligibility
if, for any sequence of profiles {fν} where

kfνk→∞ as ν →∞,

σ(fν) = σ(fν
0
) for all ν and ν0 and

limν→∞
Ψ∗(fν)
kfνk exists,

(13)

then for any sequence of profiles {cν} with

lim
ν→∞

kcνk
kfνk = 0, (14)

it holds that

limν→∞
Ψ∗kfν+cνk
kfν+cνk exists, and

limν→∞
Ψ∗kfν+cνk
kfν+cνk = limν→∞

Ψ∗(fν)
kfνk .

(15)

Theorem 4 (Wooders (1992b, 2008b). A pregame (T,Ψ) satisfies SGE if and
only if it satisfies PCB and asymptotic negligibility.

Intuitively, asymptotic negligibility ensures that vanishingly small percent-
ages of players have vanishingly small effects on aggregate per-capita worths. It
may seem paradoxical that SGE, which highlights the importance of relatively
small groups, is equivalent to asymptotic negligibility. To gain some intuition,
however, think of a marriage model where only two person marriages are al-
lowed. Obviously two-person groups are (strictly) effective, but also, in large
player sets, no two persons can have a substantial affect on aggregate per-capita
payoffs.

Remark 6 Without some assumptions ensuring essential superadditivity, at
least as incorporated into our definition of feasibility, nonemptiness of approxi-
mate cores of large games cannot be expected; superadditivity assumptions (or
the close relative, essential superadditivity) are heavily relied upon in all papers
on large games cited. In the context of economies, superadditivity is a sort of
montonicity of preferences or production functions assumption, that is, superad-
ditivity of Ψ implies that for all s, s0 ∈ ZT+, it holds that Ψ(s+s0) ≥ Ψ(s)+Ψ(s0).
Our assumption of small group effectiveness, SGE, admits non-monotonicities.
For example, suppose that ‘two is company, three or more is a crowd,’ by sup-
posing there is only one commodity and by setting Ψ(2) = 2, Ψ(n) = 0 for
n 6= 2. The reader can verify, however, that this example satisfies small group
effectiveness since Ψ∗(n) = n if n is even and Ψ∗(n) = n− 1 otherwise. Within
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the context of pregames, requiring the superadditive cover payoff to be approxi-
mately realizable by partitions of the total player set into relatively small groups
is the weakest form of superadditivity required for the equivalence of games with
many players and concave markets.

7.2 Derivation of markets from pregames satisfying SGE

With SGE and PCB in hand, we can now derive a premarket from a pregame
and relate these concepts.
To construct a limiting direct premarket from a pregame, we first define an

appropriate utility function. Let (T,Ψ) be a pregame satisfying SGE. For each
vector x in RT+ define

U(x)
def
= kxk lim

ν→∞

Ψ∗(fν)

kfνk (16)

where the sequence {fν} satisfies

limν→∞
fν

kfνk =
x
kxk

and

kfνk→∞.

(17)

Theorem 5. (Wooders 1988; 1994). Assume the pregame (T,Ψ) satisfies small
group effectiveness. Then for any x ∈ RT+ the limit (16) exists. Moreover, U(·)
is well-defined, concave and 1-homogeneous and the convergence is uniform in
the sense that, given ε > 0 there is an integer η such that for all profiles s with
ksk ≤ η it holds that ¯̄̄̄

U(
s

ksk )−
Ψ∗(s)

ksk

¯̄̄̄
≤ ε.

From Wooders (1994, Theorem 4), if arbitrarily small percentages of players of
any type that appears in games generated by the pregame are ruled out, then
the above result holds under per capita boundedness (Wooders 1994, Theorem
6). As noted in the introduction to this paper, for the TU case, the concavity of
the limiting utility function, for the model of Wooders (1983) was first noted by
Aumann (1987). The concavity is shown to hold with a compact metric space
of player types in Wooders (1988) and is simplified to the finite types case in
Wooders, (1994).

Theorem 5 follows from the facts that the function U is superadditive and 1-
homogeneous on its domain. Since U is concave, it is continuous on the interior
of its domain; this follows from PCB. Small group effectiveness ensures that the
function U is continuous on its entire domain (Wooders 1994, Lemma 2).

Theorem 6. (Wooders 1994) Let (T,Ψ) be a pregame satisfying small group
effectiveness and let (T,U) denote the derived direct market pregame. Then
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(T,U) is a totally balanced market game. Moreover, U is one-homogeneous,
that is, U(λx) = λU(x) for any non-negative real number λ.

In interpretation, T denotes a number of types of players/commodities and
U denotes a utility function on RT+. Observe that when U is restricted to
profiles (in ZT+), the pair (T,U) is a pregame with the property that every game
[n; (T,U)] has a nonempty core; thus, we will call (T,U) the premarket generated
by the pregame (T,Ψ). That every game derived from (T,U) has a nonempty
core is a consequence of the Shapley and Shubik (1969) result that market games
derived from markets with concave utility functions are totally balanced.
It is interesting to note that, as discussed in Wooders (1994, Section 6), if we

restrict the number of commodities to equal the number of player types, then
the utility function U is uniquely determined. (If one allowed more commodities
then one would effectively have ‘redundant assets’.) In contrast, for games and
markets of fixed, finite size, as demonstrated in Shapley and Shubik (1975), even
if we restrict the number of commodities to equal the number of player types,
given any nonempty, compact, convex subset of payoff vectors in the core, it is
possible to construct utility functions so that this subset coincides with the set of
competitive payoffs. Thus, in the Shapley and Shubik approach, equivalence of
the core and the set of price-taking competitive outcomes for the direct market
is only an artifact of the method used there of constructing utility functions
from the data of a game and is quite distinct from the equivalence of the core
and the set of competitive payoff vectors as it is usually understood (that is,
in the sense of Debreu and Scarf 1963 and Aumann 1964). See also Kalai and
Zemel (1982a,b) which characterize the core in multi-commodity flow games.

8 Cores and approximate cores
The concept of the core clearly was important in the work of Shapley and Shubik
(1966,1969,1975) and is also important for the equivalence of games with many
players and market games. Thus, we discuss the related results of nonemptiness
of approximate cores and convergence of approximate cores to the core of the
’limit’ - the game where all players have utility functions derived from a pregame
and large numbers of players. First, some terminology is required. A vector p
is a subgradient at x of the concave function U if U(y)− U(x) ≤ p · (y − x) for
all y. One might think of a subgradient as a bounding hyperplane. To avoid
any confusion it might be helpful to note that, as Mas-Colell (1985) remarks:
“Strictly speaking, one should use the term subgradient for convex functions
and supergradient for concave. But this is cumbersome”, (Mas-Colell 1985,
p.29-30.).
For ease of notation, equal-treatment payoff vectors for a game [n; (T,Ψ)]

will typically be represented as vectors in RT . An equal-treatment payoff vector,
or simply a payoff vector when the meaning is clear, is a point x in RT . The tth
component of x, xt, is interpreted as the payoff to each player of type t. The
feasibility of an equal-treatment payoff vector x ∈ RT for the game [n; (T,Ψ)]
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can be expressed as:

Ψ∗(n) ≥ x · n.
Let [n; (T,Ψ)] be a game determined by a pregame (T,Ψ), let ε be a non-

negative real number, and let x ∈ RT be a (equal-treatment) payoff vector.
Then x is in the equal-treatment ε-core of [n; (T,Ψ)] or simply “in the ε-core”
when the meaning is clear, if x is feasible for [n; (T,Ψ)] and

Ψ(s) ≤ x · s+ εksk for all subprofiles s of n.
Thus, the equal-treatment ε-core is the set

C(n; ε)
def
= {x ∈ RT+ : Ψ∗(n) ≥ x · n and

Ψ(s) ≤ x · s+ εksk for all subprofiles s of n}.
(18)

It is well known that the ε-core of a game with transferable utility is nonempty
if and only if the equal-treatment ε-core is nonempty.
Continuing with the notation above, for any s ∈ RT+, let Π(s) denote the set

of subgradients to the function U at the point s;

Π(s)
def
= {π ∈ RT : π · s = U(s) and π · s0 ≥ U(s0) for all s0 ∈ RT+}. (19)

The elements in Π(s) can be interpreted as equal-treatment core payoffs to a
limiting game with the mass of players of type t given by st. The core payoff to
a player is simply the value of the one unit of a commodity (himself and all his
attributes, including endowments of resources) that he owns in the direct market
generated by a game. Thus Π(·) is called the limiting core correspondence for
the pregame (T,Ψ). Of course Π(·) is also the limiting core correspondence for
the pregame (T,U).
Let bΠ(n)⊂ RT denote equal-treatment core of the market game [n; (T, u)] :
bΠ(n) def= {π ∈ RT : π · n = u(n) and π · s ≥ u(s) for all s ∈ ZT+, s ≤ n}. (20)

Given any player profile n and derived games [n; (T,Ψ)] and [n; (T,U)] it is
interesting to observe the distinction between the equal-treatment core of the
game [n; (T,U)], denoted by bΠ(n), defined by (20), and the set Π(n) (that is,
Π(x) with x = n). The definitions of Π(n) and bΠ(n) are the same except that the
qualification “s ≤ n” in the definition of bΠ(n) does not appear in the definition
of Π(n). Since Π(n) is the limiting core correspondence, it takes into account
arbitrarily large coalitions. For this reason, for any x ∈ Π(n) and bx ∈ bΠ(n) it
holds that x · n ≥ bx · n. A simple example may be informative.
Example 5. Let (T,Ψ) be a pregame where T = 1 and Ψ(n) = n − 1

n for
each n ∈ Z+. and let [n; (T,Ψ)] be a derived game. Then Π(n) = {1} whilebΠ(n) = {(1− 1

n2 )}.
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The following Theorem extends a result due to Shapley and Shubik (1975)
stated for games derived from pregames.

Theorem 7 (Shapley and Shubik, 1975): Let [n; (T,Ψ)] be a game derived from
a pregame and let [n, u; (T,Ψ)] be the direct market generated by [n; (T,Ψ)].
Then the equal-treatment core bΠ(n) of the game [n; (T, u)] is nonempty and co-
incides with the set of competitive price vectors for the direct market [n, u; (T,Ψ)].

Remark 7: Let (T,Ψ) be a pregame satisfying PCB. In the development of
the theory of large games as models of competitive economies, the following
function on the space of profiles plays an important role:

lim
r→∞

Ψ∗(rf)

r
;

see, for example, Wooders (1977) and Shubik and Wooders (1982). For the
purposes of comparison, we introduce another definition of a limiting utility
function. For each vector x in RT+ with rational components let r(x) be the
smallest integer such that r(x)x is a vector of integers. Therefore, for each
rational vector x, we can define

Û(x)
def
= lim

ν→∞

Ψ∗(νr(x)x)

νr(x)
.

Since Ψ∗ is superadditive and satisfies per capita boundedness, the above limit
exists and Û(·) is well-defined. Also, Û(x) has a continuous extension to any
closed subset strictly in the interior of RT+. The function Û(x), however, may be
discontinuous at the boundaries of RT+. For example, suppose that T = 2 and

Ψ∗(k, n) =

⎧⎨⎩ k + n when k > 0

0 otherwise

The function Ψ∗ obviously satisfies PCB but does not satisfy SGE. To see
the continuity problem, consider the sequences {xν} and {yν} of vectors in R2+
where xν = ( 1ν ,

ν−1
ν ) and yν = (0, ν). Then limν→∞ xν = limν→∞ yν = (0, 1)

but limν→∞ Û(xν) = 1 while limν→∞ Û(yν) = 0. SGE is precisely the condition
required to avoid this sort of discontinuity, ensuring that the function U is
continuous on the boundaries of RT+.

Before turning to the next section, let us provide some additional interpre-
tation for bΠ(n). Suppose a game [n; (T,Ψ)] is one generated by an economy, as
in Shapley and Shubik (1966) or Owen (1975), for example. Players of different
types may have different endowments of private goods. An element π in bΠ(n) is
an equal-treatment payoff vector in the core of the balanced cover game gener-
ated by [n; (T,Ψ)] and can be interpreted as listing prices for player types where
πt is the price of a player of type t; this price is a price for the player himself,
including his endowment of private goods.
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9 Nonemptiness and convergence of approximate
cores of large games.

The next Proposition is an immediate consequence of the convergence of games
to markets shown in Wooders (1992b,1994) and can also be obtained as a con-
sequence of Theorem 5 above.

Proposition 2: Nonemptiness of approximate cores. Let (T,Ψ) be a pregame
satisfying SGE. Let ε be a positive real number. Then there is an integer η1(ε)
such that any game [n; (T,Ψ)] with knk ≥ η1(ε) has a nonempty ε-core.

[Note that no assumption of superadditivity is required but only because our
definition of feasibility is equivalent to feasibility for superadditive covers.]
The following result was stated in Wooders (1992b). For more recent results

see Wooders (2008a).

Theorem 8 (Wooders 1992b): Uniform closeness of (equal-treatment) approxi-
mate cores to the core of the limit game. Let (T,Ψ) be a pregame satisfying SGE
and let Π(·) be as defined above. Let δ > 0 and ρ > 0 be positive real numbers.
Then there is a real number ε∗ with 0 < ε∗ and an integer η0(δ, ρ, ε

∗) with the
following property: for each positive ε ∈ (0, ε∗] and each game [f ; (T,Ψ)] with
kfk > η0(δ, ρ, ε

∗) and ft
kfk ≥ ρ for each t = 1, · · ·, T , if C(f ; ε) is nonempty then

both

dist [C(f ; ε),Π(f)] < δ and
dist [C(f ; ε), bΠ(f)] < δ,

where ‘dist’ is the Hausdorff distance with respect to the sum norm on RT .

Note that this result applies to games derived from diverse economies, in-
cluding economies with indivisibilities, nonmonotonicities, local public goods,
clubs, and so on.
Theorem 8 motivates the question of whether approximate cores of games

derived from pregames satisfying small group effectiveness treat players most of
the same type nearly equally. The following result, from Wooders (1977,1992b,
2007) answers this question.

Theorem 9. Let (T,Ψ) be a pregame satisfying SGE. Then given any real
numbers γ > 0 and λ > 0 there is a positive real number ε∗ and an integer ρ
such that for each ε ∈ [0,ε∗] and for every profile n ∈ ZT+ with knk1 > ρ, if
x ∈ RN is in the ε-core of the game [n,Ψ] with player set

N = {(t, q) : t = 1, ..., T and, for each t, q = 1, ..., nt}

then, for each t ∈ {1, ..., T} with nt
knk1 ≥

λ
2 it holds that

|{(t, q) : |xtq − zt| > γ}| < λnt },
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where, for each t = 1, ..., T ,

zt =
1

nt

ntX
q=1

xtq,

the average payoff received by players of type t.

10 Shapley values of games with many players
Let (N, ν) be a game. The Shapley value of a superadditive game is the payoff
vector whose ith component is given by

SH(v, i) =
1

|N |
|N |−1P
J=0

1µ
|N |− 1
J

¶ P
S⊂N\{i}
|S|=J

[v(S ∪ {i})− v(S)] .

To state the next Theorem, we require one additional definition. Let (T,Ψ)
be a pregame. The pregame satisfies boundedness of marginal contributions
(BMC) if there is a constant M such that

|Ψ(s+ 1t)−Ψ(s)| ≤M

for all vectors 1t = (0, ..., 0, 1tth place , 0, ...0) for each t = 1, ..., T.Informally, this
condition bounds marginal contributions while SGE bounds average contribu-
tions. That BMC implies SGE is shown in Wooders (1992b). The following
result restricts the main Theorem of Wooders and Zame (1987) to the case of a
finite number of types of players.

Theorem 10 (Wooders and Zame 1987). Let (T,Ψ) be a superadditive pregame
satisfying boundedness of marginal contributions. For each ε > 0 there is a
number δ(ε) > 0 and an integer μ(ε) with the following property:

If [n, (T,Ψ)] is a game derived from the pregame, for which nt > μ(ε) for each
t, then the Shapley value of the game is in the (weak) ε-core.

Similar results hold within the context of private goods exchange economies
(cf., Shapley (1964), Shapley and Shubik (1969), Champsaur (1975), Mas-Colell
(1977), Cheng (1981) and others. Some of these results are for economies with-
out money but all treat private goods exchange economies with divisible goods
and concave, monotone utility functions. Moreover, they all treat either repli-
cated sequences of economies or convergent sequences of economies. That games
satisfying SGE are asymptotically equivalent to balanced market games clarifies
the contribution of the above result. In the context of the prior results devel-
oped in this paper, the major shortcoming of the Theorem is that it requires
BMC. This author conjectures that the above result, or a close analogue, could
be obtained with the milder condition of SGE, but this has not been demon-
strated.
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11 Economies with clubs
By a club economy we mean an economy where participants in the economy
form groups — called clubs— for the purposes of collective consumption and/or
production collectively with the group members. The groups may possibly over-
lap. A club structure of the participants in the economy is a covering of the set
of players by clubs. Providing utility functions are quasi-linear, such an econ-
omy generates a game of the sort discussed in this essay. The worth of a group
of players is the maximum total worth that the group can achieve by forming
clubs. The most general model of clubs in the literature at this point is Allouch
and Wooders (2008). Yet, if one were to assume that utility functions were all
quasi-linear and the set of possible types of participants were finite. the results
of this paper would apply.
In the simplest case, the utility of an individual depends on the club profile

(the numbers of participants of each type) in his club. The total worth of a
group of players is the maximum that it can achieve by splitting into clubs.
The results presented in this section immediately apply. When there are many
participants, club economies can be represented as markets and the competi-
tive payoff vectors for the market are approximated by equal-treatment payoff
vectors in approximate cores. Approximate cores converge to equal treatment
and competitive equilibrium payoffs. A more general model making these points
is treated in Shubik and Wooders (1982). For recent reviews of the literature,
see Conley and Smith (2005) and Kovalenkov and Wooders (2005).3

Coalition production economies may also be viewed as club economies. We
refer the reader to Böhm (1974), Sondermann (1974), Shubik and Wooders
(1983), and for a more recent treatment and further references, Sun, Trockel
and Zang (2008).
Let us conclude this section with some historical notes. Club economies came

to the attention of the economics profession with the publication of Buchanan
(1965). The author pointed out that people care about the numbers of other
people with whom they share facilities such as swimming pool clubs. Thus, there
may be congestion, leading people to form multiple clubs. Interestingly, much
of the recent literature on club economies with many participants and their
competitive properties has roots in an older paper, Tiebout (1956). Tiebout
conjectured that if public goods are ‘local’ — that is, subject to exclusion and
possibly congestion — then large economies are ‘market-like’. A first paper treat-
ing club economies with many participants was Pauly (1970), who showed that,
when all players have the same preferred club size, then the core of economy
is nonempty if and only if all participants in the economy can be partitioned
into groups of the preferred size. Wooders (1978) modelled a club economy as
one with local public goods and demonstrated that, when individuals within a
club (jurisdiction) are required to pay the same share of the costs of public good
provision, then outcomes in the core permit heterogeneous clubs if and only if

3Other approaches to economies with clubs/local public goods include Casella and Feinstein
(2002), Demange (1994), and Haimanko, O., M. Le Breton and S. Weber (2004). Recent
research has treated clubs as networks.
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all types of participants in the same club have the same demands for local public
goods and for congestion. Since these early results, the literature on clubs has
grown substantially.

12 With a continuum of players
Since Aumann (1964), much work has been done on economies with a continuum
of players. It is natural to question whether the asymptotic equivalence of
markets and games reported in this article holds in a continuum setting. Some
such results have been obtained.
First, let N = [01] be the 0, 1 interval with Lesbeque measure and suppose

there is a partition of N into a finite set of subsets N1,...,NT where, in interpre-
tation, a point in Nt represents a player of type t. Let Ψ be given. Observe that
Ψ determines a payoff for any finite group of players, depending on the numbers
of players of each type. If we can aggregate partitions of the total player set
into finite coalitions then we have defined a game with a continuum of players
and finite coalitions.
For a partition of the continuum into finite groups to ‘make sense’ econom-

ically, it must preserve the relative scarcities given by the measure. This was
done in Kaneko and Wooders (1986). To illustrate their idea of measurement
consistent partitions of the continuum into finite groups, think of a census form
that requires each three-person household to label the players in the household,
#1, #2, or #3. When checking the consistency of its figures, the census taker
would expect the numbers of people labelled #1 in three-person households to
equal the numbers labelled #2 and #3. For consistency, the census taker may
also check that the number of first persons in three-person households in a par-
ticular state is equal to the number of second persons and third persons in three
person households in that state. It is simple arithmetic. This consistency should
also hold for k-person households for any k. Measurement consistency is the
same idea with the work “number” replaced by “proportion” or "measure".
One can immediately apply results reported above to the special case of

TU games of Kaneko-Wooders (1986) and conclude that games satisfying small
group effectiveness and with a continuum of players have nonempty cores and
that the payoff function for the game is one-homogenous. (We note that there
have been a number of papers investigating cores of games with a continuum of
players that have came to the conclusion that non-emptiness of exact cores does
not hold, even with balancedness assumptions, cf., Weber 1979,1981). The re-
sults of Wooders, 1994, show that the continuum economy must be representable
by one where all players have the same concave, continuous one-homogeneous
utility functions. Market games with a continuum of players and a finite set
of types are also investigated in Azriel and Lehrer 2007, who confirm these
conclusions.)
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13 Other related concepts and results.
In an unpublished 1972 paper due to Edward Zajac, which has motivated a
large amount of literature on ‘subsidy-free pricing’, cost sharing, and related
concepts, the author writes:

“A fundamental idea of equity in pricing is that “no consumer group should pay
higher prices than it would pay by itself.”...If a particular group is paying
a higher price than it would pay if it were severed from the total consumer
population, the group feels that it is subsidizing the total population and
demands a price reduction.”

The “dual” of the cost allocation problem is the problem of surplus sharing
and subsidy-free pricing.4 Tauman (1987) provides a excellent survey. Some
recent works treating cost allocation and subsidy free-pricing include Moulin
(1988,1992). See also the recent notion of “Walras’ core” in Qin, Shapley and
Shimomura (2001).
Another related area of research has been into whether games with many

players satisfy some notion of the Law of Demand of consumer theory (or the
Law of Supply of producer theory). Since games with many players resemble
market games, which have the property that an increase in the endowment of
a commodity leads to a decrease in its price, such a result should be expected.
Indeed, for games with many players, a Law of Scarcity holds — if the numbers of
players of a particular type is increased, then core payoffs to players of that type
do not increase and may decrease. (This result was observed by Scotchmer and
Wooders 1988). See Kovalenkov and Wooders (2005,2006) for the most recent
version of such results and a discussion of the literature. Laws of scarcity in
economies with clubs are examined in Cartwright, Conley and Wooders (2006).

14 Some remarks on markets and more general

classes of economies
Forms of the equivalence of outcomes of economies where individuals have con-
cave utility functions but not necessarily linear in money. These include Billera
(1974), Billera and Bixby (1974) and Mas-Colell (1975). A natural question is
whether the results reported in this paper can extend to nontransferable util-
ity games and economies where individuals have utility functions that are not
necessarily liner in money. So far the results obtained are not entirely satisfac-
tory. Nonemptiness of approximate cores of games with many players, however,
holds in substantial generality; see Kovalenkov and Wooders (2003) and Wood-
ers (2008).

4See, for example Moulin (1988,1992) for excellent discussions of these two problems.
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15 Conclusions and Future Directions
The results of Shapley and Shubik (1969), showing equivalence of structures,
rather than equivalence of outcomes of solution concepts in a fixed structure (as
in Aumann 1964, for example) are remarkable. So far, this line of research has
been relatively little explored. The results for games with many players have
also not been fully explored, except for in the context of games, such as those
derived from economies with clubs, and with utility functions that are linear in
money.
Per capita boundedness seems to be about the mildest condition that one can

impose on an economic structure and still have scarcity of per capita resources
in economies with many participants. In economies with quasi-linear utilities
(and here, I mean economies in a general sense, as in the glossary) satisfying
per capita boundedness and where there are many substitutes for each type of
participant, then as the number of participants grows, these economies resemble
or (as if they) are market economies where individuals have continuous, and
monotonic increasing utility functions. Large groups cannot influence outcomes
away from outcomes in the core (and outcomes of free competition) since large
groups are not significantly more effective than many small groups (from the
equivalence, when each player has many close substitutes, between per capita
boundedness and small group effectiveness).
But if there are not many substitutes for each participant, then, as we have

seen, per capita boundedness allows small groups of participants to have large ef-
fects and free competition need not prevail (cores may be empty and price-taking
equilibrium may not exist). The condition required to ensure free competition
in economies with many participants, without assumptions of “thickness,” is
precisely small group effectiveness.
But the most complete results relating markets and games, outlined in this

paper, deal with economies in which all participants have utility functions that
are linear in money and in games with side payments, where the worth of a
group can be divided in any way among the members of the group without any
loss of total utility or worth. Nonemptiness of approximate cores of large games
without side payments has been demonstrated; see Wooders (1983, 2008) and
Kovalenkov and Wooders (2003). Moreover, it has been shown that when side
payments are ‘limited’ then approximate cores of games without side payments
treat similar players similarly; see Kovalenkov and Wooders (2001).
Results for specific economic structures, relating cores to price taking equi-

librium treat can treat situations that are, in some respects, more general. A
substantial body of literature shows that certain classes of club economies have
nonempty cores and also investigates price-taking equilibrium in these situa-
tions. Fundamental results are provided by Gale and Shapley (1962), Shapley
and Shubik (1972), and Crawford and Kelso (1982) and many more recent pa-
pers. We refer the reader to Roth and Sotomayor (1990) and to the entry “Two
sided matching,” by Ömer and Sotomayor in this encyclopaedia. A special fea-
ture of the models of these papers is that there are two sorts of players or two
sides to the market; examples are (1) men and women, (2) workers and firms,
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(3) interns and hospitals and so on.
Going beyond two-sided markets to clubs in general, however, one observes

that the positive results on nonemptiness of cores and existence of price-taking
equilibria only holds under restrictive conditions. A number of recent contribu-
tions however, provide specific economic models for which, when there are many
participants in the economy, as in exchange economies it holds that price-taking
equilibrium exists, cores are non-empty, and the set of outcomes of price-taking
equilibrium are equivalent to the core. (see, for example, Wooders 1985,1997,
Ellickson et al, 2001, Allouch andWooders 2008 and Allouch, Conley and Wood-
ers 2008).
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