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This paper studies price setting within a chain of grocery stores, using a scanner database that 

contains observations of retail prices for 435 products within 75 stores over 121 weeks. We find 

price dispersion within the chain. Although price dispersion is pervasive 75% of the prices are 

equal to the modal price. The mode changes frequently: 35% of the modes change in an average 

week. This suggests that the distribution of prices may react relatively fast to aggregate shocks. 

Stores differentiate themselves by the prices of relatively few items. Typically most prices in the 

store are at the mode of the cross sectional price distribution, some are above the mode and some 

are below the mode. The probability of a price change is 3.6% when the price is at the mode and 

76.2% when the price is not at the mode. We explain the apparent attraction to the mode in terms 

of a model in which price discreteness plays an important role but there is no inertia. We also 

find that the probability of a price change is higher when the deviation from the mean of the 

cross sectional price distribution is large. But unlike conventional wisdom, the probability of a 

price change is higher for young prices.  
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1. INTRODUCTION 

 

 This paper studies price setting within a chain of grocery stores, using a scanner database 

that contains observations of retail prices for 435 products within 75 stores over 121 weeks. 

 We summarize the data with the following questions in mind. How should we measure 

price rigidity in a chain? What determines the probability of a price change? Does the law of one 

price hold among stores that belong to the same chain? If not why does it fail? 

 Questions regarding price changes and price rigidity are central to macroeconomics. 

Accordingly the macro literature focuses on price changes, including models that stress menu 

costs (Barro [1972], Sheshinski and Weiss [1977]), the cost of paying attention (Mankiw and 

Reis [2007]), and time dependent models (Taylor [1980], Calvo [1983]). Whereas, the focus of 

the industrial organization literature is on price dispersion (the cross sectional variations in the 

price of the same good) with models that stress product differentiation (Chamberlin [1933]), 

search costs (Reinganum [1979], Rob [1985]), and demand uncertainty (Prescott [1975]).  

 The empirical literature also tends to focus on one issue at a time. Bils and Klenow 

(2004), Klenow and Krvystov (2005), Dhyne et al. (2005), Nakamura and Steinsson (2007) study 

aspects of price change while Pratt, Wise and Zeckhauser (1979) and Lach (2002) study price 

dispersion. Here we study both aspects of price setting and exploits the connection between the 

two aspects.  

 Maybe the most important connection arises when attempting to measure price rigidity. 

Most of the micro price studies assume that the store has a unique optimal price and measure 

price rigidity by the frequency of price changes in a store. This measure may be relevant to the 

ability of the average store to react to store specific shocks but may be misleading if we are 

interested in the ability of prices to react to a macro shock like doubling the money supply. For 

example, suppose that there are two stores: Store 1 posts the price 0.9 in odd periods and the 

price 1.1 in even periods while store 2 posts the price 0.9 in even periods and 1.1 in odd periods. 

In this example 100% of the prices are changed every period but the price distribution may be 

rigid, if stores do not change their price setting behavior in response to an aggregate shock: From 

a macro point of view, doubling the money supply will only be neutral if the stores oscillate 

between 1.8 and 2.2; otherwise, there will be real effects. 
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 The distinction between the rigidity of the price distribution and the rigidity of individual 

prices is sharp in a Prescott (1975) type model in which sellers are indifferent among prices in 

the equilibrium range. The Prescott model was used in Eden (1994) to study the issue of money 

non-neutrality. In this model money surprises are non-neutral but anticipated changes in the 

money supply are neutral as long as the price distribution is flexible. The behavior of individual 

prices is of little consequences. Prices may appear rigid when the distribution is flexible and 

prices may appear flexible when the distribution is rigid.  

 In our data, price dispersion is pervasive but the fraction of prices that are equal to the 

mode is large (75% on average) and quite stable over weeks. We therefore characterize the entire 

price distribution by its mode. We look at the mode price for the 435 products and found that in 

an average week 35% of modes change. This suggests that the distribution of prices is rather 

flexible.   

 Our discussion of the mode is different from the discussion in Eichenbaum, Jaimovich 

and Rebelo (EJR, 2008) who use the quarterly mode for each product-store cell to evaluate price 

rigidity. They find that the product-store mode is rigid and argue that price rigidity is important 

even though individual prices change often. Our conclusion about the importance of price 

rigidity is different because we look at a different mode.  

 To better understand the difference between EJR and our approach we consider a 

variation of the above example in which the mode is defined. We assume that nominal aggregate 

demand is trendless and fluctuates around the mean. There are three stores that post the price 1 in 

most weeks but from time to time change it to 0.9 or 1.1. We distinguish between two cases: (a) 

In any given week only one store may post a price that is different from 1 and  

(b) Stores move in concert and always post the same price. In both cases the store-product 

quarterly mode is 1 and does not change over time. Thus, prices are rigid if we use the EJR 

approach. But the weekly cross sectional mode may tell a different story. In the first case, it does 

not change over time while in the second case it does. Since we assume that nominal aggregate 

demand fluctuates, we may say that in the first case most of the prices fail to react to aggregate 

shocks while in the second case they do react to aggregate shocks.  

 Similar to the EJR mode, our cross sectional mode looks like an attractor: In our data the 

weekly frequency of price change decreases by about 70% if the price is equal to the mode of the 

cross sectional distribution. This holds even when we control for the average of the distribution. 
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To account for this observation and other transition probabilities, we employ a model in which 

price discreteness plays an important role and there is some price rigidity of the Calvo (1983) 

type. In this model the chain manager sets a price menu with relatively few alternatives and 

stores choose their price out of this menu. Stores’ preferences do not depend on past history and 

are consistent with the steady state cross sectional distribution of price ranks. Surprisingly the 

model accounts for the transition probabilities quite well. Thus, in our model, the attractor 

property arises simply because the mode is by definition relatively "large" and store preferences 

are consistent with the steady state price ranks distribution. 

 As was mentioned above, we interpret the finding that 35% of the modes change in an 

average week as evidence against the rigidity of the price distribution. We should stress that this 

is evidence against price rigidity as defined by the class of models that assume a fixed cost for 

changing prices (as in Barro [1972] and Sheshinski and Weiss [1977]) or a restriction on the 

ability to change prices (as in Calvo [1983]). It cannot be used as evidence against models that 

assume a cost that depends on the size of the price change as in Rotemberg (1982). To appreciate 

the difference, consider the case in which the money supply doubles and all agents change their 

prices by 50%. In this case price rigidity is important even when all agents changed their price 

immediately after the increase in the money supply.    

 Motivated by the need to distinguish between competing models, we describe the data in 

a way that can be used to distinguish between various hypotheses. Here is a short summary of 

our main findings.  

 

1. The frequency of mode changes is high and highly correlated with the frequency of price 

changes. This suggests a flexible price distribution that reacts to aggregate shocks.    

2. There is a substantial amount of price dispersion across stores within the chain at the same 

point in time. The amount of a product’s price dispersion is positively correlated with its average 

price and its share in the chain’s revenue. 

3. Stores differentiate themselves by the total number of products with a price above (or below) 

the chain’s mode price. We find that stores vary their individual product prices, but maintain 

roughly the same number of prices above/below the mode.  Therefore customers can easily 

predict the ranking of stores when they rank stores by the basket of all goods, but will find it hard 

to predict the ranking of stores when the ranking is by individual products.  
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4. Recently set prices and modes are more likely to change. 

  

 The last finding is similar to the findings in Campbell and Eden (CE, 2007) and 

Nakamura and Steinsson (2008). It holds even when controlling for heterogeneity among 

products and stores.  

 We start with a description of the data. Next, we focus on several stylized facts about 

price dispersion and price changes. The fourth section constructs a model which is capable of 

describing some of these facts. The final section tests the model’s predictions alongside other 

state and time dependent theories. The conclusion contains a discussion of the type of model that 

may explain our main findings.  

2. DOMINICK’S FINER FOODS (DFF) DATABASE 

 

 The Dominick’s Finer Foods (DFF) database arose through a joint venture between the 

Chicago-area supermarket chain and the University of Chicago Graduate School of Business. 

The partnership started in September of 1989 to document a price randomization experiment, but 

continued even after the experiment was completed in 1995. The data make use of scanner 

technology which electronically records items as they were purchased in each store. The 

observations were aggregated weekly to give the transaction price, quantity sold, and profit 

margin for about 3,500 products in 100 store locations. Each product is labeled by a unique 

Universal Product Code (UPC) which documents the product’s manufacture, size, and type. For 

instance, a 6pk of Coke has a different UPC than a 6pk of Pepsi, a 6pk of Diet Coke, or a 2 liter 

Coke. The data does not contain a complete summary of UPCs sold by the chain, but covers 

nearly 30% of all dollar sales.  

 To date, several papers have used the DFF sample to study pricing. Most recently, 

Midrigan (2007) and Kehoe and Midrigan (2007) study menu costs effects for regular and sale 

prices. Chevalier, Kashyap and Rossi (2003) address demand’s impact on retail prices, quantity 

sold, retail margins, and wholesale prices, during holidays. Earlier papers by Dutta, Bergen, and 

Levi (2002) and Peltzman (2000) examine the response of prices to cost shocks. These studies 

test various aspects of price change, but typically ignore the chain aspect of the data by choosing 

price data from a single store. 
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 When dealing with the DFF source, the major decision one must make is what to do with 

missing information which occurs when no units were sold or when a UPC was temporarily 

replaced by another UPC denoting a new size, flavor, color or even holiday packaging. For 

instance, Mint Flavored M&Ms replace regular M&Ms during the Christmas season. There are 

several ways to handle these gaps. Chevalier, Kashyap and Rossi (2003) fill the UPCs with their 

replacements in order to maximize the sample period, while Midrigan (2006) and Peltzman 

(2000) take observations from other stores in order to obtain the maximum number of products. 

Since we want weekly data within many stores, we fill missing observations using the data 

around the gap. First, we drop any UPC with a gap longer than a month. Second, if the price is 

the same on both sides of the gap, we assume it did not change during the gap, and fill the 

“missing” price from the previous week’s price. Next, we look at gaps in which prices are not the 

same on both sides. We replace all single week gaps with previous week’s price and drop gaps 

that are longer than a week. Finally, any UPC-Store cell with unfilled gaps are dropped from the 

sample.  

 Keeping this filling process in mind, there is a tradeoff between the length of the sample 

and the number of unfilled gaps. We chose a period of 121 weeks that maximizes the number of 

balanced price observations. This yields a sample of 435 UPCs within 75 stores. The sample 

period spans the final two years of the sample thus avoiding the randomized pricing experiment 

which occurred in the first few years of the study.  

2.1 Summary Statistics 

 For reporting purposes, the UPCs have been aggregated into 15 basic categories. The first 

two columns of Table 1 provide the number of UPCs and price observations in each category, 

whereas the final column lists the fraction of “sale price” observations, i.e. temporary price 

reductions.
2
 The original data does contain an indicator denoting sale prices. In addition to these 

indicators, we define a sale price as any price that decreased and returned to its original level 

within two weeks. Clearly evident from the last column of the table is the importance of sales 

prices in the DFF data. A product is on sale 25.6% of the time and there is a great deal of 

variation across categories suggesting that sales are more common in certain groups of products 

                                                

2
 Throughout the rest of the paper, the term “sales” will only refer to temporary price reductions. We will be explicit 

when we address the quantity of goods sold or the revenue of a product.  
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such as soft drinks. The average frequency of sales for products other than soft drinks is about 

21% that is still higher than the frequency reported by Nakamura and Steinsson (2007)
 3
. 

Plotting the prices of two sample products from Store 56 in Figure 1 illustrates the 

difference between sale and regular (No sales) prices. The price of Nestea Iced Tea (64 oz.) is 

relatively stable while the price of Diet 7-UP (24pk) is variable. Starting with Nestea Iced Tea, 

we see two periods of fluctuation (weeks 17-37 and 74-89) followed by relatively steady prices. 

When sale prices are replaced by the regular (No sales) prices that preceded them, we see that the 

regular price is relatively consistent over time, but has some variation. On the other hand, Diet 7-

UP is in almost constant fluctuation, with more regular prices and sale prices.  

In each week we have 32,625 prices and 435 modes (the most common price over the 75 

stores). Table 2 describes the fraction of prices and modes that are changed in an average week. 

38% of the prices and 35% of the modes change in an average week.  

 As expected, sale prices greatly increase the frequency of price change. When we replace 

sales with their regular price, prices change only 7.7% of the time and modes changes only 5.3% 

of the time. The second result gleaned from Table 2 is the relative flexibility of newly posted 

prices. 57.1% of young prices with age less than or equal to 3 weeks and 52% of young modes 

change in an average week. This is about 50% higher than the frequency of a price change when 

all prices are included which suggests that the probability of a price change decreases with age. 

We will examine this finding in detail, later.  

 Figure 2 plots the fraction of price and mode changes over weeks. The fraction of price 

changes is always higher than the fraction of mode changes but the difference is small. 

Moreover, the correlation between the two variables is very high (0.989). We will incorporate 

these features when attempting to model price setting in the chain. 

 

                                                

3
  Nakamura and Steinsson (2007) find that 14% of unprocessed food and 13% of processed food observations are 

sales. 
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Table 1: Sample Statistics 

Category # of UPCs # of Price Observations % of Sale Observations 

Analgesics (ana) 3 27,225 16.5 

Cheeses (che) 60 544,500 22.9 

Cookies (coo) 66 598,950 23.8 

Crackers (cra) 18 163,350 27.2 

Dish Detergent (did) 8 72,600 18.2 

Front End Candies (fec) 36 326,700 12.0 

Frozen Dinners (frd) 5 45,375 19.9 

Frozen Entrees (fre) 24 217,800 21.9 

Frozen Juices (frj) 17 154,275 27.2 

Fabric Softeners (fsf) 4 36,300 20.9 

Laundry Detergents (lnd) 6 54,450 15.9 

Oatmeal (oat) 20 181,500 9.5 

Refrigerated Juices (rfj) 45 408,375 23.7 

Soft Drinks (sdr) 114 1,034,550 38.6 

Soaps (soa) 9 81,675 15.5 

    

All Products 435 3,947,625 25.6 

All Products Excluding Soft Drinks 20.8 

 

 

 
 

Figure 1: Prices of Two Sample Cells 
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Table 2: Price and Mode Change Frequencies 

Prices  Modes 

- No Sales  - No Sales 

 

 

Cat. All Young All Young  All Young All Young 

ana 26.2 43 6.2 14.8  23.8 34.0 3.1 10.5 

che 37.6 55 8.5 21  35.1 49.8 5.8 16.4 

coo 31.8 48.9 6.9 15.6  28.6 42.2 4.6 12.1 

cra 37.3 49 6.9 19.2  33.4 42.5 3.6 15.0 

did 27.1 46.2 2.8 12.7  24.4 40.4 1.2 7.5 

fec 15.7 43.2 5.1 13.6  14.7 40.2 4.1 11.7 

frd 29.2 45 4 21  27.4 39.4 1.2 19.2 

fre 29.9 47.2 3.9 17.9  25.4 39.6 1.4 12.1 

frj 42.4 53.4 10 19.3  39.3 47.0 6.8 14.6 

fsf 27.1 44.3 3.1 9.4  25.4 37.9 2.1 10.5 

lnd 29.3 52.6 10.3 25.7  23.9 40.7 8.0 17.9 

oat 15.6 36.7 3.6 12.3  13.3 28.3 2.6 8.4 

rfj 39.7 60.2 11.3 23  35.0 52.4 8.4 18.4 

sdr 56.7 67 9.3 19.1  53.8 63.7 6.7 18.1 

soa 20.8 45.5 4.2 10.5  20.4 39.8 2.5 18.5 

          

All 38 57.1 7.7 18.8  35.0 52.0 5.3 15.8 
 

Notes: All numbers are the fraction of prices (modes) that are changed in an average week. The first column is the 

abbreviated product category (the full names are in Table 1). The second column is the frequency of price changes 

for all prices. Then we have the frequency for young prices (less than or equal to 3 weeks) only. The next two 

columns repeat the calculations after replacing sale prices with their regular prices. The last four columns repeat the 

calculations for the modes.  
 

 

Figure 2: The Frequency of Price and Mode Changes Over Weeks 
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3. PRICE DISPERSION 

 

 The law of one price strictly holds in only 21% of the UPC-Week cells. Or in other 

words, price dispersion occurs in 79% of the UPC-Week cells. The frequency of price dispersion 

varies across product categories. In cookies, crackers, and analgesics, dispersion occurs in only 

about 50% of the cells, compared to frozen dinners, laundry detergents, and oatmeal, where 

dispersion occurs in 100% of the cells. 

 Table 3 contains four sets of price dispersion measures. The first column in each pair is 

the simple average, whereas the second is a weighted average where the weight for each UPC is 

its share in the chain's revenues. The first pair of columns is the number of different prices in an 

average UPC-Week cell. When looking at all prices (All), the average is 5.7 different prices per 

cell and 6.8 per cell when weighting by revenue share. The next pair is the percentage of prices 

equal to the mode (the most common price for the UPC-Week cell). The simple average is 75%, 

and the weighted average is 71%. The third pair is the average percentage price difference 

between the highest and the lowest store. The simple average is 18% and the weighted average is 

19%.  Note that a buyer who plans to buy all 435 items and spend according to their share in 

revenues can save 18.9% by going from the most expensive store to the cheapest but can save 

only 17.5% when spending an equal amount on each item. The last pair of columns is the 

standard deviation of the log of the price. The simple average of the standard deviation is 3.4%. 

The weighted average is 3.8%. Note that the measures of price dispersion are higher when 

weighting the UPCs by revenue shares suggesting more price dispersion in items that generate 

relatively more revenues.
4
  

 The finding that high weight items tend to have more price dispersion poses a challenge 

to various hypotheses. It looks like evidence against “cost of paying attention” models because 

for items with more revenues the cost of not paying attention is likely to be higher. The same 

goes for menu cost models in general since changing the price to the optimal one is likely to be 

more important for items that generate more revenues. It also poses a challenge to the hypothesis 

that we search more for high weight items and as a result there is less price dispersion in these 

items.  

                                                

4
 We also calculated the price dispersion measures after replacing sale prices with regular prices. The removal of 

sales prices tends to reduce the degree of price dispersion. For instance, the simple average number of prices is 4.8 

per cell indicating that sales decrease the number of different prices in an average UPC-Week cell. 
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Table 3: Measures of Price Dispersion   

 # of Prices % at Mode Ln(highest/lowest)  SD of Ln(Price)  

Cat. - Weighted - Weighted - Weighted - Weighted 

ana 3.6 3.8 90 90 13 13 2.8 2.6 

che 5.1 5.5 76 74 14 14 2.7 2.7 

coo 4.2 4.4 86 86 8 8 1.5 1.5 

cra 4.0 3.8 86 87 8 6 1.5 1.2 

did 4.3 4.6 69 66 11 11 2.6 2.9 

fec 2.9 2.7 90 91 16 14 2.9 2.7 

frd 5.1 4.9 60 60 20 20 4.4 4.5 

fre 6.2 6.3 65 65 20 19 3.7 3.6 

frj 5.3 5.4 68 68 18 17 3.6 3.5 

fsf 5.6 5.7 63 62 14 15 4.4 4.3 

lnd 7.5 8.8 58 56 16 18 3.8 3.9 

oat 5.7 5.8 60 60 19 19 3.8 3.7 

rfj 8.7 9.0 62 61 32 33 6.1 6.2 

sdr 6.9 8.8 76 69 22 23 4.2 4.8 

soa 5.1 5.5 60 56 11 12 3.5 3.8 

         

All 5.7 6.8 75 71 18 19 3.4 3.8 
 

Notes: The numbers reported are averages per UPC-Week cells. The first column is the category name abbreviated. 

The full name of each category is in Table 1. We then have four pairs of columns. In each pair the first is the simple 

average and the second is a weighted average. The weights are the fractions in the chain's total revenue. The first 

pair is the number of different prices in an average UPC-Week cell, the second pair is the percentage of prices at the 

mode, the third pair is the log of the ratio of the highest price to the lowest price times 100, the last pair is the 

standard deviation of  the log of price times 100. 

 

 To examine this hypothesis further, we compute the correlation between price dispersion 

measures and UPC characteristics. The matrix in Table 4 describes the correlations between our 

price dispersion measures, the UPC's share in revenue (weight) and its average price. It 

illustrates that our different measures of price dispersion are all positively correlated with the 

product’s weight and the average price (note that the percentage at the mode is inversely related 

to price dispersion).
5
 We also note that the correlation between the weight and the average price 

is high (0.75). Thus UPCs with high average prices generate more revenues. In the Appendix, we 

address a difficulty in comparing the standard deviation measures of price dispersion across 

various studies. Although various studies use different deflators, we find that they are equivalent 

under the mean squared deviation definition of the variance. 

 

                                                

5
 The correlations are higher in absolute value when sale prices are replaced by their regular price (not reported 

here). 
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Table 4: Correlation of Price Dispersion Measures with UPC characteristics  

 # Prices At Mode H/L SD(Price/Avg) Weight Ln(Price) 

# Prices 1      

At Mode -0.71 1     

H/L 0.72 -0.46 1    

SD(Price/Avg) 0.68 -0.38 0.93 1   

Weight 0.61 -0.44 0.18 0.22 1  

Ln(Price) 0.45 -0.40 0.15 0.23 0.75 1 
 

Notes: The number of observations (UPCs) is 435. All correlations are significant at the 1% level. The variables are: 

the number of prices in an average week (# prices), the percentage of prices at the mode, the log of the ratio of the 

highest to the lowest price (H/L), the standard deviation of the log of relative price, the share in revenue (weight) 

and the average log of the price. 

 

 Some of the correlations in Table 4 are different from the findings in Pratt, Wise and 

Zeckhauser (1979).
6
 They should be further investigated because as was said before they pose a 

challenge to various hypotheses. The hypothesis that we search more for high weight items may 

be rescued if the weight in the consumer budget is different from the weight in the chain’s 

revenue. For example, imagine that all households purchase two things: Cookies and paper 

towels. There are many different kinds of cookies (recorded as different items), but only one 

kind of paper towel. It is possible that each household spends more on cookies than on paper 

towels but paper towels generates the highest revenues for the chain. If this is the case there may 

be more search for cookies. We think however that the weight of the item in the chain’s revenue 

is a good proxy for its weight in the average household’s budget. 

 Under this assumption, we may expect more search for high weight items and therefore 

the price of these items should be closer to the competitive price. To examine this hypothesis, we 

use a cost measure provided in the data to calculate the average percentage markup for each 

UPC. Although the cost measure is based on the historical cost of purchase rather than the 

current cost of buying the good, we think that when averaging over weeks it is not a bad proxy 

for the true cost. The average percentage markup across all UPCs is 28%, which falls to 25% 

when weighted. The correlation between the markup and the weight is -0.55 and similar to the 

other reported correlations is highly significant. This suggests that high weight items do indeed 

have lower markups on average.  

                                                

6
 Pratt, Wise and Zeckhauser (1979) find a positive relationship between the mean of the price of the good and the 

standard deviation (both measured in dollar terms). Their regression implies a negative relationship between the 

mean and the coefficient of variation. We find that the opposite is true. 
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 We thus need a model in which high weighted items have more price dispersion and low 

markups. A Prescott (1975) type model of price dispersion may provide an explanation. In the 

monopolistic version of the Prescott model, the chain looses expected revenues if there is not 

sufficient price dispersion. We may thus think of price dispersion as desirable from the chain's 

point of view (more on this later). But because of returns to scale in the price setting activity, it 

may be much easier for a chain to determine a single price per week at the chain's headquarters. 

It may therefore be the case that the cost of implementing price dispersion is less for low weight 

items than the benefits and as a result we have less price dispersion in these items. To get low 

markups for high weight items, we may assume high demand elasticities for these items, possibly 

because consumers are willing to search more for high weight items. Note that the main 

difference between a Prescott type model and the “cost of paying attention” type model is that in 

the Prescott type price dispersion is desirable while in the attention deficit type price dispersion 

is the result of mistakes.  

 We now turn to describe the important role of the mode in the cross sectional distribution 

of the chain's prices.  

3.1 The Mode 

 From Table 3, we see that the number of different prices in an average UPC-Week cell is 

much less than the number of stores. This suggests that many stores post the same price. In what 

follows, we rank price by the number of stores that post them. The most common price (the 

mode) is ranked 1, the second most common price is ranked 2 and so on. Figure 3 describes the 

percentage of prices at the five most common prices as a function of time. The fraction of stores 

that post the most common price (the mode) is 75% on average and fluctuates between 62 and 83 

percent. The average fraction of prices at the second most common price is 12% with a range 

between 8-15 percent. On average, 95% of the prices are at one of the five most common prices.  

As can be seen from Figure 3, the deviations from the law of one price occur in all 

weeks: The fraction of prices at the mode is always less than 83%. Moreover, Table 3 shows that 

deviations from the law of one price occurs in all product categories: The percentage of prices at 

the mode ranges from 58 to 90 percent. Does a similar finding hold for stores or do certain stores 

alway deviate from the mode while others do not? To examine this potential "store effect", we 

ranked stores by a score, defined as the net number of prices above the mode (the number of 
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prices above the mode minus the number of prices below the mode) expressed as a percentage of 

the total number of prices in the store. 

 

 

Figure 3: Percentage of Prices at the Most Common Weekly Prices Over Weeks   

 

 Figure 4 describes each store's average score, the standard deviation of its score and its 

average price change frequency where all averages are per week. To make the graph easy to 

interpret, stores were sorted according to their score. Note the difference between the two most 

divergent stores. The most expensive store (ranked 1) has a score of 29%, whereas, the cheapest 

store (ranked 75) has a score of -43%. In addition, the standard deviation of the scores has a  

shape suggesting that predicting the price on the basis of the store’s score is more difficult for 

divergent stores. We will discuss the predictability issue shortly. The frequency of price changes 

is almost a straight line implying similarity in the standard measure of price stickiness across 

stores.  
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Figure 4: Average Scores, its Standard Deviation and the Frequency of Price Change by Store. 

 

 Using the same score sorting, Figure 5 describes the percentage of prices above the mode, 

at the mode and below the mode. The graphs suggest a division into three price groups: High 

(rank 1-22), medium (rank 23-61) and low (rank 62-75). The first high ranking group has on 

average 60% of the prices at the mode, 33% above the mode and 7% below the mode. The 

medium group has on average 86% of the prices at the mode, 6% above the mode and 8% below 

the mode. The low group has on average 67% of the prices at the mode, 6% above the mode and 

27% below the mode.
7
  

                                                

7
 We also tried a different grouping of stores based on the description in the data set 

(http://research.chicagogsb.edu/marketing/databases/dominicks/index.aspx). According to this description the 

corporate headquarters construct four general price strategies: High, Medium, Low, and Club Fighters. The broad 

strategies are then handed down to zone managers who provide more specific guidelines to their stores. We found 

that stores within each strategy are similar, but in all cases there are group outliers and sometimes the strategies are 

indistinguishable from each other. For instance, the "Low" and "Medium" strategy stores are more often in the mode 

(83% and 85% respectively) than the prices of stores that belong to the "High" and "Club Fighters" strategies (63% 

and 65% respectively). In our scoring method there are no outliers and three groups can be easily distinguished. We 

therefore find it easier to use our scoring method for describing the data. 
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Figure 5: Fraction of Prices at the Mode, Below the Mode and Above the Mode by Store.  

 

 Figure 6 graphs a different measure of the divergence from the mode: the percentage 

price difference of an unweighted basket of the 435 UPCs. We kept the original (score) sorting 

for comparison. As can be seen from the Figure, the average percentage difference is almost 

monotonic indicating that this second measure is almost identical the score’s ranking. The Figure 

graphs the average price difference and its standard deviation for each store. The high-ranked 

group of stores is on average 1.2% more expensive than the mode and the standard deviation for 

this group is on average 2.6%. The second group is on average 0.3% cheaper than the mode, with 

an average standard deviation of 1%. The low-ranked group is on average 1.9% cheaper than the 

mode with an average standard deviation of 2.9%. Once again the lowest and highest price 

groups have a larger standard deviation, giving the graph a  shape. 
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Figure 6: Average Percentage Difference From The Mode and Its Standard Deviation 

 

3.2 Rank Correlations 

 We have shown that all stores have some prices above and below the mode, but there are 

also stores (those with high scores) that are likely to have more prices above the mode. To gain 

some further insight, we now turn to the question of predictability. We may think of a buyer who 

observes in week 1 the prices of a UPC, say a particular toothbrush, in all the 75 stores. With this 

information, the buyer can rank the price of this toothbrush in each store from highest (store 1) to 

lowest (store 75). Can the buyer predict the toothbrush price ranking in subsequent weeks using 

only the rank in week 1?   

To answer this question, we computed the correlation between the “UPC Price Ranking” 

in week 1 and the price ranking of the same UPC in week  ( ). The graph labeled 

UPC ranking in Figure 7 reports the average correlations between the UPC price rankings. For 

the average or representative UPC, the correlation between its ranking in week 1 and its ranking 

in week 2 is 0.36. The correlation remains at approximately this level until week 5 where it 

jumps to 0.77. The correlation then drops (in week 6) to 0.25 and then decline slowly reaching 
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the level of 0.2 in week 121.
8
 When taking an average over weeks ( ), we find a 

correlation (between the rankings of an average UPC in an average week with its ranking in 

week 1) of 0.26. This average masks considerable variations across UPCs. We can find a UPC 

with an average correlation of -0.52 and a UPC with an average correlation of 0.97. The standard 

deviation of the correlations in the average week is 0.34.
9
  

 

 
 

Figure 7: Correlation With Rank Measures in Week 1 and Week  

 

Our findings are consistent with Lach (2002) who finds a low correlation between the 

product price ranking in the first month of his sample and subsequent months; however, we get a 

different picture when we adopt the point of view of a buyer who is interested in buying one unit 

from each of the 435 items in our sample and rank stores according to the price of this basket. 

The line labeled "Basket Ranking" in Figure 7 describes the predictability of this ranking. The 

correlation between the basket rankings in week 1 and week 2 is 0.67. The correlation then 

declines slowly and hovers around 0.60. The average correlation (across weeks) is 0.61.
10

  

                                                

8
 We were puzzled by the high correlation in week 5. To check whether there is something special about week 5, we 

computed the same graph when using the ranking in week 2 rather than in week 1 as the explanatory variable. We 

found that the jump in week 5 does not occur in this case and we think that it simply occurred by chance. 
9
 We also computed the average of the correlations weighted by the shares in the chain's revenues. The results were 

similar with an average correlation (over weeks) of 0.28. 
10

 We also computed the correlation when ranking stores by a weighted basket (using the shares in the chain's 

revenues for weights). The results were similar with an average correlation of 0.8. 
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 Finally, we compute the correlations between rankings based on the store's net number of 

prices above the mode, labeled "Score Ranking" in Figure 7. Compared to the basket rank, the 

score rank is more predictable. The score rank correlation between week 1 and week 2 is 0.86 

and declines slightly reaching 0.82 in week 121. The average correlation (across weeks) is 0.84.  

 We thus conclude that the store's rank is highly predictable when ranking stores by the 

price of the basket of the goods in our sample or by the net number of prices above the mode. On 

the other hand, the ranking of individual items is harder to predict. One possible explanation is 

that stores try to avoid stock-outs that may occur when recent demand for the product was 

unexpectedly high and a new shipment is not expected soon. The store may therefore choose to 

increase the price of items with relatively high probability of being stocked out and decrease the 

prices of low stock-out probability items (possibly by making a sale). This explanation is 

consistent with Aguirregabiria (1999) who found a significant and robust negative effect of 

inventories at the beginning of the month on current price. 

 We now turn to a model that may be used to assess the degree of price stickiness in the 

chain.  

4.  A MODEL  

 

 As was said in the introduction, we need a model to judge the importance of price 

rigidity. Price rigidity may be important even if 100% of them are changed every week but the 

size of the changes is small and not enough to clear markets. In addition we need to distinguish 

between the stickiness of the cross sectional distribution of prices and the stickiness of individual 

prices. The first is important to judge the ability of the chain to react to aggregate shocks and the 

second is important to judge the ability of individual stores to react to idiosyncratic shocks. We 

adopt a Calvo type model to measure these two types of price stickiness.  

 The model also helps us to better understand some of the main features of our data. We 

found that the fraction of prices at the mode, the second most common price, the third most 

common price etc. is quite stable. However, this finding does not arise from persistently higher 

prices for particular products in particular stores. Although price dispersion is common, the 

distribution of prices is highly discrete and in particular the mode of the distribution is “large”. 

We want to understand the implication of the discrete nature of the distribution on the transition 

probabilities from and to the mode and on the frequency of sales.  
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 Following the data description in the Chicago GSB files, we assume that pricing 

decisions are made on two levels: The chain level and the store level. The chain level attempts to 

adjust the distribution of prices to aggregate shocks, while the store level is concerned with store 

specific shocks. This division of responsibilities arises because of increasing returns to scale in 

collecting information and making decisions about the effects of aggregate shocks.  

 The assumption that pricing decisions are made on two levels is also consistent with a 

Prescott type model. In this class of models only the distribution of prices is determined in 

equilibrium and sellers are indifferent among prices in the equilibrium range. We may therefore 

assume that the chain manager specializes in setting the distribution of prices while individual 

stores choose their location in the distribution to accommodate store specific shocks.  

 We also assume that the chain manager values uniformity because the chain is formed to 

economize on search costs. Therefore the chain manager chooses a highly discrete price 

distribution. For example, he may allow three prices: 0.95, 1 and 1.05. Stores with high 

inventories (that were accumulated because sales were unexpectedly low) choose 0.95. Stores 

with low inventories choose 1.05 and stores with inventories in the normal range choose 1. Thus, 

by presenting the stores with a discrete menu of prices the chain manager balances between two 

objectives: uniformity and stock-out avoidance.   

4.1 The Price Setting Process 

 We proceed with the assumption that price setting decisions are made on two levels: the 

chain level and the store level. The chain manager hands the store managers a menu of  

prices. The menu in week  has the prices  where  and each of the store managers 

chooses a price out of this menu whenever he can make a price setting choice. We assume that 

when the store manager chooses the week  price he knows the choice of other store managers 

and the mode of the week  cross sectional price distribution. In week  a fraction  of the 

stores post the price  where . We choose indices such that . 

Thus the first price, , is the most common price (the mode of the distribution),  is the 

second most common price and so on. For tractability we assume a steady state distribution of 

price ranks:  for all  and . Note that although the number of price alternatives  and 

the distribution of price ranks do not change over time dollar prices may change.  

 At the beginning of each week, stores observe the realization of a random variable that 

determines which of the  prices they want to post. We view the choice of the store as the 
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choice of an index (index ) or a rank: The store may choose the first (most common) price 

offered by the chain manager, the second price and so on. In the steady state the distribution of 

preferred ranks is consistent with the steady state distribution: A fraction  of the stores prefers 

the first price (the mode) and in general a fraction  of the stores prefers rank . Finally, we 

abstract from store heterogeneity and assume that the store's preferred rank does not depend on 

its previous history. We thus think of the stores as participating in a lottery that treats all the 

participants symmetrically: The lottery assigns rank  to a fraction  of the stores.  

 The assumption of history independence is a strong assumption. It may however be quite 

realistic if the store chooses its price rank on the basis of the beginning of the week level of 

inventories and shipment arrives in the middle of the week. In this case the store manager will 

use both the price and the quantity shipped to reach his target level of inventories at the 

beginning of next week and there is little reason to expect serial correlation in the beginning of 

week inventories.  

 As in the Calvo model, agents may not be able to change their prices but whenever they 

can change prices there is no cost of doing so. We assume that the chain manager changes the 

weekly menu with probability . If the chain manager changes the menu all stores change their 

prices. When the chain manager does not change the menu (with probability ) he allows a 

(randomly selected) fraction  of the stores to change their prices and choose another price that 

is on the menu. The store manager may choose not to make a price change even when he is 

allowed to do so.  

 At the risk of repetition, we now describe the price setting process in terms of 

Eichenbaum's fairy parable. We assume a chain level fairy that arrives with probability . If the 

chain level fairy arrives, the chain manager changes the menu of all the  prices and all stores 

change prices. If not, the chain manager does not change the menu of prices. There is also a store 

level fairy that arrives whenever a chain level fairy does not arrive. The store level fairy 

randomly selects a fraction  of the stores. Stores that got selected may change their price and 

choose another price that is on the menu. Those stores which are not selected cannot change their 

price. Figure 8 illustrates.  
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Figure 8: Model’s Sequence of Events 

   

 Since the chain manager changes the price menu whenever he is allowed to do so we 

have:   

(1)    with probability  and   with probability .  

We use lower case letters  to denote the price posted by store  in week . As was said 

before, a store manager will change his price if the chain manager changes the price menu. Since 

a store may also change its price when the menu does not change, the probability of a price 

change for a store that posted a price indexed  in week  is: 

. The unconditional probability is: 

, where . This leads to:  

(2)   with probability   and   with probability .  

 We use  to solve for the conditional probability that the store level fairy 

will arrive:  

(3)   
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 In our sample, in an average week the chain changes a fraction  of the modes. 

The frequency of price change is: . We also estimated . Plugging these numbers 

in (3) leads to .  

 Price rigidity may be measured by the probabilities that the two fairies will arrive. This is 

a two dimensional vector . The stickiness of the distribution is measured by  which is 

0.35 in our sample. The stickiness of individual prices may be measured by the probability that a 

store is allowed to change its price by: . This is equal to 0.44. It should be noted that 

in our model the probability that a store is allowed to change its price is greater than the fraction 

of stores that actually change their price in a given week: . This is because there 

are relatively few prices on the menu and as a result some stores that are allowed to change their 

price do not change it.  

4.2 Conditional probabilities  

We now turn to the effect of being at the mode on the probability of a price change. A 

store is at the mode if its last week price is equal to the current week mode ( ). While 

this might seem like an innocuous distinction, there is a large difference in the probability of a 

price change between stores that are at the mode and stores that are not. A store that is at the 

mode changes its price with probability 3.6%, but that probability drastically increases to 76.2% 

when the store is not at the mode. 

 This difference in transition probabilities arises in our model simply because, by 

definition, the mode is "large". To build some intuition, consider the following parable. There are 

6 cities. A large city, say New York, with 75% of the total population and 5 cities of equal size 

each with 5% of the total population. Individuals learn their preferred location at the beginning 

of each period. The preferred location does not depend on their current location or previous 

history and the distribution of preferences is consistent with the steady state distribution: 75% of 

the population prefers New York and 25% of the population prefers one of the 5 smaller cities 

(5% per city).  We now let some of the agents costlessly change their location. The agents who 

are allowed to change their location choose New York with probability 0.75 and any of the other 

5 cities with probability 0.05. The probability of a location change for an agent who is allowed to 

change his location is therefore 1 - 0.75 = 0.25 if he currently resides in New York and  

1 - 0.05 = 0.95 if he resides in one of the small cities. Thus those who are at the mode of the 

location distribution are much less likely to change their location even when past history does 
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not matter for the location choice. Based on this idea, we can use the model to see whether the 

large effect of being at the mode on the price changing probability can be explained just by the 

"size" of the mode or does it require additional assumption like stickiness at the mode.  

 We assume that a store can be in the mode  only if the price menu did not 

change. The probability that a store is in the mode is therefore . A store that is at the 

mode will change its price rank if it is allowed to do it (with probability ) and if its preferred 

rank is different from the mode. Under the assumption that history is not relevant, the probability 

that the store prefers the first price (the mode) is . Therefore the probability that a store 

that is already at the mode will change its price if it is allowed to do so is . We compute the 

conditional probability of a price change using Bayes' rule and the following probabilities
11

: 

 and . This leads to:  

(4)   

In our sample: .  

 The average fraction of stores that posts a non-mode price is . In our sample 

 and . The probability of a price change for a store that is not in the mode is:  

(5)    

 The difference between (5) and (4) is:  

(6)   = -0.691 

 We have used the data to estimate five parameters: . Using these parameters 

we calculated steady state conditional probabilities under the assumption that history does not 

matter. We may therefore measure inertia relative to these predictions. We say that there is 

inertia at the mode when the estimated frequency of a change in price for stores that are at the 

mode is less than the prediction of the model. If we find inertia we may conclude that history 

matters in the expected direction: A store that is at the mode is more likely to prefer the mode 

than a store that is not at the mode.  In terms of the cities parable, the probability that you prefer 

living in New York is higher if you are already living in New York. The opposite of inertia is a 

                                                

11
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preference for change: A store has preference for change if the probability that it prefers its 

current price rank is less than the steady state fraction of stores at that price rank.  

 To check for inertia we computed the conditional frequencies
12

: 

(7)   ;  

 These frequencies are very close to the predicted values in (4) and (5) suggesting that 

history does not matter much. If at all, there may be slight preference for change for stores that 

are at the mode.  

 The probability that a store that was not at the mode will move to the mode is:  

(8)   = 0.545 

We derived (8) by using Bayes' law and ;  

.  

 The probability of moving from one non-mode price to another non-mode price is:  

(9)   = 0.215 

To derive (9) we used Bayes' law and: ; 

. 

 Table 5 describes the results. The model accounts for the transition probabilities quite 

well.  

                                                

12
  was computed as follows. We first created a dummy that takes the value 1 when 

 and zero otherwise. We then drop all observations for which this dummy is equal zero to get a 

subsample of stores that are in the mode. We then compute the fraction of stores for which  in the 

subsample. Other conditional frequencies were computed in a similar way.  
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Table 5: Model predictions and conditional frequencies estimates  

 - Frequency of Price Change 0.38 

 - Frequency of Mode Change 0.35 

 - Proportion of Stores at Mode 0.75 

 - Proportion of Stores at a Randomly Selected Non Mode Price 0.05 

 - Fraction of Stores that can change their price when the mode does not 

change 

 

0.14 

A store can change its price with Prob. =  0.44 

Conditional Probabilities Predicted Actual 

(a) Moving from the mode:  0.035 0.036 

(b) Changing prices when not in the mode:  0.726 

 

0.762 

Difference = (a) - (b)   -0.691 

 

-0.726 

Moving to the mode:  0.545 

 

0.519 

Moving from a non-mode price to another non-mode price 
 

0.215 

 

0.243 

 

4.3 The frequency of sale prices 

 The frequency of sale prices in the DFF data is much higher than the frequency of sale prices in 

the ERIM data studied by CE. As can be seen from Table 1, sale prices are 25.6% of all price 

observations. The comparable number for the ERIM sample is 3.4%. In both papers, a sale 

occurs when a decline in the price reverts to the exact same price within two weeks.  

 The difference may be explained by the fact that the ERIM data is a sample of all the 

stores in the city (only some of which belong to chains) while all the stores in the DFF data 

belong to the same chain. Our model of price setting in a chain assumes that the store manager 

can choose a price out of a menu with relatively few alternatives. A store manager who decided 

to reduce his price because he accumulated “too much” inventories or because he wishes to 

experiment with a lower price is therefore much more likely to go back to exactly the same price 

if he is part of a chain.    

 To elaborate, consider an independent store that currently posts the price  and chooses 

to experiment by reducing its price for two weeks. After the two-week period, it uses the 

accumulated information about the demand for the product and changes the price to the expected 

profit maximizing level . We now compare the experience of the independent store to 

the experience of a hypothetical similar store that belongs to a chain and has to choose its price 
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from a menu with few discrete alternatives: . Suppose that it starts the experiment with 

a price  and suppose further that the menu did not change in the two weeks period. After 

the experiment, the store concluded that the expected profit-maximizing price is . It will 

definitely go back to  if .  It may also return to   if  and there is no other price 

on the menu that promises a higher expected profit than . Thus for the independent store 

 if  and  otherwise. For the store that belongs to a chain, there is a set of 

optimal prices  such that  if  and  otherwise. Since typically the 

set  will have many elements, the probability that the store that belong to the chain will go 

back to exactly the same price is likely to be higher. This may explain why sales defined as a 

price reduction that reverts to its exact same level within two weeks, are much more common in 

our sample than in the CE sample.  

 Our explanation of the relatively high frequency of sales and the importance of the mode 

relies on the discreteness of the price menu. As we shall see, this discreteness also play an 

important role in explaining price changes.   

5. PRICE CHANGES 

 

 The above model assumes that history does not matter and the only thing that can predict 

price changing behavior is whether the current price is at the mode or not. We now use this 

model as a benchmark (the null hypothesis) and examine whether other variables can explain 

why some prices are changed and others do not. We first describe two standard determinants of 

price changes.  

5.1. Time Dependency: The hazard function  

 In Table 2, we showed that the frequency of price and mode changes is much higher for 

younger prices. Figure 9 explicitly describes this relationship between the frequency of price 

changes and age: the hazard function. As we can see, 65% of the 1 week-old prices were 

changed. The frequency of the 2 week-old prices falls to 35%, after which the slope of the hazard 

function flattens considerably. By the fifth week, the frequency is reduced to 22%, and reaches 

10% at the age of 15. The hazard for mode changes is almost identical to that of price changes 

suggesting that the declining hazard phenomenon is not driven only by store specific shocks. 

This negative correlation is different from the prediction of traditional models. In the Calvo 
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(1983) model, there is no relationship between age and the probability of price change. Standard 

menu cost models suggest an increasing hazard function since a store has little to gain from 

changing a new price. 

 

 
 

Figure 9: Hazard Function for Price and Mode Changes 

 

It is well known that heterogeneity can lead to a decreasing hazard function. For example, 

a worker that has been unemployed for a long time has a lower chance of finding employment. 

This empirical fact is often explained by assuming that workers are heterogeneous. The argument 

is that workers who are unemployed for a long time are more likely to belong to the chronically 

unemployed type. By analogy it can be argued that an old price is more likely to belong to the 

rigid type. To see if the decreasing hazard in our case is due to heterogeneity between cells, we 

look at the slope of the hazard function in each Store-UPC cell, i.e. a 6pk of Coke at Store 101. 

Figure 10 describes the within cell correlation between age and the frequency of price change. 

As can be seen, a clear majority of cells have a negative relationship with an average correlation 

of -0.23.  
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Figure 10: Within Cell Correlation Between Age and the Price Change Dummy 

 

 Table 6 uses the approach developed by CE to determine whether these negative 

correlations are significantly different from zero. This is done by comparing the frequency of 

change for young prices (less than or equal to 3 weeks) with the frequency of change of old 

prices. We find that in 93.2% of the cell the frequency of price change is higher for younger 

prices and the hazard function is therefore negatively sloped. Moreover, the slope is significantly 

negative for 59.4% of the cells, compared to the 2.7% with a significantly positive relationship. 

Even when sale prices are replaced, the null can be rejected for 39.3% of cells. The results 

suggest that the time relationship seen in Figure 9 is not only a result of store or product 

heterogeneity. 
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Table 6: Slopes of Within Cell Hazard Functions 

 Prices  Modes 

 All Prices  No Sales  All Modes  No Sales 

Cat. < 0 

Sig. 

< 0 

Sig. 

> 0   < 0 

Sig. 

< 0 

Sig. 

> 0   < 0 

Sig. 

< 0 

Sig. 

> 0   < 0 

Sig. 

< 0 

Sig. 

> 0  

                

ana 100 85 0  88 42 0  100 67 0  80 46 0 

che 95 57 0  95 56 1  97 42 0  87 49 1 

coo 100 68 0  83 21 1  97 50 0  82 24 1 

cra 99 48 0  90 46 0  89 33 0  88 43 0 

did 100 90 0  74 31 5  100 100 0  77 35 1 

fec 83 67 16  60 25 22  83 64 17  60 25 21 

frd 100 57 0  89 67 1  100 20 0  94 77 4 

fre 100 87 0  78 41 2  100 58 0  59 45 3 

frj 95 53 0  91 26 0  94 41 0  89 31 1 

fsf 100 81 0  57 16 0  100 25 0  46 32 0 

lnd 100 66 0  97 62 0  100 33 0  98 44 0 

oat 93 79 5  77 30 9  95 65 5  80 30 8 

rfj 98 72 0  94 47 0  98 64 0  95 47 0 

sdr 86 36 3  91 44 1  83 42 3  91 42 1 

soa 89 89 11  75 44 16  89 89 11  75 42 19 

                

All 93 59 3  86 39 3  92 51 3  83 39 3 
 

Notes: Entries are in percentage terms. The first column is the percentage of (Store-UPC) cells with a negative 

correlation between the frequency of price change and age. The second column is the percentage of cells with 

negative correlation that is significantly different from zero. The third column is the percentage of cells with 

significantly positive correlation. The following columns repeat the calculations when sale prices are replaced by 

regular prices and for modes instead of regular prices. 

 

5.2 State Dependency: Relative Price 

 According to the state dependent approach in Barro (1972), Sheshinski and Weis (1977), 

Caplin and Spulber (1987), and Caplin and Leahy (1991), stores keep their real (relative) price in 

a certain range (Ss band) and change their nominal price whenever the real price reaches an 

upper or a lower critical value (S or s). The real price is often computed by using an average 

price of the product as a deflator. Theory thus predicts that firms will exhibit an “attraction” to 

the average that is greater than the “attraction” to the mode. Indeed, in the absence of price 

discreteness, the mode should have no effect on the probability of a price change once the 

average is held constant. We now turn to examine this issue.   
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There is a difficulty in using our data for examining the role of the average price because 

the other stores in our data belong to the same chain and thus may not properly represent all the 

other stores in the relevant market. In what follows, we abstract from this problem and assume 

that the average price of the other stores that belong to the chain is a good proxy for the average 

price in the relevant market.  

 

 

Figure 11: The Hazard as a Function of Relative Price 

 

We define the relative price as logarithm of the cell’s nominal price in the previous week 

divided by the current average price. We have also normalized this ratio with the store’s mean to 

eliminate the bias from high-low pricing rules. To illustrate the normalization by an example, we 

consider a store that follows a low price strategy and on average posts a price that is 5% less than 

the mean. Suppose now that the store’s last week price was equal to the average price in the 

current week. In this case, its relative price according to our normalization is 1.05. Note that the 

relative price is the price gap that would remain if the store did not change its price.  

 Figure 11 plots the relationship between relative price (on the horizontal axis) and the 

frequency of price change (on the vertical axis). This is done for all prices (All) and after 

replacing sale prices by their regular prices (No Sales). The bottom lines present the distribution 
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of relative prices, while the higher lines give the conditional frequency of price change. Looking 

at the hazard for all prices, we see that the relative price is a good predictor of the frequency of 

price change and as a price diverges in either direction, the frequency of a change increases. The 

effect of the relative price is much less dramatic after replacing sale prices by their regular price. 

For example, when the store's price is 10% higher than the average price the frequency of price 

change is more than 80% when considering All Prices and less than 30% when considering the 

No Sales prices.  

6. FORECASTING PRICE CHANGE 

 

 In the previous sections, we have discussed several variables that may affect a store’s 

decision to change its price. We now estimate a forecasting model that will allow us to judge the 

contribution of each variable to the explanation of price changes. The forecasting model 

employed is a marginal probit regression. It takes a binary dependent variable denoting whether 

a price changed during the current week. If the price had changed, the observation takes the 

value “1”, otherwise it is “0”.  

In Table 7, we start with simple regressions that only use categories, store dummies and 

one of three age specifications: linear, quadratic and cubic. The table also reports the results 

when using the data with All Prices and when "sale prices" are replaced with "regular" prices 

(No Sales). In each column, the effect of age on the probability of a price change is negative and 

significant; however, the effect is much smaller when we replace sales prices by regular prices. 

To illustrate the size differences between the three age specifications, Figure 12 graphs the 

results. The negative slopes of all lines show that the probability of a change declines as a price 

ages. However there are significant differences in magnitudes between the estimates that use All 

Prices and those that use the No Sales data.  
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Table 7: The Effect of Age on the Probability of a Price Change  

 All Prices  No Sales 

Age -0.029 -0.042 -0.075  -0.002 -0.005 -0.009 

 (-253) (-399) (-442)  (-236) (-296) (-241) 

        

Age^2  0.001 0.003   0.001 0.001 

  (385) (74)   (227) (133) 

        

Age^3   -0.001    -0.001 

   (-38)    (-91) 

Observations 3,847,720 3,847,720 3,847,720 
 

3,847,720 3,847,720 3,847,720 

Pseudo R-squared 0.139 0.150 0.169  0.062 0.075 0.087 
 

Notes: Coefficients are estimated using a probit regression. Marginal effects from the mean have been reported.  

T-statistics are listed in parenthesizes. Errors have been clustered by store to account for possible within-group 

correlations. Category and store dummies are included but have not been reported. All calculations without sales 

have had the sales prices replaced by their original regular price. All coefficients are significant at the 1% level. 

 

 

 
 

Figure 12: Implied Hazard Function Under Various Specifications (“*” denotes No Sales data.) 

 
 

 We also repeat this same experiment for our relative price variables in Table 8. We 

illustrate the different relative price specifications in Figure 13. As expected, the larger the 

absolute value of the relative price the larger is the probability of a price change. Once again, the 

magnitudes when looking at the data with no sales are much smaller. 
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Table 8: The Effect of Relative Price on the Probability of a Price Change 

 Probability of a Price Change 

 All Prices  No Sales 

Relative Price^2 8.578 8.681 12.13  0.632 0.400 1.121 

 (51) (54) (104)  (26) (17) (47) 

        

Relative Price  0.177 -0.323   -0.196 -0.273 

  (16) (-15)   (-37) (-26) 

        

Relative Price^3   11.03    1.132 

   (92)    (30) 

        

Observations 3,847,720 3,847,720 3,847,720  3,847,720 3,847,720 3,847,720 

Pseudo R-squared 0.305 0.305 0.345  0.036 0.04 0.056 

Notes: Coefficients are estimated using a probit regression. Marginal effects from the mean have been reported.  

T-statistics are listed in parenthesizes. Errors have been clustered by store to account for possible within-group 

correlations. Category and store dummies are included but have not been reported. All calculations without sales 

have had the sales prices replaced by their original regular price. All coefficients are significant at the 1% level.  
 

 
 

Figure 13: The Effect of Relative Price on the Probability of a Price Change Under Various 

Specifications. (“*” denotes No Sales data.)  

 

 

 Figure 13 puts a question mark on the practice of substituting regular prices for sale 

prices. Because we still wish to capture the effect of sales within the multivariate regression, we 
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estimate the regressions with and without a sale dummy denoting whether the last week price 

was a "sale" price. In addition, we introduce two additional variables: The percentage of prices 

changed within the store, and a backward looking dummy variable denoting whether the 

previous price was equal to the current mode. The percentage of prices changed within the store 

is relevant when there is increasing returns to scale in the price changing activity.
13

 The mode 

dummy is relevant if price discreteness is important and the store chooses its price out of a price 

menu with relatively few alternatives.  

 

Table 9: The Probability of a Price Change 

 Probability of Price Change 

Age -0.022 -0.015 -0.016 -0.043 -0.027 -0.029 

 (-116) (-31) (-30) (-147) (-34) (-33) 

       

Age^2 0.0002 0.0001 0.0001 0.0004 0.0002 0.0002 

 (88) (21) (24) (141) (32) (32) 

       

Relative Price^2 6.888  2.31 7.828  2.454 

 (48)  (17) (48)  (16) 

       

% of Price Changes in Store 0.367 0.208 0.215 0.243 0.114 0.114 

 (92) (12) (13) (68) (6) (7) 

       

Price[t-1]=Mode[t]  -0.753 -0.723  -0.76 -0.735 

  (-104) (-84)  (-94) (-81) 

       

Coming off Sale Week 0.47 0.379 0.389    

 (249) (31) (34)    

       

Pseudo R-squared 0.442 0.628 0.659 0.363 0.588 0.623 

Notes: Coefficients are estimated using a probit regression. Marginal effects from the mean have been reported.  

T-statistics are listed in parenthesizes. Errors have been clustered by store to account for possible within-group 

correlations.  Category and store dummies are included but have not been reported. All coefficients are 

significant at the 1% level. 

 

Table 9 summarizes the results of the various specifications of the price change equation. 

The first column reports the regression with all the variables except the mode dummy. The 

                                                

13
 See Lach and Tsiddon (1996, 2006) and Midrigan (2006) for a more in-depth discussion of this possibility.  
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coefficients of all the variables have the signs suggested by traditional theory except for the age 

variables which imply a declining hazard.
14

 

 The second column replaces the relative price variable with the mode dummy. The 

coefficient of the mode dummy is -0.753 and highly significant. As a result of replacing the 

relative price variable with the mode the Pseudo R-squared went up from 0.442 to 0.628. The 

third column combines both the relative price variable and the mode dummy. The size of the 

relative price variable is now a third of its original value. The coefficient of the mode dummy 

hardly changes and it is still highly significant. We also tried other specification including a 

linear and cubic terms for the relative price variable, but this did not affect the importance of the 

mode. In the absence of price discreteness the coefficient of the mode dummy is expected to be 

zero. This supports the hypothesis that price discreteness is an important part of the explanation 

of price changes.  

This hypothesis gains additional support from the fact that the coefficient of the mode 

dummy is very close to the prediction of our model that is based on price discreteness. In Table 

5, we calculated the difference between the price changing probability for a price that is at the 

mode and a price that is not at the mode. Given our estimates of the underlying parameters of the 

model, the difference should be -0.691. When we estimated the difference in the conditional 

frequencies directly from the data, we found it to be -0.716. Both of these numbers are close to 

the regression’s coefficient of the mode dummy suggesting that the size of the coefficient is 

robust to the inclusion of other variables in the regression.  

The mode dummy also lowers the age coefficient. Its absolute value is now about 70% of 

its original level, but it is still highly significant and the implied hazard function is declining. 

There may be a problem with using the Sale dummy in the regression. This is because 

our definition of a sale uses information about the future (a decline in the price that returned to 

exactly the same price) and this is not consistent with the forecasting nature of our exercise. We 

therefore repeat, in the last three columns of Table 9, the previous specifications without the sale 

dummy. The coefficient of the mode dummy does not change when the sale dummy is removed. 

Consistent with the finding of Table 7, the age coefficients increase in absolute value (about 

                                                

14
 We also ran this regression with an additional linear term of the relative price variable. In this case the effect of a 

decrease in the relative price has a small positive effect, the rest of the results hold.  

 



 37 

twice the coefficients in the first three columns). Consistent with the finding in Table 8 the 

relative price coefficient is also larger but the difference is relatively small. The removal of the 

sale dummy reduces the coefficients of the "percentage of price changes in the store". 

 We now turn to the forecast of mode changes. In addition to the age of the mode, we 

included the percentage of stores that posted the mode last week as an additional explanatory 

variable. Including this variable allows for a feedback from store managers to the chain manager. 

As can be seen from Table 10, the age coefficient is in the range of -2.3 to -2.8 percent. The 

coefficient of the percentage of stores at the mode is also negative (-4.3%) suggesting that when 

more stores are at the mode the chain manager is less inclined to change it. This is consistent 

with the hypothesis that the chain manager takes the price choices of the stores as a signal about 

demand and when stores deviate from the mode he is more inclined to change the menu.  

 

Table 10: The Probability of a Mode Change 

 Probability of a Mode Change 

Mode Age -0.0279 -0.0230 

 (-33.21) (-28.28) 

   

Mode Age^2 0.0003 0.0003 

 (23.25) (20.34) 

   

% of Stores at Mode  -0.4310 

  (-42.02) 

   

Observations 50,674 50,674 

Pseudo R-squared 0.173 0.203 
 

 Notes: Coefficients are estimated using a probit regression. Marginal effects from the mean have been reported.  T-

statistics are listed in parenthesizes. UPC and week dummies are included but have not been reported. All 

coefficients are significant at the 1% level. 
 

 

7. CONCLUSIONS AND DISCUSSION 

 

 We argued that from a Macro point of view the rigidity of the price distribution may be 

more important than the rigidity of individual prices. In the DFF chain the fraction of prices that 

are at the mode is large and quite stable over weeks. We therefore characterized the price 

distribution by its mode. We find that in an average week 35% of the modes do change and the 
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fraction of mode changes is highly correlated with the fraction of price changes. This suggests 

that fixed costs for changing the price distribution are not important.  

 In most of the UPC-Week cells there are more than one price but the price distribution is 

highly discrete: In an average week the number of distinct prices is much less than the number of 

stores indicating that many stores post the same price for the same item. This may occur because 

the chain balances its desire for uniformity with the need to react to store specific shocks.  

 The discreteness property of the distribution is important for understanding the transition 

probabilities from and to the mode. We use a simple model in which price decisions are made on 

two levels: The chain manager selects a menu of prices and the store manager chooses a price 

out of this menu. Stores’ preferences do not depend on history and conform to the steady state 

distribution. Surprisingly this rather mechanical model captures the transition probabilities in the 

data quite well and explains why the probability of a price change depends critically on whether 

the price is at the mode or not. 

 The stock-out avoidance motif in Aguirregabiria (1999) may account for some of our 

findings. Aguirregabiria considers the problem of a retailer who face demand uncertainty that 

may lead to stock-outs. In his model, individual stores use prices to reduce the stock-out 

probability: They post a relatively high price when the level of inventories is low and a low 

(“sale”) price when the level of inventories is high. We may assume that the chain manager 

values uniformity and therefore requires the stores to choose out of a menu with relatively few 

alternatives. Thus, in this framework price discreteness may be used to achieve a balance 

between the desire to minimize stock-outs and the desire to minimize price dispersion.    

 The stock-out avoidance motive for changing prices may also account for the observation 

that young prices are more likely to change. To illustrate assume that the store reached a low 

level of inventories in some good and reacts by (a) increasing the price of the good and (b) order 

a new shipment. The increased price lower the probability of a stock-out until the new shipment 

arrives. When the new shipment arrives there is no longer a need for the high price and as a 

result a price change occurs. Similarly, when the store reached a high level of inventories it may 

reduce the price and this may reduce inventories quite fast leading to another price change. 

Replacing sale prices with regular prices diminishes the effect of age on the probability of a price 

change because sales are an integral part of the story.  
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 Our findings are also consistent with Prescott type models in which price dispersion 

arises as a result of demand uncertainty. The Uncertain and Sequential Trade (UST) model in 

Eden (1990) is a version of the Prescott (1975) model in which trade occurs sequentially and 

sellers must make irreversible selling decisions before they know the realization of demand. In 

this UST model, there exists a unique equilibrium with price dispersion both for the competitive 

and the monopoly cases. The monopoly case may be more relevant here. The fact that there 

exists a unique (non degenerate) distribution of prices that maximizes expected profits says that 

the expected profits when using a single price are lower than the expected profits when using the 

optimal price distribution. Dana (2001) illustrates the desire to have a (non degenerate) price 

distribution in a rigid price version of the Prescott model.  

 In the UST model, cheaper goods are sold first. This abstraction is of course unrealistic. 

We do not observe that in each week relatively cheap goods are stocked-out and relatively 

expensive goods are not sold at all. Instead most stores sell some quantity from each UPC 

regardless of the posted price. To account for the data we must therefore add some friction to the 

UST model.  

 Search costs are one such friction missing in the UST model. In the presence of search 

costs, it is no longer the case that a buyer who shops for a basket of goods will choose to go to 

another store simply because the price of say toothbrushes is relatively expensive. We may also 

expect that the store may want to insure prospective buyers that they can find the standard basket 

of goods sold by supermarkets. The store may therefore try to avoid stock-outs by increasing the 

price of low inventories items and decreasing the price of high inventories items. This may 

explain why we observe both high and low price items in the same store. It may also explain why 

predicting the price of a basket of goods in a given store is easy relative to predicting the price of 

an individual item. An alternative explanation may assume that the store is trying to discriminate 

between informed and uninformed buyers as in Varian (1980).   

 Our findings may also help explain the interesting observation made by Chevalier, 

Kashyap and Rossi (2003). Using the DFF data set, they observe that prices do not rise during 

periods of high demand. This may occur in a Prescott type model, if demand uncertainty is low 

during periods of high demand. To see this point, consider a perishable good that is demanded 

with probability 0.5 in a "regular" week and is demanded with probability 1 in a "peak demand" 

week. Assume that whenever the good is in demand buyers are willing to pay a high reservation 
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price for it. The cost of the good to the supermarket chain is 5 dollars. In a competitive 

environment in which stores make zero profits on average, the store will charge a price of 10 

dollars in a "regular" week in which it makes a sale with probability 0.5. The store will charge a 

price of 5 dollars in a "peak demand" week in which it makes a sale with probability 1. Thus we 

may observe that the price in a "peak demand" week is lower than the price that we observe in a 

"regular" week when the good is actually sold. The intuition is that in high demand periods the 

probability of making a sale is higher on average and therefore the average price is lower. This 

explanation can be tested by comparing measures of price dispersion during holidays and other 

"peak demand" weeks to the measures during "regular weeks". We plan to address this 

interesting issue in another paper. 
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APPENDIX: THE STANDARD DEVIATION OF RELATIVE PRICES 

 

 We address a difficulty in comparing the standard deviation measures of price dispersion 

across various studies. Although various studies use different methods, we find that they are 

equivalent under the mean squared deviation definition of the variance but yield somewhat 

different results when using the unbiased estimator of the variance. Eden (2001), Lach (2002) 

and Ahlin and Shintani (2007) focus on the variance of real prices. Eden (2001) for example, use 

, where  = the price of good  in store  in week  and  = the 

average price of good  in week . When taking the log of the relative price, the variance does 

not depend on the deflator as long as it is common to all the stores in the cell and can be treated 

as a constant. In detail, the average of the log of relative price is: 

 = 0. The variance of relative price is therefore:  

 

The same equivalence applies to Lach (2002) and Ahlin and Shintani (2007) who deflate by the 

CPI rather than by the average price in the Product-Week cell. Next, some studies report the 

variance over the entire sample while we took the average in the Week-Product cell and then 

averaged over cells. Under the mean squared definition, the order in which the average squared 
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deviation is computed does not matter. As we said above, these equivalence results hold for the 

mean squared deviation definition of the variance. In many computer programs (like Excel), the 

unbiased estimator of the variance is used and therefore different measures and different ways of 

computing the average leads to different results. We computed several possible measures and 

found that the correlation between them is high (around 0.97). Here, we report one measure only 

based on the variance of the log of the relative price. 




