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1 Introduction

When a very large number of time series are available, forecasters should take advantage of all the usable

information rather than restricting their attention to a small subset of the whole list of variables. Following

this idea, Stock and Watson (1998, 2002) extracted common factors by applying the method of principal

components to 215 economic time series, and then showed the signiÞcant predictive ability of the estimated

factors in the out-of-sample forecasts of several key U.S. macroeconomic variables. Since the estimated

factors naturally Þt the notion of diffusion indexes developed at the National Bureau of Economic Research

(NBER), Stock andWatson called their method the diffusion index (DI) forecast. This DI forecast approach

can be justiÞed under the framework of the dynamic factor model originally considered by Sargent and

Sims (1977) and Geweke (1977). When the common factor is generated from a linear time series model,

employing a linear forecasting regression seems to be the most appropriate procedure. Alternatively, if

the dynamic factor model has a nonlinear structure, we may gain from considering nonlinearity in the

forecasting regression.

The Þrst goal of this paper is to consider a simple procedure to estimate the nonlinear time series model

of common factors and to test its nonlinear functional form nonparametrically. Instead of estimating the

full model simultaneously, we focus on a two-step procedure, namely, the estimation of the factors by

principal components, followed by the estimation of the dynamic factor structure using estimated factors.

We emphasize that such a two-step method is useful and convenient in a nonlinear framework since the

principal components method in the Þrst step remains valid under the very ßexible nonlinear dynamic

factor structure. In particular, for both linear and nonlinear models, when the number of the series (N)

increases at a sufficiently fast rate compared to the time series observations (T ), the effect of the estimation

error in the Þrst step is negligible in the asymptotic property of the Þnal estimators or the statistics of the
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speciÞcation tests.

The second goal of this paper is to explore the possibility of improving the performance of the DI

forecast by incorporating the nonlinearity in the forecasting regression. We follow Stock and Watson and

include the common factors estimated in the Þrst step as predictors of the variable of interest in the second

step. However, in addition to the linear forecasting model, we consider the nonlinear forecasting model

and the combination of the two. We use several tests to evaluate the forecasting performance. By the same

argument used in the estimation of the dynamic factor structure, we can expect the Þrst step estimation

error to have no effect on the criteria of forecasting performance and test statistics given sufficiently large

N .

In this paper, we consider two different means of utilizing the estimated factors in the second step �

estimation of the factor structure and estimation of the forecasting model. Theoretically, a nonlinear factor

structure implies a nonlinear forecasting model. However, in practice, even if we detect a nonlinear factor

structure, neglected nonlinearity may have only a marginal effect in forecasting. In other words, linear

approximation of the model may be sufficient for forecasting purposes. The usefulness of our procedure

is, therefore, more or less an empirical question. As an empirical example of our method, we apply it to a

forecasting analysis of the Japanese economy.

We Þnd that using Japanese data instead of U.S. data is well-motivated for the following reasons. First,

the empirical success of DI forecast in the U.S. by Stock and Watson raised the question of whether such a

procedure would also work well for other countries. Regardless of linear or nonlinear, additional evidence

from Japan can be used to evaluate the general applicability of the DI forecast procedure.1 Second, a

reliable forecasting model of Japanese aggregate activity is currently being highly sought after among

forecasters given the fact that major public and private research institutes failed to provide a satisfactory

forecast of business cycles and prolonged recessions during the 1990s (See Fukuda and Onodera, 2001).
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Incorporating nonlinearity in a dynamic factor model is certainly not new in the literature. One of

the most popular approaches in practice is to introduce Hamilton�s (1989) Markov switching structure of

a common factor mainly for the purpose of estimating the turning points in business cycles (e.g., Kim

and Nelson, 1998, and Chauvet, 1998). This class of nonlinear model is also considered in the context

of large N factor model by Diebold (2003) who suggested estimating the Markov switching model in the

second step using the estimated factors by principal components in the Þrst step. In contrast to Diebold

who employed a parametric model, we use a nonparametric approach to allow ßexibility in the nonlinear

dynamic factor structure. Among many available nonparametric methods, we employ the artiÞcial neural

networks (ANNs). This particular estimation method has been widely used in studies on the forecasting

performance of nonlinear models, including Swanson and White (1997), Chen, Racine, and Swanson (2001),

and Hong and Lee (2003).

The remainder of the paper is organized as follows: Section 2 explains the model. Section 3 provides

the empirical results using Japanese data. Some concluding remarks are made in Section 4.

2 Model

In this section, we introduce a dynamic factor model that will be the basis of the linear and nonlinear

DI forecasts. Because our purpose here is mainly the illustration of model structure rather than providing

the theoretical results for the general case, we consider only a single factor generated from an autoregressive

(AR) model of order one. Nevertheless, the model can be extended to the multiple factor model and/or the

AR model of higher order, which will be used in the empirical section. In what follows, we Þrst describe

a linear model that has been employed in typical applications, then introduce the model with a nonlinear

structure.
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Let xit be an i-th component of N -dimensional multiple time series Xt = (x1t, . . . , xNt)0 and t = 1, ..., T .

A simple dynamic factor model associates each xit with a scalar common factor ft in equations

xit = λift + eit, i = 1, ...,N, (1)

ft = φft−1 + εt (2)

where λi�s are factor loadings with respect to i-th series, eit�s are idiosyncratic shocks, |φ| < 1, E(εt|Ft−1) =

0 and E(ε2t |Ft−1) = σ2 where Ft−1 = {ft−1, ft−2, ...}. While the factor ft is not directly observable, the

model can be estimated by the maximum likelihood method combined with the Kalman Þlter technique

if distribution of eit�s and εt is speciÞed (see Stock and Watson, 1989, for example). Alternatively, the

model can be estimated by a two-step procedure with the factors (and factor loadings) being estimated

by the method of principal components in the Þrst step [the measurement equation (1)], followed by the

estimation of time series models of the factors in the second step [the transition equation (2)].2 The former

method provides a more efficient estimator than the latter method when the model is correctly speciÞed

and when N is small. However, the latter method is more convenient in computation when N is large.

It also allows very ßexible structure, including cross-sectional and/or serial correlation in eit. A recent

large N asymptotic theory developed by Stock and Watson (1998), and Bai (2003) shows that, under mild

conditions on moments and memory, the principal components estimator eft is a consistent estimator of
ft up to a scaling constant. In addition, the

√
N -consistency of the Þrst-step estimator eft can be used

to show bφ − eφ = op(T
−1/2) where bφ and eφ are the ordinary least squares (OLS) estimators of φ in (2)

based on ft and eft, respectively. It implies that the infeasible estimator bφ can be replaced by the two-step
estimator eφ since the estimation error in the Þrst step is negligible in the limiting distribution and thus in
the inference. One obvious sufficient condition is N/T →∞ while slower N is also possible (see Shintani,
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2003, for a more formal discussion). This dynamic factor structure can also be used to construct the h-step

ahead forecast of a scalar series yt being generated by

yt = λ0ft + e0t (3)

with E(e0t|Ft−1) = 0. A simple calculation leads to the representation

yt+h = βhft + ut+h (4)

where βh = λ0φ
h and ut+h = λ0 [ft+h −E(ft+h|Ft)] + e0t+h. Therefore, the optimal h-step ahead forecast

at T is yT+h|T = E(yT+h|FT ) = βhfT . While ft�s are not observable, researchers have two options. One is

to use the two-step method described above and roll equation (2) forward using the second step estimator

eφ. The other approach is to run a forecasting regression (4) with ft replaced by eft instead of estimating (2)
in the second step. The feasible forecast then is given by eyT+h|T = eβh efT where eβh is the OLS estimator
of βh. Stock and Watson (1998) recommended using the latter approach and showed that eyT+h|T was
asymptotically equivalent to yT+h|T as N,T →∞.

Let us now turn to the model with a nonlinear dynamic factor structure replacing the linear dynamics

in (2). For example, the observed common asymmetricity of xit�s in expansions and contractions can be

a motivation of introducing nonlinearity in ft. To incorporate such a nonlinearity, a Markov switching

structure of common factor has been often employed in the empirical studies of business cycles. Just as in

the linear case, the system of two equations can be simultaneously estimated by the maximum likelihood

method (Kim and Nelson, 1998, and Chauvet, 1998), or they can be estimated in two steps using principal

components method in the Þrst step (Diebold, 2003). It is important to note that the
√
N -consistency

result of the principal components estimator eft can be derived under some moment conditions of ft without
using an assumption of linearity in ft (Stock and Watson, 1998, and Bai, 2003). Therefore, the principal
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component estimator remains valid under a very general nonlinear dynamic factor structure and is less

subject to the misspeciÞcation problem.3

Suppose a common factor ft is generated by the following nonlinear AR(1) model,

ft = m (ft−1) + εt (5)

where m (ft−1) = E(ft|Ft−1) = E(ft|ft−1) is a conditional mean function. This nonlinear AR model can

be estimated by a parametric method if function m is speciÞed. Alternatively, it can be estimated by a

nonparametric method without specifying the functional form of m. Here we take the latter approach and

consider a nonparametric estimator of (5) with a convergence rate T δ where 0 < δ < 1/2. Then, the consis-

tency result of factors, along with some conditions on the smoothness ofm function, the speed ofN , and the

controlling parameter of the nonparametric method can be used to derive bm(f)− em(f) = op(T−δ) where
bm(f) and em(f) are the infeasible and feasible nonparametric estimators of m (ft−1) evaluated at ft−1 = f ,
respectively, analogous to the linear estimators bφ and eφ.4 Again, the effect of the estimation error in the
Þrst step becomes negligible in the limiting distribution of the nonparametric estimator for the nonlinear

factor dynamics in the second step. Finally, we consider running a nonlinear (nonparametric) forecasting

regression. By combining (3) with (1) and (5), we have

yt+h = gh(ft) + ut+h (6)

where gh(ft) = E(yt+h|Ft) = λ0mh(ft), mh(ft) = E(ft+h|Ft) = E(ft+h|ft) and

ut+h = λ0 [ft+h −E(ft+h|Ft)] + e0t+h. As in the linear case, the optimal forecast, yT+h|T = gh(fT ), is not

feasible. Therefore, we employ eyT+h|T = egh( efT ) where egh( efT ) is a nonparametric regression estimator of
yt+h on eft evaluated at efT . The Þrst order efficiency of eyT+h|T can heuristically be shown as follows. By a
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Taylor series expansion, the dominant term of eyT+h|T− yT+h|T is given by

5egh(fT )( efT − fT ) + (egh(fT )− gh(fT )) (7)

where 5egh(f) is the Þrst derivative of egh(f). The boundedness of 5egh(fT ) and consistency of efT and
egh(fT ) implies eyT+h|T− yT+h|T p→ 0.

In the next section, both two-step methods of estimating a dynamic factor structure and running a fore-

casting regression are applied to Japanese data. In particular, we Þrst employ nonparametric speciÞcation

tests to choose between (2) and (5). Then we construct optimal forecasts using both a linear forecast-

ing regression (4) and a nonlinear forecasting regression (6) and compare the out-of-sample forecasting

performance of DI forecasts with that of conventional time series forecasts.

3 Empirical Results

3.1 Construction of Diffusion Indexes in Japan

Similarly to the NBER in the U.S., the Economic and Social Research Institute (ESRI) of the Cabi-

net Office (formerly the Economic Planning Agency) is in charge of releasing official diffusion indexes in

Japan. Currently, twelve and eleven series are used to construct the leading index and coincident index,

respectively. After each business cycle, the ESRI considers replacing the components of indexes, with the

latest revision made in January, 2002 (the eighth major revision after the introduction of the official DI).

However, since such revisions rely on expert judgment rather than on formal selection criteria, whether a

new index would be better than the current one is always open to question (see Kanoh, 1990, for discussions

regarding this issue). A DI based on the principal components of a large number of series, as proposed by
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Stock and Watson (1998), is certainly less subject to this problem since it automatically summarizes all

the available information based on a statistical model.

Our factor DI utilizes a balanced panel of 235 monthly series from 1973:2 to 2000:12 (see Appendix

for the list of variables). It should be noted that a large number of the series overlap with the candidate

series considered by the ESRI in the revision of the official DI.5 Most variables are expressed in Þrst

differences of logs of seasonally adjusted series or seasonal growth rates of unadjusted series to obtain the

I(0) stationarity. In addition, all the series are standardized to have sample mean zero and unit sample

variance since principal components are not scale-invariant. In a single factor case,
n eftoT

t=1
is the Þrst

eigenvector of the T × T matrix XX 0 with normalization T−1
PT
t=1

ef2t = 1, where X is the T × N data

matrix with t-th row given by X 0
t = (x1t, · · · , xNt). For multiple factors, the k-th principal component

estimator,
n ef (k)t

oT
t=1

for k ≥ 1 is given by the k-th eigenvector of the same matrix.

Figure 1 plots the factor DI from the Þrst principal component ef (1)t rescaled to have the same drift and

variance as the (log of) industrial production in mining and manufacturing (hereafter referred to as IP).

In the same Þgure, we also plot the IP series as well as the official ESRI recessionary episodes shown as

the shaded area. On the whole, the factor DI and IP move together, and thus it is consistent with the

U.S. Þnding by Stock and Watson (1998, 2002) that Þrst factor loads primary on the series related the

real output. However, there are some notable differences between the two series. First, the decline during

the recession of 1973-1975 is much larger in the factor DI than in the IP. Second, in contrast to the IP, no

clear trough is observed in the factor DI series during the recession of 1985-1986. This second point has

an interesting implication if we estimate the turning points using a Markov switching factor model and

compare it with the ESRI reference cycle. Figure 2 shows the recession probabilities computed by Þtting a

Markov switching model with AR(2) dynamics to ef (1)t following the two-step procedure of Diebold (2003).6

While the extracted recession probability does not differ much from the ESRI recessionary episodes, the
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probability of recession in the official recession of 1985-1986 is very low. The probability is indeed lower

than in 1995 despite the fact that, according to the ESRI business cycle chronology, there was no recession

in 1995.

3.2 Testing for Linear Factor Dynamics

Since the neural network can be interpreted as a method of approximating nonlinear function, it can

be used to estimate the nonlinear model when the functional form is not speciÞed. The nonparametric

estimator based on single hidden layer feedforward ANNs can be obtained by minimizing the least square

criterion
PT
t=1 [Yt −m(Zt)]2 where Yt is a single output, Zt is a vector of input, m(Zt) is the neural network

approximation function given by

m(Zt) = α
0Zt +

qX
j=1

βjψ
³
γ0jZt

´
(8)

where ψ is an activation function, q is the number of hidden units.7 For the AR(1) case of (5), the neural

network estimator em (f) is obtained by setting output yt = eft and input Zt = eft−1 and by minimizing
the criterion with respect to α, βj�s and γj �s. Figure 3 shows the linear model of the rescaled factors

estimated by OLS and Figure 4 shows the nonlinear model estimated by ANNs, under AR(2) speciÞcations.

While comparison of the two Þgures seems to suggest the presence of nonlinearity, we would like to know

whether the difference is statistically signiÞcant. For this purpose, we conduct nonparametric speciÞcation

tests for the null hypothesis of linear speciÞcation of (2) that are consistent against a wide range of

nonlinear alternatives given by (5).8 Since the null hypothesis can be written as a conditional moment

restriction E [εt|ft−1] = 0 with εt = ft − φft−1, it implies the unconditional moment restriction of the

form E [h(ft−1)εt] = 0 with any vector of measurable functions h(ft−1). Therefore, a number of tests for

linearity (or neglected nonlinearity) can be constructed with a different choice of h(ft−1).
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Ramsey�s (1969) regression speciÞcation error test (RESET), which is one of the most well-known tests

in the speciÞcation testing literature, uses a r×1 vector of polynomial functions of Þtted value from linear

regression, h(ft−1) =
³
(bφft−1)2, . . . , (bφft−1)r´0. The test statistic T ³PT

t=1 bε2t −PT
t=1 bv2t ´ /PT

t=1 bε2t , where
bεt = ft− bφft−1 and bvt are the residuals from the regression of bεt on auxiliary regressors h(ft−1) (and ft−1),
asymptotically follows χ2 distribution with r degree of freedom.

For White�s (1989) neural network test, h(ft−1) =
³
ψ (γ1ft−1) , . . . ,ψ

³
γqft−1

´´0
= Ψt is a q× 1 vector

of logistic activation functions ψ with the coefficients γj�s being randomly drawn independent of ft−1. The

test statistic can be similarly constructed by using auxiliary regressors (NN), or by using quadratic form

(NN-HAC), Tw0 bΩ−1w w where w = T−1
PT
t=1Ψtbεt and bΩw is the heteroskedasticity and autocorrelation

consistent (HAC) covariance estimator of w. For the latter test statistic, the Bartlett kernel with an

automatic lag selection procedure of Andrews (1991) is employed in the HAC estimation. In either case,

the limit distribution of the test statistic is χ2 distribution with q degree of freedom.

One drawback of the White�s neural network test is the unidentiÞability of γj�s under the null hypothe-

sis. Instead of using random γj�s, Teräsvirta, Lin, and Granger (1993) replaced the activation functions by

their Volterra expansion up to the third order under the null. This LM type neural network test (NN-LM)

can be constructed by using auxiliary regressors based on quadratic and cubic terms from Volterra expan-

sion of nonlinear AR model (h(ft−1) =
¡
(ft−1)2, (ft−1)3

¢0 for AR(1) case). The test statistic asymptotically
follows χ2 distribution with p(p+ 1)/2 + p(p + 1)(p + 2)/6 degree of freedom where p is lag order of AR

model.

The last test we consider is the kernel-based consistent speciÞcation test for AR models proposed by

Fan and Li (1997). It utilizes the h(ft−1) = E (εt|ft−1) f (ft−1) where f (ft−1) is a density function of ft−1.

The test statistic (KERNEL) is based on the kernel estimator of E [h(ft−1)εt] = E [E (εt|ft−1) f (ft−1) εt]

and follows asymptotically normal with an appropriate standardization.

10



We apply Þve different asymptotic tests to eft estimated by principal components method since ft is
not available. Following the discussion in section 2, we expect that estimation error has a negligible effect

on the limiting distribution of the test statistics for linearity under certain regularity conditions. Table 1

reports the results of all Þve tests applied to each of the Þrst to sixth diffusion indexes (k = 1, ..., 6) with

autoregressive orders ranging from one to four (p = 1, ..., 4). For RESET, the results based on r = 4 are

reported. For NN and NN-HAC, we use three (excluding the Þrst) principal components of Ψt with q = 10

to avoid collinearity of ft−1 and Ψt. Then, the improved Bonferroni procedure from Þve draws is used to

construct p-values (see Lee, White, and Granger, 1993, for this procedure in detail). The p-values less than

0.10 are indicated by bold font.

It is fair to say that the results are rather mixed. The RESET, NN and NN-LM tests reject the linear

hypothesis of factor-diffusion indexes for many cases at the conventional signiÞcance level. In contrast,

based on the NN-HAC and KERNEL tests, the same hypothesis is not rejected for almost all cases. One

possibility of this mixed outcome may be related to the power of the speciÞcation tests. Among all the tests

we considered, NN-LM provides the strongest evidence against linearity. Based on a simulation experiment,

Teräsvirta, Lin, and Granger (1993) argue that NN-LM is more powerful than the standard neural network

tests with random draw of hidden layer parameters. In addition, Lee�s (2001) simulation study compares the

performance of NN and KERNEL and reports that KERNEL is less powerful than NN unless bootstrapped

critical value is used. While these simulation results do not take the effect of estimation error of the common

factor in the Þrst step, we can still conclude that there are some possibilities of nonlinearity in the factor

dynamic structure.

11



3.3 Linear and Nonlinear Diffusion Index Forecasts

In this subsection, we evaluate the out-of-sample forecasting performance of the linear and nonlinear

DI forecasts in Japan. We Þrst consider the following h-period ahead linear forecasting regression, a

generalization of (4) to allow for multiple factors as well as lags of factors and yt,

yt+h = αh + β
0
h(L)

eFt + γh(L)yt + ut+h (9)

where eFt = ( ef (1)t , . . . , ef (K)t )0 is the K × 1 vector of K estimated factors in the Þrst step, and βh(L) and

γh(L) are the lag polynomials of Þnite order s − 1 and p − 1, respectively. As a forecasting variable yt,

we consider Þve measures of aggregate activity currently used as ESRI coincident indicators: the index of

industrial production (IP); the index of producer�s shipments (SHIP); the index of the capacity utilization

ratio (CAP); the index of sales in small and medium-sized enterprises (SALE); and the index of non-

scheduled worked hours (HOUR). In addition, while it is not an ESRI coincident indicator, the inßation

rate based on the consumer price index (CPI) is also included as a forecasting variable.9 Based on the

assumption of I(1) in logarithm, the IP (similarly for the other series) is transformed as follows

yt+h = (1200/h) ln(IPt+h/IPt) and yt = 1200 ln(IPt/IPt−1). (10)

Following Stock and Watson (2002), we evaluate the performance of (9 ) based on a simulated out-

of-sample forecasting methodology using the recursive scheme. First, the sample is divided into Þrst R

observations and last P + h − 1 observations, and the factor is estimated by the principal components

method using normalized xit�s from period 1 to R. The estimated factor is then used in the forecasting

regression to obtain the forecast of yR+h. For the second forecast yR+h+1, the data is again standardized

and the factors and forecasting models are reestimated using the observations from 1 to R + 1. This

procedure is repeated P times to obtain P simulated out-of-sample forecasts. We compare this DI forecast
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with other linear forecasts, the autoregressive (AR) forecast and the leading indicator forecast. The AR

forecast uses only current and lagged yt and excludes eFt from the forecasting regression (9). The leading

indicator forecast replaces eFt in (9) with the leading economic indicators Wt selected by the ESRI. We

consider two alternative forms of the leading indicator forecast depending on the choice of Wt. The Þrst

type utilizes the multivariate leading economic indicators as elements in a vectorWt. This leading indicator

forecast is the one considered by Stock and Watson (2002) in the U.S. case, and it will be simply referred

to as the LI forecast. For the LI forecast, we use the following ten leading indicators: the index of the

producer�s inventory ratio of Þnished goods (Þnal demand goods) (L1); the index of the raw materials

inventory to consumption ratio (manufacturing) (L2); new job offers (excluding new school graduates)

(L3); new orders for machinery at constant prices (except for volatile orders) (L4); the total ßoor area

of building construction started (L5); the total ßoor area of new housing construction started (L6); the

number of new passenger car registrations and reports (L7); the Nikkei commodity price index (17 items)

(L8); the money supply (M2+CD) (L9); and the index of investment climate (manufacturing) (L10). The

second type of the leading indicator forecast is constructed by using an index of leading indicator as Wt.

We use the official composite index (CI) of leading indicators released by the ESRI and thus it will be

referred to as the CI forecast.

We consider, as measures of forecasting performance, the mean squared forecast error (MSFE) deÞned

by P−1
PT−h
t=R bu2t+h where but+h is the h-period ahead forecast error, and the mean absolute forecast error

(MAFE) deÞned by P−1
PT−h
t=R |but+h|, and report the ratio of each criterion of the candidate model to

that of the benchmark model. In addition, we compute a t-statistic for testing the hypothesis of equal

forecast accuracy, considered in Christiano (1989), West, Edison, and Cho (1993) and Diebold and Mar-

iano (1995). The t-statistic is given by
√
P × d/bωd, where d = P−1

PT−h
t=R

³bu21,t+h − bu22,t+h´ for MSFE,
d = P−1

PT−h
t=R (|bu1,t+h|− |bu2,t+h|) for MAFE, bu1,t+h and bu2,t+h are h-period ahead forecast errors of two
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models. In each case, the HAC variance estimator of the loss differential, bω2d, is obtained using the Bartlett
kernel with lag truncation parameter h− 1. Suppose the case of observable ft in DI forecasting regression

(4) with bβh being the OLS estimator of βh. As West (1996) has shown, the effect of parameter estimation
error bβh−βh needs to be incorporated into the limiting variance of d, unless P/R→ 0 as T →∞. Similarly,

since the true DI forecasting regression involves a latent variable ft, additional uncertainty from the factor

estimation error eft−ft needs to be incorporated in general. From the argument used in Section 2, however,
we expect that both factor estimation error and parameter estimation error will become negligible in the

limiting distribution given N/T →∞ and P/R→ 0 as T →∞.

The simulated out-of-sample forecast periods are 1991:1 to 2000:12 so that the number of forecasts (P )

is 120. Table 2 shows the results of various linear forecasts for Þve real series and one inßation series with

the 6-month forecast horizon (h = 6). The AR lag (p) for all the models is Þxed to two, and only current

LI (or CI) is included in the LI (or CI) forecast (s = 1). For the DI forecast, six factor diffusion indexes

are included (K = 6) and two cases with s = 1 (DI1) and s = 2 (DI2) are considered.10 The results of the

linear forecasts can be summarized as follows. First, in many cases, the CI forecast performs better than

both the AR and LI forecasts. Second, both DI1 and DI2 forecasts outperform the AR and LI forecasts

for all cases except HOUR. DI1 performs as well as CI, but DI2 provides a better forecast than the CI

forecast. Third, among alternative DI forecasts, signiÞcant improvement is observed when lags of the DIs

are included (DI2). The ratio implies that DI2 can achieve maximum of 30 percent reduction in MSFE

compared to the AR and LI forecasts. This outcome is very encouraging and suggests the usefulness of

the (linear) DI forecast in Japan.11

We now turn to the nonlinear DI forecast. In Section 3.2, we found some evidence suggesting the

possibility of nonlinearity in factor dynamics. As discussed in Section 2, this possibility implies that there

may be some gain from employing a nonlinear forecasting regression. As in the case of the linear DI
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forecast, we consider a generalization of nonlinear DI forecast (6) to allow for multiple factors as well as

lags of factors and yt,

yt+h = gh( eF 0t , ..., eF 0t−(s−1), yt, ..., yt−(p−1)) + ut+h. (11)

For the purpose of estimating gh function, we again employ the ANNs given by (8). Here, the es-

timator egh for a nonlinear DI forecast is obtained with the output Yt = yt+h and the input vector

Zt = ( eF 0t , ..., eF 0t−(s−1), yt, ..., yt−(p−1)). While the lag lengths (s = 1, 2 and p = 2) and the number of

factors (K = 6) are Þxed as in the case of the linear forecasts, the number of the hidden unit (q = 1, 2)

is selected by minimizing BIC. The MSFE and MAFE of the forecasts from the nonlinear models with

s = 1 (NN1) and s = 2 (NN2) are compared to those of the corresponding linear DI forecasts (DI1 and

DI2). In addition to the result based on the single nonlinear DI forecast, we also provide the result based

on the forecast combination of the linear and nonlinear DI models using the weight employed in Hong and

Lee (2003). Table 3 shows the performance of the nonlinear DI forecasts compared to that of the linear

DI forecasts. COMB1 (COMB2) forecasts are the combination of DI1 (DI2) and NN1 (NN2). For most

cases, evidence suggests no clear advantage of nonlinear forecasts over linear forecasts. The only exception

is HOUR, the case in which the linear DI performs poorly in Table 2. Although not reported in the table,

the nonlinear DI forecasts also outperform the linear AR and LI forecasts. From this observation, we

conjecture that there are some cases with which the nonlinear DI forecast works even if the linear version

fails.

Finally, we would like to discuss the issue of t-statistics of MSFE differential applied to the nested

models. In the linear case, the DI and LI models are nonnested, but the DI and AR models are nested

models. In addition, the nonlinear and linear DI models are also nested. As emphasized in Clark and

McCracken (2001), the t-statistic for the test of equal MSFE of two nested models may have a non-
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standard limiting distribution unless P/R→ 0 as T →∞. The table provided in McCracken (2000) shows

that the critical values based on non-standard distribution are smaller than the standard normal critical

values. Therefore, when P/R is not very small, a test based on the standard normal critical value may

better be considered as a conservative test. In that case, the implications to our results are as follows. First,

when the hypothesis of equal MSFE is signiÞcantly rejected based on the standard normal critical values

in Tables 2 and 3, the conclusion is still valid. Second, even if the hypothesis is not rejected, such as the

one for forecasting CPI using a DI model in Table 2, there are some possibilities that the loss differential

is indeed signiÞcant if a correct critical value is used. Because of this second implication, it may be worth

examining the forecasting performance by using an additional test designed for the nested case. For this

reason, we also compute Chao, Corradi, and Swanson�s (CCS, 2001) test statistics for the null hypothesis

of equal predictive ability of the DI and AR models, given by Pw0bΩ−1w w, where w = P−1
PT−h
t=R but+h eFt,

but+h is the h-period ahead forecast error of the AR model, and bΩw is the HAC covariance estimator of
w based on the Bartlett kernel with lag truncation parameter h − 1. Under the null hypothesis of equal

MSFE, the test follows χ2 distribution with K degree of freedom. For the test of comparing the MSFE of

the linear and nonlinear DI forecasts in Table 3, but+h is the forecast error of the linear DI model and eFt is
replaced by Ψt =

³
ψ (γ01Zt) , . . . ,ψ

³
γ0qZt

´´0
where Zt = ( eF 0t , ..., eF 0t−(s−1), yt, ..., yt−(p−1)). Implementation

of the nested nonlinear prediction test is similar to that employed for the neural network test for neglected

nonlinearity described in Section 3.2. We report the improved Bonferroni p-values from Þve draws of the

test statistic based on three principal components of Ψt with q = 10 and randomly drawn γj�s. The Þrst

column of Table 4 shows the results of nested tests for the linear case and the second column shows those

of nested tests for the nonlinear case. On the whole, the results are consistent with those in Tables 2 and

3 in the sense that the evidence supports the linear DI forecast over the linear AR forecast for almost all

cases, but relatively weak evidence is found regarding the advantage of the nonlinear DI forecast over the
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linear DI forecast. However, the CCS test provides stronger evidence of the usefulness of the linear DI

forecast for HOUR and the linear and nonlinear DI forecasts for CPI.

4 Conclusion

This paper has considered the possibility of extending the diffusion index (DI) forecast approach pro-

posed by Stock and Watson (1998, 2002) to the case of dynamic factor models with a possibly nonlinear

dynamic factor structure. When the number of series is large, a two-step procedure based on principal

components method is useful and convenient as it is robust to the wide variety of the nonlinear structures of

latent factors. The DIs constructed from principal components, thus, can be used to estimate the nonlinear

time series models or to conduct speciÞcation tests regarding the nonlinearity of the model. Furthermore,

the DI can be included as a regressor in the nonlinear forecasting regression.

As an empirical application of this procedure, we constructed factor DIs based on 235 monthly macro-

economic series from Japan. We estimated the nonlinear time series model of DIs nonparametrically using

artiÞcial neural networks (ANNs). The results of nonparametric speciÞcation tests provided some evidence

of a nonlinear dynamic factor structure. We then applied both linear and nonlinear DI forecasting re-

gression to several measures of aggregate activity currently used as coincident indicators in Japan, as well

as the CPI-based inßation series. As with Stock and Watson�s (2002) Þnding with the U.S. data, the DI

forecast approach is found to be useful in forecasting the Japanese economy. Both linear and nonlinear DI

forecasts outperformed the conventional time series forecast. The advantage of the nonlinear DI forecast

over the linear DI forecast may, however, be marginal and thus warrants further investigation.

In closing, we raise some issues to extend the analysis of this paper. First, this paper�s approach relies

on the large N asymptotics. In the linear case, Shintani�s (2003) simulation results on the AR estimation
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of the factors show that asymptotic approximation works well with a sample size typically available for

economic time series. Similar simulation design may be used to check the Þnite sample performance in the

nonlinear case. Second, using the parametric nonlinear models as well as other nonparametric methods

may provide different results from this paper that uses ANNs. Third, the performance of the nonlinear DI

forecast may be improved by allowing time-varying speciÞcation regarding the lag length and the number

of factors included which was not considered in this paper.

18



Footnotes

1. The usefulness of the DI forecast in the Euro area was recently supported by Marcellino, Stock, and

Watson (2003) and Forni, Hallin, Lippi, and Reichlin (2003). The latter study utilized the dynamic

principal components in addition to the static principal components considered by Stock and Watson

(1998, 2002).

2. For example, such a two-step procedure was considered by Kariya (1993) under the name of Multi-

variate Time-Series Variance-Component (MTV) model.

3. For example, the validity of the procedure employed by Diebold (2003) can be considered by checking

the corresponding moments of the Markov switching model recently derived by Timmermann (2000).

4. Shintani (2004) provides the proof of this claim for the case of kernel regression estimator.

5. The report by the Cabinet Office of Japan (1997) contains a list of 253 candidate series used in the

seventh revision of the Japanese official business cycle index. Candidate variables employed for the

eighth revision are not published but are similar to those used in the previous revision.

6. In case of a small number of series (N = 4), Watanabe (2003) also investigated the performance of

a Markov switching factor model in Japan estimated by the method proposed by Kim and Nelson

(1998).

7. Throughout this paper, we use the logistic activation function. Also, the criterion function is modiÞed

to have the weight decay identical to the one employed in Franses and van Dijk (2000).

8. Instead of using speciÞcation tests, Hess and Iwata (1997) evaluated the performance of nonlinear

models by checking to see if they could replicate business cycle features. However, we do not use
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their approach since true factors are latent variables and thus we cannot deÞne cycles unlike the one

based on observed GDP series.

9. Effects of the introduction of the consumption tax in April, 1989, and the increased tax rate in

April, 1997, on the CPI have been adjusted using the X12-ARIMA program. We employ the I(1)

speciÞcation of the price index for Japan rather than the I(2) speciÞcation which has been used for

the U.S. by Stock and Watson (2002).

10. This paper follows Hong and Lee�s (2003) approach where a forecasting model with Þxed speciÞcation

is reestimated to construct each forecast. Six factors are used in the forecasting regression since the

Þrst six factors account for a large part of the variance of the individual series in Japan as well as

in the U.S. (see Stock and Watson, 2002). Alternatively, a different number of factors (as well as

the lag lengths) can be used to construct each forecast. Bai and Ng�s (2002) procedure to select the

number of factors may be used for such a time varying speciÞcation in the forecasting regression.

11. We also conducted forecasting with a longer horizon, h = 12, as well as a shorter horizon, h = 1.

We obtained similar results with h = 12 case but no evidence of improvement with DI forecast was

found in the case of h = 1.
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Appendix: Data Description 
 
   This appendix lists the series used to construct the diffusion index based on the factor model described in 
the main text.  Sample period is from February 1973 to December 2000. Most of the series are transformed 
using the first difference of logs of seasonally adjusted series (or seasonal growth rate) except for the 
interest rates (194 to 206) where the series are based on the levels. 
 
Series  
Number  

  
 Real Output 
1 (IP) Index of Industrial Production (Mining and Manufacturing) 
2 Index of Industrial Production (Manufacturing) 
3 Index of Industrial Production (Mining) 
4 Index of Industrial Production (Iron and Steel) 
5 Index of Industrial Production (Non-Ferrous Metals) 
6 Index of Industrial Production (Fabricated Metals) 
7 Index of Industrial Production (General Machinery) 
8 Index of Industrial Production (Electrical Machinery) 
9 Index of Industrial Production (Transport Equipment) 
10 Index of Industrial Production (Precision Instruments) 
11 Index of Industrial Production (Ceramics, Clay and Stone Products) 
12 Index of Industrial Production (Chemicals) 
13 Index of Industrial Production (Petroleum and Coal Products) 
14 Index of Industrial Production (Plastic Products) 
15 Index of Industrial Production (Pulp, Paper and Paper Products) 
16 Index of Industrial Production (Textiles) 
17 Index of Industrial Production (Foods and Tobacco) 
18 Index of Industrial Production (Other Manufacturing) 
19 Index of Industrial Production (Final Demand Goods) 
20 Index of Industrial Production (Producer Goods) 
21 Index of Industrial Production (Producer Goods for Mining and Manufacturing) 
22 Index of Industrial Production (Producer Goods for Others) 
23 Index of Producer's Shipments (Final Demand Goods) 
24 (SHIP) Index of Producer's Shipments (Producer Goods) 
25 Index of Producer's Shipments (Producer Goods for Mining and Manufacturing) 
26 Index of Producer's Shipments (Producer Goods for Others) 
27 Index of Raw Materials Consumption (Manufacturing) 
28 Large Consumption of Electric Energy (Total) 
29 (CAP) Index of Capacity Utilization Ratio (Manufacturing) 
30 Index of Capacity Utilization Ratio (Iron and Steel) 
31 Index of Capacity Utilization Ratio (Non-Ferrous Metals) 
32 Index of Capacity Utilization Ratio (Fabricated Metals) 
33 Index of Capacity Utilization Ratio (General Machinery) 
34 Index of Capacity Utilization Ratio (Electrical Machinery) 
35 Index of Capacity Utilization Ratio (Transport Equipment) 
36 Index of Capacity Utilization Ratio (Precision Instruments) 
37 Index of Capacity Utilization Ratio (Ceramics, Clay and Stone Products) 
38 Index of Capacity Utilization Ratio (Chemicals) 
39 Index of Capacity Utilization Ratio (Petroleum and Coal Products) 
40 Index of Capacity Utilization Ratio (Textiles) 
41 Index of Capacity Utilization Ratio (Rubber Products) 
42 Index of Capacity Utilization Ratio (Machinery) 
43(SALE) Index of Sales in Small and Medium-Sized Enterprises (Manufacturing) 
44 Index of Tertiary Industry Activity (Total) 
45 Index of Tertiary Industry Activity (Electricity, Gas, Heat and Water Supply) 
46 Index of Tertiary Industry Activity (Transport and Communication) 
47 Index of Tertiary Industry Activity (Transport) 
48 Index of Tertiary Industry Activity (Wholesale, Retail Trade, Eating and Drinking Places) 
49 Index of Tertiary Industry Activity (Eating and Drinking Places) 
50 Index of Tertiary Industry Activity (Finance and Insurance) 
51 Index of Tertiary Industry Activity (Real Estate) 
52 Index of Tertiary Industry Activity (Services) 
53 Index of Tertiary Industry Activity (Personal Services) 
54 Index of Tertiary Industry Activity (Business Services) 
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 Inventories 
55 Index of Producer's Inventory Ratio of Finished Goods (Mining and Manufacturing) 
56(L1) Index of Producer's Inventory Ratio of Finished Goods (Final Demand Goods) 
57 Index of Producer's Inventory Ratio of Finished Goods (Investment Goods) 
58 Index of Producer's Inventory Ratio of Finished Goods (Capital Goods) 
59 Index of Producer's Inventory Ratio of Finished Goods (Construction Goods) 
60 Index of Producer's Inventory Ratio of Finished Goods (Consumer Goods) 
61 Index of Producer's Inventory Ratio of Finished Goods (Durable Consumer Goods) 
62 Index of Producer's Inventory Ratio of Finished Goods (Nondurable Consumer Goods) 
63 Index of Producer's Inventory Ratio of Finished Goods (Producer Goods) 
64 Index of Producer's Inventory Ratio of Finished Goods (Producer Goods for Mining and Manufacturing) 
65 Index of Producer's Inventory Ratio of Finished Goods (Producer Goods for Others) 
66(L2) Index of Raw Materials Inventory Ratio (Manufacturing) 
67 Index of Producer's Inventory of Finished Goods (Mining and Manufacturing) 
68 Index of Producer's Inventory of Finished Goods (Final Demand Goods) 
69 Index of Producer's Inventory of Finished Goods (Investment Goods) 
70 Index of Producer's Inventory of Finished Goods (Capital Goods) 
71 Index of Producer's Inventory of Finished Goods (Construction Goods) 
72 Index of Producer's Inventory of Finished Goods (Consumer Goods) 
73 Index of Producer's Inventory of Finished Goods (Durable Consumer Goods) 
74 Index of Producer's Inventory of Finished Goods (Nondurable Consumer Goods) 
75 Index of Producer's Inventory of Finished Goods (Producer Goods) 
76 Index of Producer's Inventory of Finished Goods (Producer Goods for Mining and Manufacturing) 
77 Index of Producer's Inventory of Finished Goods (Producer Goods for Others) 
78 Index of Inventory (Final Demand Goods) 
  
 Investments 
79 Index of Producer's Shipments (Investment Goods Excluding Transport Equipments) 
80 Index of Producer's Shipments (Producer Goods) 
81 Index of Industrial Production (Investment Goods) 
82 Index of Industrial Production (Capital Goods) 
83 Index of Industrial Production (Construction Goods) 
84 Index of Production Capacity (Manufacturing) 
85 Machinery Orders (Total, Excluding Ships) 
86(L4) Machinery Orders (Private Sector, Excluding Volatile Orders) 
87 Machinery Orders (Manufacturing) 
88 Machinery Orders (Non-Manufacturing, Excluding Volatile Orders) 
89 Machinery Orders (Government) 
90 Order Received for Construction (Grand Total) 
91 Order Received for Construction (Private) 
92 Order Received for Construction (Manufacturing) 
93 Order Received for Construction (Non-Manufacturing) 
94 Order Received for Construction (Public) 
95 Total Floor Area of Building Construction Started (Grand Total) 
96(L5) Total Floor Area of Building Construction Started (Mining, Manufacturing and Commercial Use) 
97 Total Floor Area of Building Construction Started (Mining) 
98 Total Number of New Housing Construction Started (Total) 
99 Total Number of New Housing Construction Started (Owned) 
100 Total Number of New Housing Construction Started (Rented) 
101 Total Number of New Housing Construction Started (Built for Sale) 
102 Total Number of New Housing Construction Started (Government Housing Loan Corporation) 
103(L6) Total Floor Area of New Housing Construction Started (Total) 
104 Total Floor Area of New Housing Construction Started (Owned) 
105 Total Floor Area of New Housing Construction Started (Rented) 
106 Total Floor Area of New Housing Construction Started (Built for Sale) 
  
 Employment 
107 Index of Non-Scheduled Worked Hours (All Industries, 30 or More Persons) 
108(HOUR) Index of Non-Scheduled Worked Hours (Manufacturing) 
109 Index of Total Worked Hours (All Industries, 30 or More Persons) 
110 Index of Total Worked Hours (Manufacturing) 
111 Ratio of Non-Scheduled to Total Worked Hours (All Industries, 30 or More Persons) 
112 Ratio of Non-Scheduled to Total Worked Hours (Manufacturing) 
113 New Job Offers  
114 Effective Job Offers  
115(L3) New Job Offer Rate 
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116 Effective Job Offer Rate  
117 New Job Offers (Part-Time) 
118 Effective Job Offers (Part-Time) 
119 New Job Offer Rate (Part-Time) 
120 Effective Job Offer Rate (Part-Time) 
121 Index of Regular Workers Employment (All Industries, 30 or More Persons) 
122 Index of Regular Workers Employment (All Industries, Excluding Services) 
123 Index of Regular Workers Employment (Mining) 
124 Index of Regular Workers Employment (Construction) 
125 Index of Regular Workers Employment (Manufacturing) 
126 Index of Regular Workers Employment (Electricity, Gas, Heat Supply) 
127 Index of Regular Workers Employment (Transport and Communication) 
128 Index of Regular Workers Employment (Wholesale and Retail Trade) 
129 Index of Regular Workers Employment (Finance and Insurance) 
130 Index of Regular Workers Employment (Real Estate) 
131 Index of Regular Workers Employment (Services) 
132 Number of Unemployment 
133 Unemployment Rate 
134 Number of Beneficiaries of Unemployment Insurance (Initial Claimants) 
135 Number of Beneficiaries of Unemployment Insurance (Total) 
136 Number of Persons with Unemployment Insurance 
137 Real Wage Index (Contractual Cash Earnings in All Industries, 30 or More Persons) 
  
 Consumption 
138 Sales at Department Stores (Total) 
139 Sales at Department Stores (Per Square Meter Floor Space) 
140 Index of Sales (Total) 
141 Index of Sales (Wholesale) 
142 Index of Sales (General Merchandise Retail) 
143(L7) Number of New Passenger Car Registrations and Reports (Total) 
144 Number of New Passenger Car Registrations and Reports (Excluding Cars Under 550cc) 
145 Household Consumption Expenditure (Workers)  
146 Household Consumption Expenditure (Food)  
147 Household Disposable Income (Workers)  
148 Index of Industrial Production (Consumer Goods) 
149 Index of Industrial Production (Durable Consumer Goods) 
150 Index of Industrial Production (Non-Durable Consumer Goods) 
151 Index of Producer's Shipments (Consumer Goods) 
152 Index of Producer's Shipments (Durable Consumer Goods) 
153 Index of Producer's Shipments (Non-Durable Consumer Goods) 
  
 Firms 
154(L10) Index of Investment Climate (Manufacturing) 
155 Corporation Tax Revenue 
156 Suspension of Business Transaction with Bank 
  
 Money, Stock Price and Interest Rate 
157(L9) Money Supply (M2+CD, Average Outstanding) 
158 Money Supply (M1, Average Outstanding) 
159 Monetary Base (Average Outstanding) 
160 Bank Notes Issued (Average Outstanding) 
161 Bank Clearings (Number) 
162 Bank Clearings (Value) 
163 Nikkei Stock Average 225 Selected Stocks (Average of Month) 
164 Nikkei Stock Average 500 Selected Stocks 
165 Stock Price Index (TOPIX) 
166 Stock Price Average (Tokyo Stock Market, First Section) 
167 Stock Price Index (Fisheries, Agriculture and Forestry) 
168 Stock Price Index (Mining) 
169 Stock Price Index (Construction) 
170 Stock Price Index (Foods) 
171 Stock Price Index (Textiles) 
172 Stock Price Index (Pulp and Paper) 
173 Stock Price Index (Oil and Coal Products) 
174 Stock Price Index (Rubber Products) 
175 Stock Price Index (Glass and Ceramics Product) 
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176 Stock Price Index (Iron and Steel) 
177 Stock Price Index (Non-Ferrous Metals) 
178 Stock Price Index (Metal Products) 
179 Stock Price Index (Machinery) 
180 Stock Price Index (Electrical Machinery) 
181 Stock Price Index (Transportation Equipment) 
182 Stock Price Index (Precision Instrument) 
183 Stock Price Index (Other Products) 
184 Stock Price Index (Electric and Gas) 
185 Stock Price Index (Land Transportation) 
186 Stock Price Index (Marine Transportation) 
187 Stock Price Index (Air Transportation) 
188 Stock Price Index (Warehouse and Transport-Related) 
189 Stock Price Index (Communication) 
190 Stock Price Index (Real Estate) 
191 Stock Price Index (Service) 
192 Sales Volume (Daily Average, Tokyo Stock Market, First Section) 
193 Sales Value (Daily Average, Tokyo Stock Market, First Section) 
194 Official Discount Rates 
195 Short-Term Prime Lending Rates 
196 Long-Term Prime Lending Rates 
197 Average Contracted Interest Rate on Loans and Discounts (Domestically Licensed Bank) 
198 Yields of Bond Traded with Repurchase Agreement (3 Months, Month Average) 
199 Call Rates (Collateralized Overnight, Month Average) 
200 Bill Rates (2 Months, Month Average) 
201 Yields of Short-Term Government Securities (13 Weeks) 
202 Yields of Interest-Bearing Bank Debentures (5 Years) 
203 Yields of Interest-Bearing Government Bonds (10 Years) 
204 Yields of Government Guaranteed Bonds (10 Years) 
205 Yields of Local Government Bonds (10 Years) 
206 Yields to Maturity of Listed Government Bonds (Longest Term until Redemption Day) 
  
 Price Indexes 
207(L8) Nikkei Commodity Price Index (17 items) 
208 Nikkei Commodity Price Index (42 items) 
209 Wholesale Price Index (All Commodities) 
210 Wholesale Price Index (Manufacturing Industry Products) 
211 Wholesale Price Index (Raw Materials) 
212 Wholesale Price Index (Intermediate Materials) 
213 Wholesale Price Index (Final Goods) 
214 Wholesale Price Index (Capital Goods) 
215 Wholesale Price Index (Consumer Goods) 
216 Wholesale Price Index (Durable Consumer Goods) 
217 Wholesale Price Index (Nondurable Consumer goods) 
218 Consumer Price Index (General) 
219 (CPI) Consumer Price Index (General, Excluding Fresh Food) 
220 Consumer Price Index (General, Excluding Fresh Food and Imputed Rent) 
221 Consumer Price Index (Food) 
222 Consumer Price Index (Housing) 
223 Consumer Price Index (Fuel Light and Water Charges) 
224 Consumer Price Index (Furniture and Household Utensils) 
225 Consumer Price Index (Clothes and Footwear) 
226 Consumer Price Index (Medical Care) 
227 Consumer Price Index (Transportation and Communication) 
228 Consumer Price Index (Education) 
229 Consumer Price Index (Reading and Recreation) 
230 Consumer Price Index (Miscellaneous) 
  
 Trade 
231 Terms of Trade Index (All Commodities) 
232 Quantum Index of Exports (Total) 
233 Quantum Index of Imports (Total) 
234 Customs Clearance (Value of Exports, Grand Total) 
235 Foreign Exchange Rate (Yen per US Dollar, Spot) 
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Table 1
Testing for Linearity in AR(p) Model of k-th Principal Component

RESET NN NN-HAC NN-LM KERNEL RESET NN NN-HAC NN-LM KERNEL
p = 1 p = 2

k = 1 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01
k = 2 0.07 0.16 0.39 0.04 0.78 0.29 0.18 0.99 0.03 0.06
k = 3 0.03 0.09 0.57 0.02 0.89 <0.01 0.03 0.99 <0.01 0.90
k = 4 0.04 0.04 0.29 0.02 0.42 0.26 0.33 0.99 0.17 0.63
k = 5 0.02 <0.01 0.12 0.01 0.08 0.47 0.08 0.97 <0.01 0.78
k = 6 0.03 0.03 0.24 0.03 0.52 0.22 0.22 0.99 0.13 0.87

p = 3 p = 4
k = 1 0.54 0.04 0.97 0.02 0.18 0.16 0.30 0.98 0.02 0.32
k = 2 <0.01 <0.01 0.90 <0.01 0.07 <0.01 <0.01 0.87 <0.01 <0.01
k = 3 <0.01 <0.01 0.93 <0.01 0.34 <0.01 0.03 0.96 <0.01 0.37
k = 4 0.11 <0.01 0.93 0.02 0.42 0.06 <0.01 0.83 <0.01 0.44
k = 5 0.95 <0.01 0.76 <0.01 0.46 0.83 <0.01 0.73 <0.01 0.42
k = 6 0.33 0.78 0.99 0.56 0.86 0.54 0.97 1.00 0.10 0.80
Notes: Sample period: 1973:2-2000:12. Numbers are p-values of the tests for the null hypothesis of linearity applied
to each k-th principal component ( ef (k)t ). See Ramsey (1969) for the RESET, White (1989) for the neural network
tests (NN and NN-HAC), Teräsvirta, Lin, and Granger (1993) for the LM type neural network test (NN-LM), and
Fan and Li (1997) for the kernel test (KERNEL), respectively. The Bartlett kernel with an automatic lag selection
procedure of Andrews (1991) is used in NN-HAC.



Table 2
Linear Diffusion Index Forecast

Series Model MSFE MAFE
vs. AR vs. LI vs. CI vs. AR vs. LI vs. CI

Ratio t -stat Ratio t -stat Ratio t -stat Ratio t -stat Ratio t -stat Ratio t -stat
IP CI 0.92 1.04 0.83 1.61 � � 0.96 0.90 0.88 2.98 � �

DI1 0.95 0.48 0.86 1.12 1.03 -0.37 0.94 1.34 0.86 2.42 0.97 0.54
DI2 0.80 1.71 0.72 2.52 0.87 1.60 0.87 2.41 0.80 4.26 0.90 2.24

SHIP CI 0.90 1.29 0.78 2.21 � � 0.94 1.21 0.90 2.10 � �
DI1 0.99 0.08 0.86 1.10 1.11 -1.09 0.98 0.37 0.94 0.91 1.05 -0.83
DI2 0.86 1.55 0.74 2.37 0.96 0.56 0.92 1.73 0.88 2.31 0.98 0.50

CAP CI 0.85 1.82 0.74 2.58 � � 0.88 2.81 0.85 3.72 � �
DI1 0.86 1.56 0.75 1.64 1.01 -0.07 0.86 2.69 0.84 2.31 0.98 0.32
DI2 0.72 3.42 0.63 2.71 0.84 1.69 0.80 4.60 0.78 3.99 0.91 1.88

SALE CI 0.96 0.55 0.89 0.63 � � 1.02 -0.43 0.95 0.57 � �
DI1 0.98 0.12 0.91 0.53 1.02 -0.21 0.99 0.08 0.92 0.94 0.97 0.48
DI2 0.78 1.13 0.73 1.69 0.82 1.32 0.90 0.93 0.83 1.95 0.88 1.56

HOUR CI 0.91 1.04 0.76 3.95 � � 0.97 0.46 0.87 3.57 � �
DI1 1.04 -0.55 0.87 1.54 1.14 -1.42 1.03 -0.56 0.92 1.35 1.06 -1.06
DI2 1.05 -0.44 0.88 1.08 1.15 -1.01 1.01 -0.10 0.90 1.61 1.03 -0.51

CPI CI 1.01 -2.19 1.00 -0.01 � � 1.01 -2.48 0.98 0.26 � �
DI1 0.76 1.53 0.76 1.32 0.75 1.59 0.83 2.05 0.81 1.99 0.83 2.17
DI2 0.70 1.50 0.70 1.89 0.70 1.54 0.83 1.87 0.80 1.99 0.82 1.97

Notes: Forecast period: 1991:1-2000:12 (P = 120). The MSFE (MAFE) is the mean squared forecast error (mean absolute forecast
error) of the 6 month ahead out-of-sample forecasts (h = 6). Ratio is the MSFE (MAFE) of the forecasting model relative to that of
benchmark models, AR, LI and CI. t-stat is t-statistic to test for equal MSFE (MAFE) with HAC standard error computed using
the Bartlett kernel with lag truncation h−1. AR lag order is Þxed to two. The forecasting series are: index of industrial production
(IP); index of producer�s shipments (SHIP); index of capacity utilization ratio (CAP); index of sales in small and medium-sized
enterprises (SALE); index of non-scheduled worked hours (HOUR); and consumer price index (CPI).



Table 3
Nonlinear Diffusion Index Forecast

Series Model MSFE MAFE
Ratio t-stat Ratio t-stat

IP NN1 vs. DI1 1.13 -2.90 1.08 -3.58
NN2 vs. DI2 1.14 -1.36 1.07 -1.25

COMB1 vs. DI1 1.05 -2.37 1.03 -2.59
COMB2 vs. DI2 1.03 -0.72 1.03 -0.88

SHIP NN1 vs. DI1 1.16 -2.09 1.07 -1.51
NN2 vs. DI2 1.18 -1.79 1.07 -1.30

COMB1 vs. DI1 1.04 -1.21 1.01 -0.51
COMB2 vs. DI2 1.05 -1.15 1.02 -0.67

CAP NN1 vs. DI1 1.03 -0.65 1.01 -0.26
NN2 vs. DI2 1.14 -2.80 1.05 -1.80

COMB1 vs. DI1 1.00 -0.10 1.00 0.29
COMB2 vs. DI2 1.04 -1.47 1.01 -0.87

SALE NN1 vs. DI1 1.13 -0.79 1.06 -1.02
NN2 vs. DI2 1.40 -2.02 1.15 -1.86

COMB1 vs. DI1 0.99 0.19 1.00 0.10
COMB2 vs. DI2 1.09 -1.07 1.04 -0.99

HOUR NN1 vs. DI1 1.17 -0.75 0.98 0.32
NN2 vs. DI2 0.94 0.58 0.94 1.02

COMB1 vs. DI1 1.01 -0.09 0.97 0.88
COMB2 vs. DI2 0.90 1.85 0.92 2.43

CPI NN1 vs. DI1 1.56 -1.11 1.02 -0.28
NN2 vs. DI2 1.23 -1.11 0.99 0.06

COMB1 vs. DI1 1.15 -0.68 0.94 1.20
COMB2 vs. DI2 0.97 0.37 0.95 0.96

Notes: NN1 and NN2 are nonlinear versions of DI1 and DI2, re-
spectively. Nonlinear models are based on ANN estimation where
the number of hidden units is selected by BIC. COMB1 (COMB2)
is the combination forecast of DI1 (DI2) and NN1 (NN2). See
notes to Table 2.
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Table 4
Test for Nested Forecasting Models

Series Model Linear Test Nonlinear Test
(DI1/DI2 vs. AR) (NN1/NN2 vs. DI1/DI2)
CCS df p-value CCS df p-value

IP DI1 9.74 6 0.14 7.03 3 0.11
DI2 18.79 12 0.09 7.14 3 0.06

SHIP DI1 8.81 6 0.18 4.18 3 0.57
DI2 24.05 12 0.02 6.31 3 0.12

CAP DI1 21.34 6 <0.01 6.15 3 0.22
DI2 31.80 12 <0.01 6.11 3 0.12

SALE DI1 11.65 6 0.07 7.19 3 0.13
DI2 18.03 12 0.12 9.61 3 0.40

HOUR DI1 25.76 6 <0.01 7.06 3 0.06
DI2 42.78 12 <0.01 10.88 3 <0.01

CPI DI1 62.71 6 <0.01 10.35 3 <0.01
DI2 83.48 12 <0.01 8.22 3 <0.01

Notes: CCS is Chao, Corradi, and Swanson�s (2001) test for equal
forecast ability of nested models based on MSFE. The mean of CCS
from Þve draws is shown for the nonlinear tests. See notes to Table 2.
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Figure 1.  Industrial Production (IP) and 1st Principal Component 
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             Note: In logarithms. Industrial production (solid line) and 1st principal component (dotted line). 



 
Figure 2.  Smoothed Probability of a Recession 
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