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1. Introduction1

An novel growth model is studied in which there are autonomous, endogenous processes2

for both the creation and destruction of technologies. These processes are separate in that3

they are the result of decisions made by di¤erent agents, although both are in�uenced by4

equilibrium market forces. While in much of the existing literature the destructive process5

appears to be a (regrettable) consequence, or secondary e¤ect, of the innovative activity,6

here the destructive process is of equal importance to that of innovation, and if the former7

were to cease, then so would the latter. This model will permit the study of how these8

autonomous decisions interact to produce an equilibrium growth rate and enables the study9

of why each of these decisions may not be made optimally.10

Important contributions to the literature on economic growth have been made by the11

study of models that capture the notion of �Creative Destruction�. However, in many of12

these models the �creative�mechanism is indistinct from the �destructive�mechanism, in13

that they are really the same process. It is apparent that such models do not capture the14

true nature of the �destructive process�in market economies, wherein products or �rms are15

purged due to the change in factor or product prices, which ultimately reduce the pro�tability16

of older technologies.17

As an example, consider the novel growth model of Aghion and Howitt 1992, in which18

there are innovations in the technology for producing an intermediate good. In their bench-19

mark model innovators are given a monopoly, which lasts until some other producer develops20

a lower-cost technology. The incumbent is then displaced from the market. In this sense,21

the creative and destructive channels are really indistinguishable.1 Actual markets rarely22

1There are many other papers that have a similar linkage between the entry and exit of �rms or technolo-
gies, such as that of Grossman and Helpman 1991b, or Klette and K�rtum 2004. Grossman and Helpman
study a model in which the incumbents are not necessarily driven out of the market completely, but instead
they are forced into making zero pro�ts. Aghion and Howitt also consider this case. In this instance, there
are at most two participants in the market, so it is not quite a monopoly. But again, in these frameworks
the innovative and destructive processes are essentially the indistinguishable. In the paper by K�ette and
K�rtum, �rms can produce a multitude of goods, but if another �rm successfully innovates in producing an
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function in this manner. Furthermore, this approach does not capture the notion that these1

entry and exit decisions are generally made by di¤erent agents or �rms, and that one person�s2

(or �rm�s) innovation does not necessarily compel the incumbent to leave. It is important3

to understand and model the exit decision properly because this exodus must inevitably4

in�uence the innovation decisions, and vice versa.25

In this paper, there will be separate endogenous creation and destruction processes.36

The development of new technologies is in�uenced by expected future destruction or exit,7

while destruction is in�uenced by expected future innovation and the change in factor prices.8

However, in equilibrium the development channel makes existing technologies more costly9

to operate, and therefore reduces the incentive to keep them operational. Therefore, the10

number of operational technologies (or �rms) will be determined endogenously. In addition,11

the separate destruction or exit decision by an incumbent is characterized as an optimal-12

stopping problem, and is then the result of that �rm-owner behaving optimally.13

The uncoupling of the creative (or innovative) and destructive (or exit) decisions is also14

important because it is then possible to build these autonomous decisions into a planning15

problem, and to compare these separate optimization conditions that result from such a16

problem with those that might arise from an equilibrium. It is then possible to assess why17

there might be too much, or too little innovation, as well as whether there is the proper18

existing good, then the incumbent automatically loses the right or ability to produce that good. Once again,
the incumbent must exit the market when another �rm innovates.

2There are other papers in which incumbent �rms exit an industry, while newer �rms enter. For example,
L������ 2007 presents a model that is used to characterize the size distribution of �rms. In his paper, �rms
face exogenous variations in productivity, which eventually leads to exit from the market when they can no
longer cover their costs. However, Luttmer does not study many of the issues addressed here, such as why
the equilibrium exit decision may not be socially optimal manner, or how this decision a¤ects the incentives
for innovation, or how government policies might alter this decision to achieve a better outcome. There are
other models such as �rms exit at a random, exogenous rate (J�	�s and 
�m 2018).

3It may be worthwhile before proceeding to establish the terminology that will be employed. In the
context of the present discussion, the term �destruction refers to the voluntary shutdown of a �rm due to
low productivity, or the voluntary withdrawal of a product from production due to low pro�tability. That is,
the destruction is a result of market forces. What is not meant by this term is the shutdown of a �rm or the
termination of production due to government intervention or regulation, or of a competing �rm encourage
government authorities to target a �rm.
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degree of destruction of older technologies.1

In much of the existing literature, it seems that the creative or innovation activity is2

viewed as bene�cial, while the destructive process is seen as an unfortunate by-product of3

innovation. However, by separating the creative and destructive processes, it is possible to4

show that these activities, though interrelated, have a more complex relationship. It will be5

shown that the Creative forces have both a negative and a positive consequence, while the6

same can be said for the Destructive process. The Creative Process has a natural positive7

impact because it results in more productive technologies. However, it also has a neg�tive8

consequence because it raises the cost of resource inputs to existing �rms which makes these9

existing technologies less pro�table. Similarly, the Destructive Process has a negative e¤ect10

because it results in older �rms shutting down, and resources moving on to existing �rms.11

Nevertheless, this process also has a positive e¤ect because it results in reduced growth of12

resource factor prices, which in turn makes existing �rms more pro�table. This latter e¤ect13

raises the incentives to innovation, which raises the future growth rate.14

The model studied here has other novel features. First, in contrast with most represen-15

tative agent models that are reticent on such topics as income mobility and inequality, here16

it is possible to characterize a measure of income inequality, as well as the Gini Coe¢ cient.17

Secondly, in contrast to many other extant models, this one does not rely on market power18

(i.e. such as monopolists) to generate innovation or growth. Therefore, any distortions in19

the model will not result from non-competitive forces. Third, in many existing models the20

presence of an intertemporal spillover (or externality) will imply that there will be too lit-21

tle innovation or growth. In contrast, the model studied below wi�� have an intertemporal22

spillover, but nevertheless this economy may produce either too high or low a level of innova-23

tion or growth. Fourth, by severing the direct linkage between the creative and destructive24

decisions, this permits the study of how government policies might in�uence these processes25

independently. For example, it is possible to study the impact of a policy that subsidizes the26
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creation of new technologies, while simultaneously taxing the destruction of old technologies.1

Such a policy would seem impossible to study within the context of most extant models.2

The model studied below has many features in common with �aimovich and Rebelo3

2017, even though the two models are quite di¤erent, and focus on quite di¤erent issues.4

Both models have agents segregate into workers and researchers, both yield a non-linear5

relationship between the growth rate and parameters such as the tax rate, and can produce6

an equilibrium in which the growth rate is relatively unresponsive to changes in the tax rate.7

2� Descr�pt��� �f the M��e�8

Time is assumed to be continuous, and there is no aggregate uncertainty. There are a9

continuum of agents and the population size is normalized to unity. In the steady-state there10

will be N agents who are workers while (1�N) who will be termed �rm-owners or managers,11

and these quantities will be determined endogenously, since the agents will choose whether12

they work, or manage a �rm. There will be a dynamic evolution of agents from workers to13

business (or �rm) owners, and this movement will accompany and be related to the growth14

rate.4 Workers supply one unit of labor, and the managers will use their unit of time to15

manage the �rm. The analysis will initially presume that there in an internal solution for16

the optimum, but later there will be some analysis of equilibria at corner solutions.17

�.�. T�e (st�tic) prob�em o� t�e �rm18

Each �rm-owner has access to a production function � (n�t ), � 2 (0; 1), for producing the19

generic consumption good, with labor as an input. The variable � > 0 denotes the technology20

parameter for a particular �rm-owner, which is �xed while this �rm is in operation. At any21

date t, there is a �rm with the leading, or best technology, which will be labelled ��t. It will22

be supposed that there is a distribution of technologies, which will be denoted Gt (�), which23

4The evolution of agents between operating a �rm and entering the labor force is similar to that in
��  !"# 2012.
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is de�ned over some interval �t �
�
�t; �t

�
.1

The �rm-owner can hire labor in a competitive market at a price of wt, and this price

wi$$ change over time. The owner of a �rm maximizes pro�ts, which are written as follows:

�t = max
nt
f� (n�t )� wtntg :

The resulting pro�t-maximizing condition results in the following demand for labor: nt =2

�
��
wt

� 1

1��

: The indirect pro�t function is then written as3

�t = (�)
1

1�� (�)
�

1�� (wt)
�

��1 (1� �) : (1)4

For a particular �rm, since the technology parameter � is �xed, the following relationship5

must hold: _�
�
= �

��1

�
_w
w

�
< 0. It will be seen that if this economy is growing at a constant6

rate, the wage will then exhibit growth at this rate, which in turn implies that the pro�tability7

of each �rm will be falling. The pro�t will continue to fall until the �rm shuts down.8

It must be that the quantity of labor available equals the quantity demanded by all �rms.9

Note again that N is the amount of labor available. %et Gt (�t) denote the distribution of10

technologies in period t. Equating the aggregate demand for labor to the supply (N) then11

results in the following equation which determines the date t wage:12

w
1

1��

t =
1

N

Z

�t

(�t�)
1

1�� dGt (�t) : (2)13

Note that the wage is &o'o*eneous o+ de*ree one in ,$$ �t. That is, if all the technologies14

of all �rms in the economy were to be scaled up by some factor, then this would also be the15

case for the wage as well. The equilibrium below will be one in which �t is proportional to16

�t, and in this case ( _w=w) =
� :
��t=��t

�
.17

-.-. /&e 0istri3ution o+ /ec&no$o*ies18

It will be convenient to put structure on the distribution of the technologies of the �rms.19

Henceforth, we will let �t �
�
�=��t

�
denote the 4relative technology5 of a particular �rm,20
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which possesses technology parameter �, when the best, or 6rontier, technology is ��t at that1

date. Obviously �t ranges between �=
�
�t=
��t
�
and unity. On a balanced growth path, the2

distribution of �t will assumed to be time-invariant. It can then be shown, through the use of3

the 7olmogorov forward equation that the density must satisfy f� = (1=�) over the interval4

[�; 1].5 This implies that the distribution Gt (�) will be a truncated reciprocal distribution.
6

5

Since there are 1 �N �rms, and their relative technologies are distributed with density6

f� = (1=�) ; over the interval [�; 1], it then follows that7

1�N =

Z 1

�

�
1

�

�
d� = � ln (�) . (3)8

Since N can range from zero to unity, it follows that � can range from e�1 to unity. Because9

a high value of N implies that there are few �rms, it seems that N can also be interpreted10

as one possible measure of �rm destruction.11

Along a balanced growth path it the frontier technology ��t will grow at some rate g.12

Therefore, for a �rm with a �xed technology �, it must be that
_�
�
= �g.13

8.9. Workers :nd Fir;<Owners14

All individuals are risk-neutral, and so merely wish to consume their income. Their15

preferences are a function of the discounted stream of consumption (ct, t � 0)
7

16

Z =

0

e�rt
�
ct � h

�
zt; ��t

��
dt; (4)17

5I am indebted to a referee for pointing this out.
6The reciprocal distribution is limit of the Pareto distribution, as the latt>?@s shape parameter approaches

zero. Fortunately, there is some empirical support for this feature. ABttmer 2011, 2007 �nds that the size
distribution of �rms can be closely approximated by the Pareto distribution. This has led researchers to
construct growth models which give rise to such a distribution (for example, Acemoglu and Cao 2015, and
ABttC>? 2012). Obviously the EtruncGt>HNnature of the distribution employed here is a simpli�cation used
to characterize the distribution in a convenient manner. Similarly, estimates of income distribution also
imply a Pareto distribution, at least at the upper tail, which is similar to that produced by the model (see
Cao and ABP 2017, as well as Qones and SUC 2018).

7There is an alternative interpretation of the model in which each new �rm produces a new commodity
that provides more services than previous ones, and so there is creation and destruction of commodities.
This approach is similar to that employed by Grossman and Helpman 1991a.
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where r is the rate of time preference.8 At any date there are two types of individuals. There1

are workers, who supply their unit of labor inelastically and earn the market wage, which is2

the consumed ct = wt.
9 Additionally, there are �rm-owners, or managers, who use their time3

to manage their �rm. These �rms hire labor at the market wage, in order to maximize pro�t4

(�t). The �rm-owner has proprietary ownership over his technology (�), and so owners of5

inferior technologies cannot costlessly upgrade or steal superior technologies.6

Workers are also permitted to use some additional time or e¤ort (zt) to attempt to7

discover a new technology, which may eventually permit them to become a �rm-owner, or8

manager. It seems appropriate to identify this as time spent in the pursuit of research or9

innovation. This activity is successful with some probability � (�), but also has disutility10

�h
�
zt; ��t

�
.10 This is the basis of the Vcreative processX in the economy. A worker who is11

successful in inventing a new technology suddenly possesses the frontier technology (��t), but12

this is at the frontier only momentarily. Firm-owners cannot engage in this activity, and13

so for them z = 0 (and h (0; �) = 0). One could interpret this Vresearch sectorX as being14

an informal, or non-market, sector within which all innovation conducted.11 The amount of15

8The use of linear preferences simpli�es the model but the analysis could also be conducted for any of the
YZZ[ preferences, with a suitable modi�cation of the h (�) function. One advantage of the present approach
is that when making welfare comparisons there is no bene�t from redistributing output across agents.

9The reader will realize that there is nothing intrinsic to the model that necessarily means that this factor
must be \labor]. It could alternatively be given any other name. It is merely important that there be some
factor of production, which is in limited supply, that is owned by individuals, which is ^_`jsw across �rms
or technologies, and that this factor be priced and allocated through a competitive market.
10The rationale for having this function depend up on ��t is that as the leading technology rises, the bene�ts

of innovation are increased, but so are the costs.
11One interpretation would be that workers work for a wage, and then spend wxyz{ time, informally

puttering around, and there is some prospect this activity will be very pro�table. This is certainly motivated
by economic history. Many momentous inventions were produced by individuals who were not employed in
research labs, or universities, but instead were people tinkering around in their leisure. For example, the
Wright brothers were merely two capable mechanics who had bicycle shop but who, in their spare time,
loved to play around with things that might |y. This is also (or perhaps especially) true of the electronic
revolution over the past century. Issacson 2015 describes the multitude of inventions that have given rise to
electronic, computer, internet, and IT revolutions. Issacson repeatedly refers to people discovering things in
their garage in their spare time. The word \garage]arises recurrently in this narrative, especially so when
talking about the history of Silicon Valley. Z}~�ing this history one gets the impression that most of the
discoveries were made by people, many of whom would never graduate college, working long hours in their
garages, and that the company �� ces or laboratories were merely places where these inventors congregated
the next day to brief others on the progress of their research e¤ort.
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e¤ort expended by an agent in discovering a new technology (z) cannot be observed by other1

agents, and so it is not possible to engage in contracts contingent on the amount of e¤ort2

(z), or the outcome from such e¤ort. The cost and bene�t of this innovative process is fully3

internalized by the individual alone.4

One can imagine a multitude of factors that might in�uence the function � (�). Clearly it5

should be increasing in the of level of z, and so frequently below the shorthand notation of6

� (z) will be used. However, one could envisage more complicated formulations that capture7

the ability of some economies to obtain newer technologies from more advanced economies.8

It is assumed that �rm-owners spend all their e¤ort managing their �rm, and cannot9

upgrade their technology parameter (�). Firm-owners always have the option of disposing10

of their technology (i.e. shutting down their �rm) and becoming a worker at the market11

wage.12 This will be part of the �destruction process�of older technologies. However, only12

workers have the opportunity to develop or invent a new technology. This activity requires13

e¤ort or disutility. When new technologies or �rms are developed, this raises the demand for14

labor which increases the equilibrium wage. This increases the costs and reduces the pro�ts15

of existing �rms. At some �uncture an owner of an older �rm will �nd his pro�t su� ciently16

eroded that he will elect to shut down the �rm, and to become a laborer. At this point he17

can begin to seek to obtain a new technology, which will give rise to a new �rm in the future.18

There will then be a churning of workers and �rms as this economy grow.19

������ ��� ������������ �r����� �or �  �¡£�¡20

With a slight abuse of notation, let Wt and Vt denote the date-t value functions for a21

representative worker and �rm-owner, respectively. These functions are implicitly a function22

of the distribution of technologies of operational �rms, but given that distribution, the23

leading technology
�
��t
�
is a su� cient state variable for these value functions.24

12All workers and �rm-owners always have the option of using one of their old technologies to re-start an
old �rm. However, for reasons that will become clear, this is an option that they will never utilize.
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All workers are treated identically, irrespective of their history. Therefore, they will all1

devote the same amount of e¤ort (z) in obtaining an idea or new technology (�) which might2

become productive. As mentioned above, the e¤ort that they expend in discovering a new3

technology is not observable by others.4

It is assumed that workers have discoveries that arrive according to a Poisson arrival rate.5

¤et � (�) be the probability of such innovations, and this rate � (z), is solely a function of z.6

At each instant the ¥ow of utility for a worker is the wage (wt) net of research e¤ort7

expended (h
�
z; ��t

�
). In addition to the wage he receives the increased value of the ¦ob ( _Wt),8

plus with some probability (� (z)) he acquires a new technology so that he switches from9

being a worker, to managing a �rm (with value function V
�
��t
�
). Each worker takes the wage10

wt, and the leading technology
�
��t
�
as given while expecting to receive a new technology

�
�t
�

11

for himself, should his research e¤ort be successful. Therefore, the dynamic programming12

problem of worker is then written as following Hamilton-§acobi-Bellman equation:1313

rWt = max
z

n
wt � h

�
z; ��t

�
+ _Wt + � (z) �

�
V
�
��t
�
�Wt

�o
: (5)14

The optimization condition, for an interior optimum, is written as follows:15

h1
�
z; ��t

�
= �¨ (z)

�
V
�
��t
�
�Wt

�
> 0: (6)16

This condition determines the equilibrium amount of innovation (z). The right side of17

equation (6) is the relative bene�t from engaging in research or innovation (z), while the left18

side is the marginal cost. Clearly, the greater is the bene�t, as expressed by
�
V
�
��t
�
�Wt

�
,19

the greater will be the amount innovation. But this reward
�
V
�
��t
�
�Wt

�
also re¥ects20

the amount of inequality in payo¤s to the di¤erent agents. It follows that the amount of21

innovation is then likely to be linked to the degree of income inequality, and policies instituted22

to reduce this inequality are likely to reduce innovation.23

13An alternative, but roughly equivalent formulation, is to assume that the individual gets to consume his
wage, less some fraction (z) of this wage income that is spent on research. Consumption of the individual is
then wt(1� z).
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If it can be shown that equations (5) and (6) imply that if wt, h
�
z; ��t

�
, and V

�
��t
�
, are1

all homogeneous of degree 1 in all �, then so willWt, and _Wt. Therefore, it will be convenient2

to let h
�
z; ��t

�
= h (z) ��t, where h (�) is strictly convex and di¤erentiable. This means that3

the utility cost of research becomes greater as ��t increases.
14 This assumption implies that4

both sides of equation (5) are homogeneous of degree one in all �, and this in turn makes5

both sides of equation (6) also homogeneous as well. This feature will be exploited below.6

©ª«ª©ª ¬® ¯°±²³²´µ±²¶· ¸r¶¹º®³ »or t® ¯wner ¶» µ ¼²½³7

Consider a speci�c �rm-owner who has access to a �xed (i.e. unchanging) technology �8

at date-t. This �rm generates a ¾ow of pro�t of �t. Using some cryptic notation, the value9

function for this �rm-owner is then written as rVt = �t + _Vt.10

As wages grow, the value function for a worker (Wt) will be rising. But since _� <11

0, because the technology for a �rm is �xed, Vt will be ¿ÀÁÁinÂ over time. Hence, for an12

operational �rm it must be that V (�t) � W (wt), and as soon as this equation holds with13

equality, the individual will shut down the �rm and become a worker. Hence the HÃB14

equation can then be written as follows:15

rVt = max
n
�t + _Vt; rWt

o
: (7)16

This last equation characterizes the optimal stopping problem faced by a �rm-owner,17

who must decide when to shut down his �rm. Suppose that this shutdown date is denoted18

T . Then the solution to this equation is given by the following expression:19

Vt =

Z T

t

e�r(s�t)�sds+ e
�r(T�t)WT : (8)20

Here the value (Vt) is actually the discounted value of the pro�t of the �rm, plus an American21

put option. The put option entitles the owner of the �rm to sell it (i.e. ownership of the22

14Under the formulation suggested in the prior footnote this latter assumption would not be necessary,
since research e¤ort (z) would be proportional to the wage, which is homogeneous of degree one in all of the
operational technologies.



11

pro�ts), or really dispose of it, at any date for the value WT . This equation satis�es the23

value matching condition (VT = WT ) that insures that the welfare of a �rm-owner is equal1

to that of a worker, when the former decides to become a worker.2

It is shown in the Appendix that this expression also satis�es the smooth-pasting condi-3

tion which would imply that _VT = _WT . The optimal shutdown, or exit date (T ) of the �rm4

is chosen optimally in equation (8), and this condition is also developed in the Appendix.5

A sample path for the value functions for an individual is illustrated in Figure 1. Here6

the individual begins as a worker, and then at a random date he obtains a new frontier7

technology, and his value function Äumps upward, but then falls and converges to the value8

function for a worker, at which time he then switches (shutters his �rm) to become a worker9

again. Then the process repeats itself at random times in the future.10

ÅÆÇÆÇÆ Characterizing the Steady-State Equilibrium11

It will be convenient to characterize the steady-state behavior of the model, in which12

there is a balanced growth rate. From equation (2) it can be shown after some algebra that13

the wage can be written as wt = Aw�t, where14

Aw = �

�
1

N

Z 1

�

(�)
1

1�� f� (�) d�

�1��
= �

��
1� �

N

��
1� �

1

1��

��1��
: (9)15

Aghion and Howitt term Aw the Èproductivity-adÄusted wageÉ. Similarly, for a �rm with16

relative technology �t =
�
�=��t

�
2 (0; 1], using equations (2) and (1) it is possible to show17

that pro�t can be written as �t(�t) = A���t (�t)
1

1�� , where18

A� = (1� �)

�
1

N

Z 1

�

(�t)
1

1�� f� (�) d�

���
= (1� �)

��
1� �

N

��
1� �

1

1��

����
: (10)19

It seems natural to refer to A� as the Èproductivity-adÄusted pro�tÉfor a �rm at the techno-20

logical frontier (i.e. � = 1). Similarly A� (�)
1

1�� would be the Èproductivity-adÄusted pro�tÉ21

for a �rm with relative technology �.22

As mentioned above, the value functions, and the distribution of the �rm productivities23

are characterized by the leading or frontier technology (��t) at any date. The wage and the24
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pro�t of all �rms will be homogeneous of degree one in (��t). In the Appendix it is shown25

that since equation (8) is homogeneous in (��t) it is possible to re-write it as ��tV (�t), where1

V (�), henceforth referred to as the normalized value function, is given by the following:2

V (�) = v1 (�)
1

1�� + v2 (�)
�(r=g)+1 (11)3

where4

v1 =
A�

r +
�
�g
1��

� ; and v2 =
h
W � v1

h
(�)(

1

1��)
ii
(�)(1=g)(r�g) > 0: (12)5

The �rst term in equation (11) represents the discounted value of the �rmÊs pro�ts, if the6

�rm is operational forever. Since � is falling over time, this term is also falling. The second7

term (involving v2) reËects the fact that at some future date, when � = �, it is advantageous8

for the �rm-owner to cease operating the �rm, and to become a worker. The term v2 is then9

the discounted value of switching at the optimal time. Since the exponent
�
�r+g
g

�
< 0 , this10

term is rising over time as � falls. Note again that V (�) = W .11

The equation describing the workerÊs value function (5) can now be written as12

rWt =
n
Aw��t � h (z

�) ��t + _Wt + � (z
�)
�
�tV (1)�Wt

�o
; (13)13

where z� is the optimally-chosen value of research. Note that equation (13) is homogeneous14

of degree one in ��t. Also, the worker knows that in the event of obtaining an innovation,15

it will be right on the technological frontier (��t). As a result of the homogeneity, note that16

_W
W
= g. Henceforth, the value functions for the worker and the �rm-owner will be written as17

��tW , and ��tV (�), respectively, whileW and V (�) will be termed normalized value functions.18

Therefore dividing equation (13) by ��t, allows this to be written as follows:19

rW = Aw � h (z
�) +Wg + � (z�) [V (1)�W ] ; (14)20

where the latter equation has exploited the fact that an agent who discovers a frontier21

technology immediately has technology ��t.22
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It is shown in the Appendix the solution to the optimal stopping (or exit) problem faced23

by a �rm with an existing relative technology �, is given by151

A� (�)
( 1

1��) = (r � g)W: (15)2

This means that a �rmmanager with technology parameter � = ���t, (or technology � relative3

to the frontier) would be indi¤erent between being a �rm-owner, earning pro�tA� (�)
( 1

1��) ��t,4

or a worker at that instant. Since the frontier technology (��t) is continuously increasing, the5

�rm-owner would then switch to being a worker at that point. Prior to this shutdown, or6

exit date, the pro�t from owning a �rm is greater than the right side of equation (15).7

The condition for optimal research is then given by8

hÌ (z) = �Ì (z) [V (1)�W ] : (16)9

Henceforth, z� will denote the solution to this last equation. Equation (14) then yields the10

following expression for the normalized value function for a worker11

W =
Aw � h (z

�) + � (z�)V (1)

[r � g + � (z�)]
: (17)12

It should be clear that the value functions of the two types of agents are interdependent.13

Factors that inÍuence one of the programming problems will then inÍuence the other. For14

example, a change in, say, the tax on wages, would then undoubtedly a¤ect both value15

functions, and then also impinge on both optimization conditions, which are inÍuenced by16

the size of these value functions.17

Îastly, the growth rate is a function of the number of people engaged in research (i.e.18

workers) and the rate at which they acquire the capability to become �rm-owners. Therefore,19

it is consistent with the feature that the technologies are distributed as truncated reciprocal,20

that the growth rate will then be characterized in the following functional form:21

g =

Ï
��t
��t
= N� (z) : (18)22

15An equivalent expression can be derived from choosing T optimally in equation (8), or maximizing
equation (11) with respect to �, and evaluating the result at � = �.
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This equation is important in that the growth rate is a function not Ðust of the amount of23

research e¤ort expended by each worker, but also by the size of the population engaged in1

this activity. Therefore, in response to some change in the environment, it is possible for2

research e¤ort (z) to fall, but for the growth rate to rise, if N also rises. Note also that from3

equation (3), the values of N and � are closely linked, and the latter is the measure of �rm4

destruction. Therefore, equation (18) shows that it is a salient feature of the model that the5

growth rate is the product of the rates of creation or innovation (� (z)) and a measure of6

destruction (N), and so both are equally important in contributing to the growth rate. The7

Ðob and �rm creation rate is positively related to the growth rate, which seems consistent8

with what we observe about these rates.16 Also, the simple nature of equation (18) is a result9

of the fact that all innovation is conducted by new entrants, rather then by existing �rms.1710

2.3.4. Summary of the Equilibrium Conditions11

A competitive equilibrium on a balanced growth path for this economy consists of time-12

invariant values for the eight variables (Aw; A�; V (1) ;W; �, g; z;N) which satisfy the fol-13

lowing equations (3), (9), (10), (11), (14), (15), (16), and (18). Equation (9) is the market14

clearing condition for labor while equation (3) equates the number of �rm-owners to the15

number of operational �rms. The general equilibrium structure of the model means that16

the growth rate (g), the level of innovation (z), and the rate of destruction (� or N), are17

16While the �rm dynamics of the model are certainly not identical to what we observe in all respects,
they are model are broadly consistent with the documented behavior of �rms. For example, in the model
younger �rms have unusually high innovation intensity, higher total factor productivity, and high employment
growth. Decker, Haltiwanger, ÑÒÓÔÕn and Miranda 2014 document that this is certainly what is observed
in the US economy. They describe how young establishments tend to have substantially higher productivity
than existing establishments. In addition, startups have a disproportionately large impact on net and gross
Ö×Ø creation, which is certainly true in this model as well. One point of departure is that in the data,
existing �rms do continue to innovate. In order to preserve the simplicity of the model, this feature was not
incorporated. It seems possible to build this feature into the model with some added complications. The
model adopts an extreme view of the observation, documented by the Acemoglu and Cao 2015, that new
entrants appear to engage in more radical innovation than do incumbents. ÙÒÚÛÜÝ, the model also predicts
that any slowdown in innovation can be traced to new innovators or �rms, which is one interpretation of
what has taken place in recent years.
17This feature greatly simpli�es the analysis of the model. This contrasts with models, such as Acemoglu

and Cao 2015, where innovation is undertaken by both incumbents and entrants.
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determined Þointly with the wages for workers and the pro�t for �rms. All �rms and workers18

behave competitively, and maximize utility or pro�t while treating market prices paramet-1

rically.2

Before proceeding it seems appropriate to note what the role that the reciprocal distribu-3

tion for the technologies (�) is purchasing. This feature simpli�es the formulae in equations4

(9) and (10). This provides a convenient association, through equation (3), between the5

number of people operating �rms, and the rate of �rm destruction. ßastly, it simpli�es6

equation (14) because the value function (V (�)) for a person who discovers a new frontier7

technology is then proportional to the leading technology at that moment.8

àá Aâaãäsås æç tèé êæëéã9

Despite the simplicity of the model, because the general equilibrium, or feedback e¤ects10

are so Byzantine, it is diì cult to use analytical methods to establish how various parameter11

or policy changes iníuence such endogenous features, such as the growth rate. Nevertheless,12

it is possible to establish some important properties that will hold in such an equilibrium.13

îræïæsåtåæâ ð The function V (�), from equation (11), consists of two terms, one of which14

is increasing in � while the other is decreasing. This function has the property that dV (�)
d�

> 0,15

for � < 1, and dV (�)
d�

! 0, as � ! 1.16

This means the normalized value function must be falling over time, even though there17

is the bene�cial prospect that future wages are rising. The case in which � ! 1 means that18

�rms have an in�nitesimal lifetime, and so the value of such a �rm cannot decline excessively.19

îræïæsåtåæâ ñ From equation (11) it is possible to establish the following:

@V (1)

@v1

@v1
@g

< 0; and
@V (1)

@g
> 0:
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The �rst expression is the e¤ect that destruction has on existing �rm owners. The higher20

is the growth rate, the quicker the pro�t will deteriorate for these �rm owners which makes21

them worse o¤. The second e¤ect shows that increased growth can be better for �rm owners1

for several reasons. First, the higher will be welfare of these agents when they subsequently2

terminate operations of their �rm, and become a worker. Secondly, the higher is growth, the3

sooner the existing �rms reach the shutdown threshold, and then choose to cease operating4

(holding the shutdown threshold (�) constant). Third, higher growth will lower the shutdown5

threshold (�), and therefore, the sooner the �rm will reach it. It warrants repeating that6

while a marginal increase in the growth rate bene�ts workers, it can reduce the welfare of7

exiting �rm owners.8

A separate characterization of the value functions W and V (1) is problematic because9

these two functions are interrelated. However, the following is a useful and intuitive result.10

òróôósõtõóö ÷ Equations (11) and (17) imply that

@ (V (1)�W )

@A�
> 0;

@ (V (1)�W )

@Aw
� 0;

with the latter derivative holding strictly when � < 1.11

On the surface this seems obvious: raising the reward to �rm-owners (workers) relative12

to workers (�rm-owners) increases (decreases) the relative di¤erence in the value function.13

But this also implies that a policy such as using a pro�t tax to fund lump-sum transfers will14

lower the size of (V (1)�W ). This will lower the reward to research, which is given on the15

right side of equation (16). This in turn will inøuence the growth rate.16

Additionally this result suggests that the growth rate can be decreasing in the pro�t17

tax but increasing in the labor tax. ùaimovich and úebelo 2017 document that these exact18

e¤ects can be found in some panel regressions.19

The following are results regarding inequality, or relative incomes, in the model.20
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ûrüýüsþtþüÿ 4 The ratio of incomes (A�=Aw) is increasing in N (or equivalently �). Ad-21

ditionally, along a balanced growth path, A� (�)
( 1

1��) > Aw.22

The �rst statement says that the ratio of the highest income to the lowest income is1

positively related to a measure of the rate of �rm destruction. This is a constructive result2

because it turns out that this measure of inequality is highly correlated with other measures,3

such as the Gini coe¢ cient. The second statement asserts that at the time at which the �rm4

shuts down, the �rm�s pro�t will exceed the market wage.5

In an equilibrium, it may be that the growth rate is very low, but it should still be6

positive, as is shown in the following result:7

ûrüýüsþtþüÿ 5 If h (0) = h0 (0) = 0, and �0 (0) > 0, then on a balanced growth path g > 0.8

It is interesting is to investigate how this economy might display zero growth. One9

method of characterizing this situation is now described.10

ûrüýüsþtþüÿ 6 If h0 (0) > h (0) = 0, or if � (0) = 0, then there may exist an equilibrium in11

which g = 0.12

In this case the marginal cost of engaging in research (z) can be greater than the bene�t,13

and hence no research takes place (z = 0), even if V (1)�W > 0, and so g = 0. In this case14

the system has 6 equations and unknowns .15

This is a useful and important result. This shows that in economies where the relative16

costs to innovation or research are su¢ ciently high, there will be no growth. Any possible17

reduction in this cost, or an increase the returns (e.g. raise �0 (0)) can facilitate the promotion18

of growth. Another important point that arises here is that, although equation (16) suggests19

that inequality, as re�ected in V (1) �W > 0, is necessary for economic growth, it is not20

su¢ cient. In this case the �rm owners will never shut down their �rm, and therefore there21

will be neither creation nor destruction of new technologies. This shows that in economies22
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in which the relative costs to innovation or research are not su� ciently high, there will be23

no growth.24

Furthermore, this result illustrates why one might observe similar economies contempo-1

raneously exhibiting di¤erent growth rates, even if they have the same interest rate. It can2

be that they have di¤erent values for the functions h (z) or � (z). That is, they have di¤erent3

cost or reward functions for the process of acquiring new technologies.4

Corollary 7 If, in addition to the conditions of this no-growth equilibrium, it is the case5

that A� (�)
( 1

1��) > rW , then there are a continuum of equilibria with g = z = 0.6

In this case the �marginal� �rm, or owner of the �rm with the worst technology, is7

receiving pro�t that is higher strictly greater than the equilibrium wage. The continuum8

results from the fact that it is possible to shift a few agents from being �rm-owners to9

workers, and although this would marginally a¤ect the equilibrium wages and pro�t (Aw10

and A�), it would not change them su� ciently to initiate any growth.11

The following establishes how to characterize the lifespan of a typical �rm, a measure of12

the rate of �rm destruction, as well as the degree of income mobility.13

Proposition 8 The length of time that a �rm is operational is calculated as follows: T̂ =14

� ln(�)
g

= 1�N
g
: The average time it takes the worker to cycle through from initially becoming15

a worker, to becoming a �rm-owner, and �nally shutting it down, is T = 1
g
:1816

There is one �nal �non-result� that is of note. The characterization of the factors that17

in�uence the growth rate is not straightforward, despite the simplicity of equation (18).18

A bene�cial alteration in the environment, such as an increase in the probability of an19

innovation � () does not necessarily result in a higher growth rate. The reason is that20

although this would appear to increase the equilibrium amount of research (z), from equation21

18Using equation (18) it is possible to see that N� (z) = (1�N) =T̂ , which equates the �ow of new �rms
created to the �ow of �rms that cease production.
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(16), and likely raise welfare (W ), from equation (17), equation (15) also suggests that this22

could also raise the value of (�), which means that N also rises. This e¤ect would then lower23

the growth rate in equation (18). This is where the (endogenous) level of �rm destruction,1

which is inherent in the level of (�) or N , will in�uence the growth rate.2

�. Further �haracter�zat��� �f a� Equ�	�br�um3

To obtain further insights into the behavior of the model it is necessary to put more4

structure on to it, and then study speci�c examples. To this end, the following form will be5

used for the h (�) function6

h (z) = 
z1+!

1 + !
(19)7

where ; ! > 0. Much of the analysis below is only used to illustrate some features of the8

model, and is not intended to mimic any speci�c economy. Unless stated otherwise, the9

following parameter values will be used for the benchmark economy: r = :07; � = :65;10

� = :1;  = 0:38; ! = 1:0. These values produce a resulting equilibrium growth rate of11

3%. Some of these parameters (e.g. r; �) have usual justi�cations. For others, it is not clear12

how to arrive at an appropriate value. For example, normally the value of (1=!) might be13

thought of as related to the labor elasticity, but some re�ection would reveal that this is14

not the case here for several reasons. First, there is no intensive margin of employment.15

Secondly, the choice of z is not an employment decision, and in fact it is the opposite: The16

choice of z re�ects the agent
s desire to exit the labor force, and to manage a �rm.1917

In general it is problematic to employ such an explicit model to attempt to mimic an18

actual economy because models with linear preferences frequently give implausible results.19

In particular, these preferences imply an in�nite intertemporal elasticity of substitution of20

19Additionally, it is natural to suppose that the parameter � represents �labor�s shareof income. However,
as mentioned above (see footnote 9), a literal interpretation of this as labor may not be appropriate, and
instead it may represent any �nite resources that are mobile across alternative technologies. To the extent
that resources are not mobile across various �rms or industries, the parameter � may have to take on a much
lower value.
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consumption, and this in turn can imply an implausibly large change in the growth rate in21

response to a change in the after tax return.22

4.1. Inequality and Taxation1

It has been a long-standing research issue to investigate the relationship between the2

level of income inequality and the corresponding growth rate (see, for example, Greenwood3

and Jovanovic 1990, or Jones and Kim 2018). In many models, inequality is the result from4

growth, but here the inequality is both the cause and the result of growth. It is shown in5

Hu¤man 2018 that this model has a Gini coe� cient that is straightforward to characterize,6

and this is useful for studying how various policies might have an impact on this measure7

of inequality. In particular, the levels of creation and destruction certainly in�uence how8

income is allocated across the population.9

In general, it is the case that the Gini coe� cients tend to be decreasing in the pro�t10

tax. However, the relationship between inequality and labor taxation is more complicated.11

An example of this is shown in Figure 2, for the benchmark model. In this case, the Gini12

coe� cient is shown as a function of the tax rate, for both the labor and pro�t, and revenue is13

given back to individuals as a lump-sum transfer. As can be seen, it appears that inequality14

is decreasing in both taxes for this economy, but this e¤ect is more pronounced for the pro�t15

tax. Raising the pro�t tax reduces inequality because this amounts to redistributing income16

from richer to poorer agents.17

The e¤ect of the labor tax on inequality may seem puzzling: How can a policy, that taxes18

relatively poor workers and transfers some revenue to richer �rm-owners, reduce inequality?19

The general equilibrium e¤ects dictate that the labor tax will cause N to fall, which implies20

business destruction falls. Essentially, an increase in the labor tax increases the incentive for21

workers to engage in research, and makes �rm-owners want to keep their �rms operating for22

longer. This implies there will be fewer workers and more �rms in equilibrium, which results23
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in marginally lower income inequality. This experiment illustrates the complicated factors24

that in�uence the determination inequality within such a model. Also, since both taxes25

raise inequality but have the opposite impact on growth, this illustrates the complicated1

relationship between growth and inequality.2

As indicated earlier, some degree of inequality, as re�ected in the size of (V �W ), is3

vital for growth to motivate individuals to engage in the research activity (z). There are4

other models in which greater inequality may accompany higher growth (see, for example,5

Greenwood and �ovanovic 1990). This is true here, but additionally some degree of inequality6

is requisite for growth. This e¤ect is partially attenuated since it can be shown that @ ln(Vt)
@g

<7

@ ln(Wt)
@g

, and so a small change in the growth rate can also reduce inequality of welfare.208

4.2. Growth and Taxation9

It has been recognized that in the US there seems to be very little relationship between10

the growth rate, and various measures of income taxation (e.g., see �aimovich and �ebelo11

2017, Stokey and �ebelo 1995). It is then somewhat of a test of any model to see if it can12

replicate this (non) relationship. Therefore, consider the benchmark model without taxes,13

in which the growth rate is 3.0�. If an income tax (i.e. on both labor and pro�t) of 30� is14

introduced, with the resulting revenue distributed in a lump-sum manner, the growth rate15

is only reduced to 2:46�. This is a reduction that is su� ciently small that it is unlikely16

to be detected in the data.21 �aising the value of the parameter ! reduces the impact on17

growth even further, as (1=!) seems to act like an elasticity of the growth with respect to18

the tax rate. In fact, for su� ciently large values of !, raising the pro�t tax can result in a19

very modest increase in the growth rate. This e¤ect will be further illustrated below.20

As mentioned above, the model would seem to imply that while a pro�t tax would lower21

20Again, it is not the case that the welfare of all �rm-owners is elevated by a marginal increase in the
growth rate.
21These reductions in the growth rate are of a similar magnitude, whether the government revenue is

destroyed, or given back to individuals in a lump-sum manner.
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growth, a labor tax would raise it. This is true for the benchmark economy. This is not a22

result that typically arises in growth models. Fortunately there is some empirical support23

for this. �aimovich and �ebelo 2017 �nd that in some panel regressions, which include time1

and �xed e¤ects, that the growth rate is positively related to the labor income tax rate,2

while negatively related to the capital tax rate, and these results are signi�cant.223

Also, for the case in which research is paid out of worker�s post-tax income, so that4

consumption equals wt (1� z) (see footnote 13) it can be shown analytically that equal5

labor and pro�t taxes of any magnitude will not a¤ect the growth rate if the revenue is not6

transferred back to individuals.7

4.3. Factors In�uencing Firm Destruction8

An innovative feature of this model is that gives rise to an endogenous level of �rm exit,9

or destruction. It is then instructive to investigate how various factors in�uence this exit10

rate. First, it is essential to determine how to measure this feature. One approach is to let11

�N�denote an ordinal measure of destruction, since this is inversely related to the number12

of �rms. An alternative measure of destruction is the inverse of the average time a new �rm13

will spend being operational. This time-span is given by the variable T̂ = 1�N
g
.14

Next, it is necessary to vary some feature of the model to study how this in�uences the15

level of destruction. Varying the tax rates seems like a natural candidate. Figure 3a shows16

how both N and
�
1=T̂

�
vary, as the labor tax rate changes, for the benchmark economy, and17

the resulting revenue is distributed in a lump-sum manner.23 Increases in the tax rate lead18

to lower levels of N , and higher levels of T̂ , both of which indicate a lower level of business19

exit. Increased labor taxation results in more operational �rms, and these �rms produce for20

22This result suggests yet another reason why it could be d�� cult to uncover any relationship between
tax rates and growth rates in the data. Suppose that di¤erent economies employed di¤erent combinations
of labor and capital taxes, in a world like that of the model in which the growth rate was increasing in the
former but decreasing in the latter. Then it could be very d�� cult to �nd any relationship between growth
rates and �income tax r�� !"#
23In this �gure the values of both N and (1=T̂ ) are normalized to unity when the tax rate is zero.
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a longer period of time.21

Next, Figure 3b shows how both N and T̂ vary in the steady-state, as the tax rate on22

pro�t changes, for the benchmark economy. This example shows that these measures of1

business destruction do not always move in the same direction. In this instance, raising the2

pro�t tax results a higher level of both N and T̂ . This results in fewer �rms, but also a lower3

growth rate. Since the latter e¤ect overwhelms the former, the value of T̂ rises.4

This result is important for another reason. It seems to be an interesting but open5

question as to whether there is a $cleansing e¤ect& of recessions, in that a recession may6

have a bene�cial e¤ect of reducing the economy of low-productivity �rms. To the extent7

that comparative dynamics exercises should be taken seriously, an increase in the tax rate8

on pro�t will reduce the growth rate, and so could have a similar observed e¤ect to that9

of a recession, since the growth rate falls. Suppose one were to take the level of �N'as the10

measure of business destruction, since asN rises the number of �rms falls. Figure 3b suggests11

that the rate of business destruction could then increase, as the low-productivity �rms that12

were operating under the benchmark economy now would shut down earlier. However, it is13

not clear that this should be interpreted as a cleansing e¤ect.14

In contrast, in Figure 3a, by raising the labor tax, which causes the growth rate to rise,15

this lowers the rate of destruction. Through this channel there would seem to be a negative16

relationship between the rate of growth and the rate of business destruction.17

() O*t+,a- a/1 239+-+br+9, L:v:-s ;< =r:at+;/ a/1 D:str9ct+;/18

It is possible to construct a measure of welfare that weighs the welfare (i.e. value func-19

tions) of each of the agents in the economy, and then to use this as a measure of welfare20

when making comparisons across di¤erent decision rules, or government policies. This mea-21

sure can also be used to construct a social planning problem for this economy. In Hu¤man22

2018 a planning problem for this economy is studied in order to investigate all of the chan-23
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nels through which the creation and destruction decisions in>uence welfare, and to scrutinize24

why the equilibrium decisions might not be socially optimal. This analysis shows that these25

creation and destruction decisions have a multitude of e¤ects on the growth rate, factor1

prices, equilibrium conditions, as well as on each other. However, it seems that whether the2

equilibrium levels of creation or destruction are too high or low, relative to some optimum,3

would seem to rather case-sensitive.244

Therefore, the remainder of this analysis will focus on how a system of taxes might5

in>uence welfare, as well as the growth rate.6

@A TBG MHIGN wQtB SQUGar TaxatQHU aUI SVWXYZVW TraUs[Grs7

It is important to study the e¤ect of simple linear government taxes with lump-sum8

transfers. It is a convenient property that the welfare functions always seem to exhibit9

single-peakedness, and frequently have an \inverted-U]shape over various tax rates.10

Panels (a) and (b) of Figure 4 present the results from a varying the labor tax rate, while11

the pro�t tax is zero, for the benchmark economy. The welfare function here is the value12

function of a worker (W ), who would be the median voter. As the �gure shows, welfare is13

maximized by having a labor tax of 28^. This policy of transferring revenue from workers14

to �rm-owners raises the growth rate, and the number of �rms. _aising the labor tax above15

zero also lowers inequality, in spite of the fact that the transfer is going from the poorer16

workers to the richer �rm-owners. `astly, for this economy the growth rate is non-montonic17

in the labor tax: for modest labor taxes, further increases will raise the growth rate, while at18

higher levels, an increase will lower the growth rate. For this economy, even workers prefer19

a negative pro�t tax because this results in higher growth.20

24In Hu¤man 2018 it is also shown that the abcenz curve and Gini cogk cients can be studied, and more
inequality-related experiments are presented. In addition, the model is capable of explaining the Great
Gatsby curve. It is also shown that the price-earnings ratios of younger �rms is greater than that of older
�rms, even though the equilibrium rate of return in the economy is �xed at r. This feature seems to
conform with what is observed about these ratios. ast{|}, it is shown that the tax rates can ~��uence these
price-earnings ratios in a non-trivial manner.
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Panels (c) and (d) of Figure 4 show how worker-welfare and inequality change for di¤erent21

tax rates, where � = :035,  = :0143, and ! = 10. These parameter values also produce22

a steady-state growth rate of 3� when taxes are zero. In this case (worker�s) welfare is1

maximized by having a tax rate on pro�t of 15:4%. In the �rst example workers bene�t from2

growth so much that they would never wish to tax pro�t, but in this second example they3

are willing to do so. The reason welfare is increasing in the tax rate is not because growth is4

not important - it is as critical as ever to workers. Instead a higher value of ! implies that5

research (z) is relatively unresponsive to an increase in the tax rate. However, as the tax6

rate rises the number of workers (N) rises because owning a �rm is less attractive, and this7

results in a modest increase in the growth rate, through equation (18).8

�� ����ar� ���r������ts ��r���� �r���ct���t����������t ����r����t �a��9

at��� a�� �ra�s��rs10

As indicated earlier, in Hu¤man 2018 a planning problem is constructed for this model11

in order to establish whether the equilibrium decision rules and welfare are optimal. Within12

this setup it is possible to see that a system of non-linear, or state-dependent taxes and13

transfers, that may raise welfare welfare. This will be illustrated below through the use of14

several examples.25 Here a system of labor taxes (�n), and tax rates that depend on �rm15

productivity (�� (�)) are derived in order to maximize the welfare function, which is de�ned16

to be the equally-weighted function of all of the value functions: NW +
R
V (�) f� (�) d�.17

Since the government budget constraint is continuously balanced, some of these taxes must18

necessarily be negative.19

 �a���� ¡ Consider the parameterization of the benchmark economy described in Section20

4. Figure 5 shows the tax and subsidy policy, of the sort described above, that results in21

25The parameter values used henceforth will be the same as in the benchmark with the exception that the
growth equation (18) will now by determined as g = �(zN)1=4, where � is chosen so as to imply a value for
� equal to the benchmark value of 0:10.
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a higher level of welfare for this economy. In this case welfare can be increased by having22

the government tax labor at a rate of 12£, and then use this revenue to subsidize �rms23

according to the schedule in Figure 5. This policy implies that the high-productivity �rms1

should be subsidized at rate of 55£, while the low-productivity �rms are taxed at a rate of2

11.2£. This shifts resources from the workers, and owners of low-productivity �rms (who3

will soon become workers), to the owners of high-productivity �rms. The benchmark model4

had a growth rate of 3£, while under this alternative policy the growth rate is 3.27£.5

To understand why this policy improves welfare, note that relative to the equilibrium6

level, research e¤ort and employment both need to be increased in order to raise welfare.7

This can certainly be done by shifting resources from the workers to the �rms, with a larger8

subsidy given to the high-productivity �rms. As the �rms age, however, this subsidy is9

curtailed until it eventually becomes a tax. Since the reward to being a new �rm-owner is10

so high, this raises the level of research (z). But taxing owners of low productivity �rms will11

raise the level of destruction, as measured by either N or
�
1=T̂

�
.12

It is of interest to assess the welfare improvement from such a policy. ¤elative to the13

benchmark, the increase in utility from the tax/subsidy policy is a welfare increase of 1.6£.14

Since utility is linear in consumption, it seems appropriate to view this as equivalent to15

an increase of 1.6£ in initial consumption for all agents. Note that because this welfare16

improvement derives from taxing relatively poor workers and �rm owners, and transferring17

subsidies to richer owners of young �rms, this results in a substantial increase in inequality.18

¥¦a§¨©ª «¬ Now consider the very same parameterization as in the previous example, but19

now let � = :05. In this case, with no taxation the equilibrium growth rate is 1.36 ·£. The20

solution to the problem of maximizing welfare with the system of non-linear taxes, described21

above, results in a growth rate of 1.30£, so the equilibrium growth rate is too high. In22

this equilibrium there is too much of research, and also too much employment (or �rm23

destruction) in equilibrium.24
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Figure 6 shows the implied tax and subsidy policies that result from this constrained25

planning problem. In this case welfare can be raised by having the government impose a26

labor subsidy, or negative tax, of 4.6. The tax on �rms, shown in the �gure ranges from1

-3.3 on the owners of the low productivity �rms, to a tax of 17 on the owners of the high2

productivity �rms. As can be seen in the �gure, this tax scheme is not linear, and has a3

slightly concave feature. Such a tax scheme certainly reduces the amount of research e¤ort,4

since the bene�t of being a �rm-owner is reduced. Similarly, the subsidy to low-productivity5

�rms helps raise the overall number of �rms, and hence lowers the level of �rm destruction6

(N or
�
1=T̂

�
).7

The welfare increase resulting from this system of taxes and subsidies, relative to the equi-8

librium is 0.25. Because this welfare improvement derives from subsidizing relatively poor9

workers and �rm owners, and taxing richer owners of young �rms, this reduces inequality.10

These examples are instructive for several reasons. First, suppose the welfare-enhancing11

tax policies resulting from this last example were imposed on such an economy. An inde-12

pendent observer of this economy would see that the government is certainly imposing a13

distortional tax/transfer policy between �rms that certainly looks like the government is14

®picking winners and losers .̄26 Not only that, but this policy would reduce the growth rate.15

All of this is true, but it results from the government trying to maximize welfare. The reason16

this policy improves welfare is that the planner recognizes that the level of research, as well17

as the rate of �rm exit (or destruction) are decisions that need to be altered.18

Additionally, this last example illustrates other novel features. In most models with19

intertemporal spillovers for research, the optimal policy is to subsidize research to take20

advantage of this externality. However, in this last example there is such a spillover, but21

nevertheless it is welfare-enhancing to reduce research. What is missing from other models in22

the existing literature is that they do not have an autonomous and endogenous destruction23

26But since such a government policy is known in advance, it no more constitutes °picking winners and
±²³´µ³¶than does a progressive or regressive tax code.
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(or �rm-exit) decision. In this last example the planner is using this feature, but reducing the24

amount of destruction, and to some extent this o¤sets the reduction in research, and changes25

the incentive to engage in research. This example shows that by ignoring the endogenous1

exit behavior of �rms, or omitting the destruction feature, much of the existing literature is2

ignoring an important feature that contributes to the incentives for innovation and growth.3

Another noteworthy feature of these examples is that the welfare improvements are not4

linked only to the growth rate, in spite of the fact that preferences are linear in consumption.5

In the �rst example, the non-linear taxes raise the growth rate from 3% to 3:27%, and this6

results in a welfare bene�t of 1.6¸. In the second example, the non-linear taxes lower the7

growth from 1.36¸ to 1.3¸, and this raises welfare by .25 ¹̧. We are accustomed to assuming8

that there are substantial welfare bene�ts from raising the growth rate. These examples show9

that these bene�ts may be much di¤erent than previously thought.10

º» ¼½¾a¿ ÀÁÂarÃs11

It is an accepted fact that a growing economy is organic in nature, and exhibits a continual12

birth and mortality of products and technologies. Äet most studies of economic growth fail13

to model the separate decisions that give rise to these distinctive phenomena, and therefore14

cannot assess whether these decisions are made optimally.15

Integral to the study of optimal growth is the determination of the appropriate incentives16

for agents to seek innovations of new technologies. Some of these incentives reÅect the ability17

for innovators to capture some of the market share, or resources of older incumbents. This18

frequently means that the innovation process leads to the eventual termination of older19

technologies. It can then be a mistaken step of logic to conclude that the destruction of20

older technologies is an unfortunate by-product of innovation. The analysis presented here21

uses a simple model to show why this is not the case, and instead both the creation and the22

destruction e¤ects have mutually bene�cial and detrimental e¤ects. The study of optimal23
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growth, and the development of the optimal incentives to obtain this growth rate, must24

weigh the di¤erent impacts of these autonomous decisions.25

Much of the existing literature focuses on developing the proper incentives for innovation1

alone, in determining the optimal growth rate. What this literature ignores is that it is2

equally important to provide the proper incentives for the optimal retirement or exit of3

older �rms or technologies, since the exit and innovation decisions are interrelated. This4

analysis also suggests that the ideal government policy in this model may be quite di¤erent5

from that is most existing growth models. There may be good reasons for imposing tax or6

subsidies that depend on the productivity (or pro�t) of the �rm, in order to provide the7

correct incentives for innovation or exit. Also, the presence of an intertemporal spillover8

need not necessarily imply that there is too little innovation (and growth) in equilibrium.9
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This appendix shows the proofs for the statements or propositions in the main body of the current version of
the paper. First, an encapsulation of the main equations of the model are presented. Þßàáâã an analysis of the
value function of the �rm-owner will be presented.
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The main equations that characterize the steady-state balanced growth path the model are as follows:
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û ütatýþýÿt of Propositioÿs aÿd Proofs

�������t��� 1 The function V (�), from equation (4), consists of two terms, one of which is increasing in �

while the other is decreasing. N���	theless, it is possible to establish that dV (�)d� > 0, for � < 1, and dV (�)
d� ! 0,

as � ! 1.
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Now using the expression for v2 from equation (11) in equation (10) we have
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� 1, this last expression is non-negative, but it is negative when � = �, and so V 0 (�) > 0.
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Proposition 2 From equation (4) it is possible to establish the following:

� (1)

��1

��1

�g
� 0; and

� (1)

�g
> 0:

Proof. Obvious from equations 4 and 5.
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with the latter derivative holding strictly when � � 1.
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Hence a marginal increase in �� raises ( (1)�� ), which then raises the return to innovation, resulting in a
higher value of z. Now note that repeated substitution of equation (6) into (4) yields the following
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From equation (6) it is easy to see that the change in �w, operating through both � and  (1) yields the
following
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since (�) 2 (0� 1). Hence a marginal increase in �w lowers (� (1)� ), which then raises the return to
innovation, resulting in a higher value of z.

Proposition 4 The ratio of incomes (��=�w) is increasing in N (or equivalently �). Additionally, along a

balanced growth path, if h (0) = 0, and h! (0) = 0, then �� (�)
( 1

1��) > �w.

Proof. Taking the ratio of equations (2) and (3) yields

��

�w
=
N

�

$
1

1� �
1

1��

%

:

Obviously this is increasing in N or �. Also, equations (6) and (7) imply that

�� (�)
( 1

1��) = (r � g) 

= �w & [� (z
�) (� (1)� )� h (z�'* :

But since h (0) = 0, and h! (0) = 0, then the term in square brackets must be positive, which establishes the
result.

Proposition 5 If h (0) = 0, h! (0) = 0, h!! > 0 , and �! (0) = 0then on a balanced growth path g > 0.

Proof. Suppose g = 0: Then either z = 0, or N = 0. Suppose the former is true. Then equation (7) implies
that � (1) =  . Equations (4) and (5) imply that � = 1, which implies that N = 1. But this implies that

 = ,-r . /, while limN41
�
� = ,�r

�
= +/, which is a contradiction. Similarly, if N = 0, and � = e�1�this

would imply that � . +/�while  = +/, because �w = +/ This means that many �rm-owners could
improve their utility by shutting down their �rms and becoming workers. But this necessitates having N > 0.

Proposition 6 If h! (0) > h (0) = 0, or if �! (0) = 0� then there may exist an equilibrium in which g = 0. In
this case if h! (0) > �! (0) [� � ] then the marginal cost of engaging in research (z) can be greater than the
bene�t, and hence no research takes place (z = 0), even if � � > 0, and so g = 0. In this case the system
has 6 equations in 6 unknowns (with z = g = 0).

Proof. If h! (0) > 0, then there may exist an equilibrium in which g = 0.1 In this case if

h! (0) > �! (0) [� � ] (14)

then the marginal cost of engaging in research (z) can be greater than the bene�t, and so no research takes
place (z = 0), even if � � > 0, and so g = 0. In this case the �rm owners will never shut down their �rm
and so equation (8) holds as follows:

�� (�)
( 1

1��) � r : (15)

If this last equation holds with equality then the marginal �rm owner has utility just equal to that of a
worker. If it holds with an inequality, he is better o¤ than a worker. In this case there can be an interval or
a continuum of possible values of N or (�) for which there can exist an equilibrium without growth. Workers
have the following value function:

 =
�w

r

and

� =
��

r
:

In this case the system has 6 equations in 6 unknowns (with z = g = 0).

1The same sort of �no-growth� equilibria can exist if, for example, �7(0) = 0;but �7(z) > 0 for some z > 0.
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Proposition 7 If, in addition to the conditions of this no-growth equilibrium, it is the case that 8� (�)
( 1

1��) >
r9 , then there are a continuum of equilibria with g = z = 0, with :=>erent values of N , (�), 8w, 8�, ? , 9 .

Proof. Assume equation (15) holds with strict inequality. From the existing equilibria, consider an
arbitrarily small decrease in the value of N , and therefore a slightly smaller value of �. This will result in a
slight decrease in 8� and a rise in 8w. This will result in a slightly lower the value of (? �9 ). This lowers
the left side of equation (15) and raises the right side. However, for suB ciently small changes in N , equations
(14) and (15) will still hold with an inequality. Another way to see this is that if equations (14) and (15) hold
strictly, then equations (1), (2), (3), (4), (6) are �ve equations in 6 unknowns (8w, 8�, ? , 9 , � , N , with
z = g = 0. In other words, from an initial equilibrium, with equations (14) and (15) holding strictly, for some
equilibrium levels of variables, one could vary the values of N and � slightly, resulting in small changes in 8w,
8�, ? , 9C through the necessary equations, while still getting equations (14) and (15) to hold. Keep in mind
that equation (15) means that the marginal �rm (i.e. the one with the worst technology, and therefore the
lowest pro�t) has an income that is higher than the wage of a worker. In economic terms what this means
is that from an initial equilibrium, one could then lower N and � slightly. This would also raise 9 slightly
also. This would have a marginal e¤ect on 8w, 8�, ? , 9 , � , N , but equations (14) and (15) would still hold,
and so z = g = 0. At the point at which equation (15) holds with equality, then you cannot lower N any
further. However, having equation (15) hold with equality does not imply growth (g > 0), it only implies that
equilibrium wage equals the pro�t from the least-pro�table �rm. It is not possible for equation (14) to hold
with equality while equation (15) to hold with inequality. The reason is that this would imply that there is
growth in the wages, and so the value function of the worker is rising, while the pro�tability of the marginal
�rm is falling, while not shutting down. These facts are not compatible.

Proposition 8 The length of time that a �rm is operational is calculated as follows: T̂ = � ln(�)
g = 1�N

g : The
average time it takes the worker to cycle through from initially becoming a worker, to becoming a �rm-owner,
and �nally shutting it down, is T = 1

g :

Proof. Now for a �rm with a �xed value of �, when the best technology is �t, it is the case that �t = �=�t.

Using the fact that
�
_�=�
�
= �g, this implies that since �t starts out at 1, and falls to �C and so the lifespan

of a �rm (T̂ ) must satisfy the following:

D�gT̂ = �:

This in turn implies that the length of time that a �rm is operational is calculated as follows:

T̂ =
� ln (�)

g
=
1�N

g
: (16)

However, g, N and � are all functions of the parameters, and the policy variables in the economy. LEt us use
the short-hand notation of � (z) = �z. First, let us establish the expected waiting time for each worker to �nd
an innovation. In this case the probability distribution over waiting a length of time s for an innovation is
written as

F (s) = 1� D�GHs:

For a worker, the expected time to an innovation is then written as

I(s) =

Z J

0
sMzD�GHsOs = 1=�z.

Equation (16) shows the average amount of time a worker spends in the workforce. Adding these two quantities
together delivers the average amount of time an agent will spend in the two activities:

T =
� ln (�)

g
+

�
1

�z

�
:
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Using equation (9), we then obtain the necessary expression.
The degree of income mobility can then be measured as the inverse of the average time to cycle through

these two activities:
1

T
= g: (17)

4 Analysis of the Value Function of a Firm-Owner

Here it is shown that how to characterize the value function of a �rm-owner in the model. First, note that since
d
dt log

�
�t
�
= g, and Q (�t) = R� (�t)

1

1�� . As described in the text, since the pro�t functions, the wage function,

and the function h(zS �t) are all homogenous of degree one in �t, it follows that the value functions for the
optimization problems will then be homogeneous as well. It follows that the value function for a �rm-owner
with relative technology (�t) can be written as follows

T (�t)
�
��t
�
=

Z T

t
U�r(s�t)

��
��t
�
Ug(s�t)

�
R� (�s)

1

1�� XY+ U�r(T�t)Z
�
��tU

g(T�t)
�
S (18)

and so dividing by ��t results in

T (�t) =

Z T

t
U�r(s�t)

�
Ug(s�t)

�
R� (�s)

1

1�� XY+ U�r(T�t)Z
�
Ug(T�t)

�
: (19)

Since
�
_�
�

�
= �g, this last expression can be written as

T (�t) =
R� (�t)

1

1��

r +
�
�g
1��

�
h
1� U�(T�t)(r+(

\^
1��))

i
+Z

�
U(�r+g)(T�t)

�
S (20)

where T is the exit date for the �rm. By choosing this date T optimally, this yields the following exit condition:

R� (�T )
1

1�� = (r � g)Z: (21)

The remaining lifetime of a �rm with relative technology (�t) must satisfy

T � _ =
ln (�t)� ln (�)

g
:

In general for a �rm with relative technology (�) equation (20) must then satisfy

T (�) =
R�

r +
�
�g
1��

�
h
(�)

1

1��

i
+Z

�
�

�

��(1=g)(r�g)
�

R�

r +
�
�g
1��

�
�
(�)

�

`
^+(

�

1��)
��
(�)�(r=g)+1 (22)

which then can be written as
T (�) = a1 (�)

1

1�� + a2 (�)
�(r=g)+1

where for any � 2 [�S 1]

a1 =
R�

r +
�
�g
1��

�

a2 =
h
Z � a1

h
(�)(

1

1��)
ii
(�)(1=g)(r�g) > 0:
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It is easy to see from equation (22) that the following value matching condition must hold

b (�) =c . (23)

The optimal exit condition (equation (21)) can also derived by choosing the optimal value of (�). Maximizing
the value function in equation (22) with respect to (�) also leads to the condition in equation (21).

The smooth-pasting condition is derived by taking the derivative of equation (19) with respect to g, and
evaluate the result at g = T .2 Then, using equation (21) yields the fact that _bT = _cT : The latter functions are
the technology-normalized value functions (i.e. divided by �t). Figure (1) may be a little deceptive because
this �gure shows the actual value functions: �tb (�), and �tc , rather than b (�), and c . These functions are
growing at the rate of gh when the two functions equal each other.

Another way to characterize the value function of a new �rm-owner is to note that since
�
_�
�

�
= �g, for

the case of a �rm-owner with a new technology at g = 0, equation (19) can be written as follows:

b (1) =

Z k

0
l�rs (lgs)m� (�s)

1

1�� nq+ l�rTc
�
l�gT

�
�

Z k

T
l�rs (lgs)m� (�s)

1

1�� nq

=

Z k

0
l�rs (lgs)m�

�
l�gs

� 1

1�� nq + l�rTc
�
l�gT

�
� (�T )

1

1��

Z k

T
l�rs (lgs)m�

�
l�gs

� 1

1�� nq

=

Z k

0
l�rsm� (l

gs)
��
1�� nq+ l�rTc

�
l�gT

�
� l�rT

�
lgT
�
(�T )

1

1��

Z k

0
l�rsm� (l

gs)
��
1�� nq

=
m�

r +
�
�g
1��

� + l�(r�g)T

x

4c �
m� (�T )

1

1��

r +
�
�g
1��

�

y

z :

The �rst term on the right side of this last expression is the discounted value of pro�ts from running the

�rm forever, given that the pro�ts are falling at the rate of
�
�g
1��

�
. Next, the term l�(r�g)T , {|}ects that

fact that at some future date T , which is chosen optimally, the �rm will be shut down. At that date the �rm
will have relative technology denoted by �T . By shutting down the �rm at that date the �rm-owner will be

giving up a future pro�t stream, the value of which is ~�(�� )
1

1��

r+( ��
1��)

: But the �rm-owner bene�t from switching

to becoming a worker because the value of doing so exceeds that of keeping the �rm operational forever (i.e.

c > m� (�T )
1

1�� ).

2Equivalently, one could take the derivative of equation (22) with respect to �, and evaluate the result at � = �:
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