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1. INTRODUCTION 

 

 Recently Deneckere and Peck (DP, 2012) analyzed a version of the Prescott 

(1975) model and argue that (a) the outcome in the one period case is inefficient 

(Proposition 2) and (b) the outcome in their multi-period version of the model is 

efficient. Their first result is different from the results in Eden (1990, 2009). The 

difference between the results is in the efficiency criteria used. In Eden’s Uncertain 

and Sequential Trade (UST) model, sellers must make some irreversible (selling) 

decisions before they know the state of nature (demand). These informational 

constraints are not present in the DP definition of feasible allocation and therefore 

their Proposition 2 says that a planner who knows the state (after the choice of output 

but before the allocation of the output to buyers) can always improve matters.  

The source of the disagreement about the relevant efficiency criterion may be 

traced to the difference between the original Prescott model and the UST model. In 

Prescott’s original model, prices are set in advance and we may assume that the state 

of demand becomes known before actual transactions take place. After learning the 

state of demand, sellers want to change prices but cannot. In this environment, it 

makes sense to compare the equilibrium outcome with the solution to the problem of 

a planner who knows the state, as in Dana (1998, 1999) and DP.2 In the UST model 

trade is sequential and price dispersion arises as a result of informational constraint 

rather than price rigidity. The relevant comparison is therefore with the solution to the 

problem of a planner who faces informational constraints that are similar to the 

constraints faced by the sellers in the model.  

                                                
2 See also Bryan (1980) and Deneckere, Marvel, and Peck (1996). For other type of models that deals 
with pricing in the presence of demand uncertainty, see for example, Harris and Raviv (1981), Lazear 
(1986) and Pashigian (1988).  
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The second main result in the DP paper says that the equilibrium outcome in a 

multi-period setting is efficient even from the point of view of a planner who knows 

the state before the beginning of actual trade. I argue that this result critically depends 

on the assumption that the cost of delaying trade (the cost of postponing transactions) 

is not important (their assumption 4).  

To study the effect of the cost of delaying trade on efficiency and price 

dispersion, I consider two dynamic versions of the Prescott models that allow for 

storage: a general equilibrium version of the UST model in Bental and Eden (BE, 

1993) and a version of the DP model. These models complement each other. The BE 

model is about all year round goods while the DP model is about seasonal goods. I 

show that if the probability of becoming active depends on the aggregate state but not 

on the buyer’s type, then the UST equilibrium outcome is efficient from the point of 

view of a planner who has the same information as the sellers in the model, but in 

general it is not efficient from the point of view of a planner that does not face 

informational constraint.  

 The cost of trade delays is also relevant for price dispersion. In both models a 

reduction in the cost of delays leads to a reduction in price dispersion. In the BE 

model price dispersion vanishes when there is no cost for delaying trade. Somewhat 

surprisingly, in the DP model price dispersion does not vanish when delaying is 

costless. 

 Using the distinction between rigid and flexible price versions of the Prescott 

model we can summarize the main results of the paper as follows: (a) When the costs 

of delaying trade are important, the equilibrium outcome in models that assume price 

flexibility may be efficient while the equilibrium outcome in models that assume 

price rigidity is not efficient, (b) Price rigidity does not impose welfare loss if there is 

no cost of delays and (c) Price dispersion increases with the cost of delays. Although 

some of the results are new, I see the main contribution of the paper in providing a 
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unified simple framework for comparing alternative and sometimes quite complex 

versions of the Prescott model. The new results are the general equilibrium and 

welfare analysis in the BE model and the case in which the cost of delaying trade is 

important in the DP model. I also provide a unified framework in which the two 

models (BE and DP) can be obtained as special cases.  

 

2. THE MODEL 

 

 I start with a single period economy. This relatively simple case introduces the 

UST approach to modeling trade and allows for a comparison with the DP approach. 

DP stress the price posting interpretation of the model. Formally, the UST approach 

adopts the price taking assumption and it is easier to think of sellers as choosing 

quantities rather than prices. But unlike the traditional approach here the set of 

markets that open depends on the realization of demand and as a result selling itself is 

a random event. The markets are for the same good and each market is characterized 

by the probability that it will open and the price in which trade will occur when it 

opens. We can therefore think of sellers as allocating goods across markets by posting 

prices. Thus the distinction between choosing prices and choosing quantities is not 

important in this model. I assume that buyers have a quasi-linear utility function that 

gives rise to a downward sloping demand curve. This is different from DP who 

assume that active buyers try to maximize the surplus from buying one unit. I later 

argue that this difference is also not important for the main results. Unlike the analysis 

in Eden (2009) here I consider the problem of a planner who can choose quantities 

rather than the problem of a policy-maker that can choose taxes and tariffs.  

  I consider an economy with two dates 

� 

(t = 0,1) and two goods:  

� 

X  and 

� 

Y  with lower case letters denoting quantities. There are 

� 

Z  possible aggregate 

states of nature. State 

� 

s occurs with probability π s . 
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 There are many identical sellers\producers. The number of sellers is known 

and is normalized to 1. Sellers are risk neutral and derive utility from 

� 

Y  only. Sellers 

can produce 

� 

X  at the per-unit cost of 

� 

λ  units of 

� 

Y . Unlike sellers, buyers are 

heterogeneous. There are 

� 

J  types of buyers. The number of type 

� 

j  (potential) buyers 

is 

� 

n j . All buyers are endowed with a large quantity of 

� 

Y . In aggregate state 

� 

s, the 

utility function that a fraction 

� 

φ js of type 

� 

j  buyers realize is: 

� 

u js(x,y) =U j (x) + y , 

where 

� 

U j (x)  is strictly monotone, strictly concave and differentiable. To simplify, I 

assume that U ' j (0) = ∞ . The remaining 

� 

(1−φ js)n j  buyers realize the utility function 

� 

u js(x,y) = y  and are not active. The random utility of a type 

� 

j  buyer in aggregate 

state 

� 

s is thus: 

 

(1) 

� 

u js(x,y) =U j (x) + y  with probability 

� 

φ js and 

� 

u js(x,y) = y  otherwise.  

  

 An active type 

� 

j  buyer demands 

� 

d j (p)  units of 

� 

X  at the price 

� 

p  where the 

individual demand function is defined by: 

 

(2)  

� 

d j (p) = argmaxx≥0U j (x) − px . 

 

 An interior solution to (2) must satisfy the following first order condition: 

 
(3)  Uj '(x) = p   

 

  Production (capacity choice) occurs at 

� 

t = 0. After production choice is made, buyers 

realize a utility function and active buyers form a line. I treat all active buyers 

symmetrically and assume that any segment taken from this line accurately represents 
the type composition of buyers who want to consume: In state 

� 

s, 

� 

φisi∑ ni  buyers want 

to consume and the fraction of type 

� 

j  buyers in any segment of the line is:  
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� 

ϑ js=

� 

φ jsn j

φisi∑ ni
. After the line is formed, active buyers arrive at the market place one by 

one according to their place in the line and buy at the cheapest available offer. The 

sequential trade does not take real time (and occurs in meta time).  

 

Price dispersion is necessary: 

 In search models that assume no uncertainty about aggregate demand it is 

difficult to get price dispersion. The opposite is true in a UST environment in which 

buyers see all available offers. To elaborate, I consider a game in which the sellers 

must choose production and prices before they know the realization of aggregate 

demand. A single price P  is a symmetric Nash equilibrium strategy if (a) all sellers 

choose to post this price and produce a strictly positive amount and (b) deviation from 

this strategy cannot increase expected profits. 

 

Claim 1: There is no single price symmetric Nash equilibrium strategy.  

 

To show this Claim note that at a single price P  there are some states in 

which the market does not clear.  We can therefore have one of the following three 

cases:   

(a) In some states there is excess supply. 

(b) In some states there is excess demand. 

(c) There is excess demand in some states and excess supply in some other states. 

  

 In the excess supply case (a), P > λ  is not a symmetric Nash equilibrium 

strategy (or equilibrium strategy for short) because the individual seller can do better 

by reducing his price by an arbitrarily small amount and sell with probability 1. In this 

case also P ≤ λ  is not an equilibrium strategy because the individual seller can do 

better by not producing.  
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 In the excess demand case (b), anyP < ∞  is not an equilibrium strategy because the 

seller can do better by increasing his price to U '(0) = ∞  which is the price that 

unsatisfied buyers are willing to pay. This argument also applies to case (c). 
 

Equilibrium with price dispersion: 

 Since there is no single price equilibrium I look for equilibrium with price 

dispersion. I start from the following case. 

 

Assumption 1: The probability of becoming active depends only on the aggregate 

state and not on the buyer's type: 

� 

φ js = φ1s = φs for all 

� 

j .  

 

I choose indices such that demand is increasing in the state: 

0 = φ0 <φ1 < ...<φZ = 1 . In state 

� 

s, the number of active buyers is 

� 

Ns = φsN  where  

� 

N = n j
j
∑  is the number of potential buyers. Under assumption 1, the fraction of type 

� 

j  buyers in any segment of the line, 

� 

ϑ j =
φsn j

φsi∑ ni
=
n j

N
, is independent of 

� 

s.  

Trade occurs in a sequence of Walrasian markets described as follows. The minimum 

number of buyers that will arrive is 

� 

φ1N =mins{φsN} and these buyers buy in the first 
market. The demand in the first market (at the price 

� 

p) is: 

� 

D1(p) = φ1 n jd j (p)j∑  

units. If 

� 

s >1, there are 

� 

Ns − N1 buyers who could not make a buy in the first market. 

The minimum number of unsatisfied buyers if 

� 

s >1, is 

� 

(φ2 −φ1)N =mins>1{(φs −φ1)N} 

and this is the number of buyers who will buy in the second market. The demand of 
this second batch of buyers is: 

� 

D2(p) = (φ2 −φ1) n jd j (p)j∑  units. In general, if batch 

� 

i  arrives, its demand at the price 

� 

p  is: 

� 

Di(p) = (φi −φi−1) n jd j (p)j∑  and this is the 

potential demand in market i . The probability that batch i  arrives and market i  opens 
is: qi = π ss=i

Z∑ .  

 The seller is a “conditional price-taker” and behaves as if he can sell any 

amount at the price 

� 

Pi   if market 

� 

i  opens. The expected revenue from supplying a unit 
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to market 

� 

i  is 

� 

qiPi. In equilibrium expected profits are zero and prices satisfy: 

� 

qiPi = λ . I now define equilibrium as follows.  

 

 A UST equilibrium is a vector of prices 

� 

(P1,...,PZ ) and a vector of supplies 

� 

(x1,...,xZ )  

such that: (a) 

� 

Pi = λ
qi  and (b) 

� 

xi = Di(Pi). 

 

A “weak” planner: 

 In equilibrium a type 

� 

j  buyer who arrives in batch 

� 

i  consumes 

� 

d j ( λ qi )  units. 

To evaluate this outcome I assume a planner that can choose the amount x ji  that will 

be delivered to a type j  agent that arrive in batch i . I call this planner “weak” 

because like the sellers in the model (and unlike the “strong” planner that will be 

introduce shortly) he must make choices before he knows the realization of demand. 

The “weak” planner solves the following problem.  

 

(4)  maxx ji qi
i=1

Z

∑ (φi −φi−1) nj
j=1

J

∑ Uj (x ji )− λ (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑  

 

The first order conditions to this problem are:  

 
(5) qiU j '(x ji ) = λ  

 

Since in equilibrium Pi = λ
qi , a type j  agent that arrive in batch i  will choose to 

consume x ji  such that Uj '(x ji ) = Pi = λ
qi  and therefore the equilibrium outcome 

satisfies (5). We have thus shown the following claim.  

. 

Claim 2: The UST equilibrium outcome is a solution to the “weak” planner's problem 

(4). 
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Prices may appear rigid but they are not: 

Posted prices may appear rigid because they do not respond to the realization 

of demand (the state). Nevertheless, prices are flexible in the sense that the seller’s 

plan is time consistent and he has no incentive to change prices during trade. To show 

this claim, note that the probability of state s ≥ i  given that market i  open is: 

 
 
Prob(φ = φs |φ ≥φi ) =

Prob(φ = φs φ ≥φi )
Prob(φ ≥φi )

= π s

qi
 

The expected revenue from supplying to market j ≥ i  when market i  opens is 

therefore: 

 

(6)  Pj
π s

qis= j

Z

∑ = Pj
qj
qi

= Pi   for all j ≥ i . 

 
The second equality in (6) follows from the equilibrium condition: qjPj = qiPi . The 

equality in (6) implies that after updating of the probabilities all higher index markets 

have the same expected revenues and therefore the seller has no incentive to change 

the allocation of the remaining unsold goods across markets. In this sense, prices are 

perfectly flexible.  

 

A “strong” planner:  

A planner that knows the state before any decision is made (before t = 0 ) will 

produce exactly the amount that he plans to deliver. In state s , the planner will 

choose to deliver x js  units to type j  by solving the following problem. 

 
(7)  maxx js φsj∑ njU j (x js )− λ φsj∑ njx js  

 

The first order conditions for this problem are: 
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(8)  Uj '(x js ) = λ  

 

Clearly the UST outcome characterized by (5) is not a solution to the “strong” 

planner’s problem.  

 

A “semi-strong” planner:  

I now consider the case in which the planner knows the state after the 

capacity, k , is chosen but before trade occurs (that is, at 0 < t <1 ). Here I use x js  to 

denote the amount allocated to a type j  agent in state s . Under the informational 

assumption for the “semi-strong” planner, the allocation (k;x11,..., x1Z ;...;xJ1,..., xJZ )  is 

feasible if it satisfies the following condition:  

 
(9)  φsj∑ njx js = k   for all s  

 

This is the definition of feasible allocation in DP (See their Definition 1). With this 

notion of feasible allocations we can write the problem of the “semi-strong” planner 

as follows. 

 

(10)  maxk π ss∑ Vs (k)  

 where Vs (k) = maxx js φsj∑ njU(x js )− λk    s.t.  φsj∑ njx js = k   

 

Thus, Vs (k)  is the maximum welfare (sum of utilities) that the planner can achieve in 

state s  when capacity is k . The first order conditions for (10) are: 

 
(11)  Uj '(x js ) =U1 '(x1s )  for all j  and s  

 
(12)  π sU j '(x js ) =s∑ λ  for all j .  
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Unlike the weak planner, here the allocation does not depend on the order of arrival  

(the batch) and unlike the strong planner here only the expected marginal utility is 

equal to λ  (and not the marginal utility in each state). Since the “semi-planner” has 

better information than the sellers in the model he can improve on the UST 

equilibrium outcome.  

 As I said in the introduction the comparison with the semi-strong planner is 

reasonable if prices are set in advance (at t = 0 ) and sellers observe the state before 

actual trade occurs. In this case sellers would like to change their prices at the time of 

trade but cannot do so and a semi-strong planner who does not use rigid prices can 

improve matters. However, in the UST model, sellers observe only the amount sold at 

each stage (or the number of the hypothetical markets that were opened) and therefore 

the weak planner is the appropriate bench-mark.   

 I read Proposition 2 in DP as saying that a “semi-strong” planner can always 

improve matters.  

Can the government improve matters? Under Assumption 1, the government 

can improve matters if it has informational advantage over the sellers in the economy. 

Once we relax assumption 1 the government can improve matters even if it has no 

informational advantage but can discriminate by type. To get the intuition, assume 

that type 1 is active only in states in which aggregate demand is low. Then the weak 

planner will give to a type 1 buyer that arrives in the first batch more than his 

competitive allocation (the amount he buys at the price P1 ) because the fact that type 

1 is active is a signal that aggregate demand is low and the chance of hitting the 

capacity constraint is low. I elaborate in the Appendix. In general, when we relax 

Assumption 1, the definition of batches is endogenous and so is the probability that 

market i  will open. But prices are still given by Pi = λ
qi .  
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3. STORAGE 

 

 Bental and Eden (BE, 1993) extended the UST model to the case in which the 

economy lasts forever and storage is possible. To do welfare analysis, I use here a 

general equilibrium version of their model.  

 As in the single period case there are J +1  types of agents (a seller and J  

types of buyers). Each agent gets a large endowment of Y  each period. The demand 

of each of the active buyer does not change over time and is given by (2). As before 

the probability of becoming active does not depend on the type. The number of active 

buyers is iid . Sellers can store goods but buyers cannot (and in equilibrium they do 

not have an incentive to do so). The seller uses the discount factor 0 < β <1 to 

evaluate future revenues. The discount may also capture storage costs and 

depreciation.  

 

The “weak” planner’s problem: 
  Each period the “weak” planner chooses the amount x ji  that will be delivered to a 

type j  agent that arrives in batch i . Goods that were allocated to batches that did not 

arrive are not delivered and are carried as inventories to the next period. The planner 

can also choose to hold Γ  units of purely speculative inventories that will be stored 

regardless of the state. Thus, in state i ,Γ + (φs −φs−1) nj
j=1

J

∑ x js
s=i+1

Z

∑  units will not be 

delivered and will be carried to the next period as inventories. I use L  to denote 

current production and I  to denote the beginning of period inventories.  

When Γ = 0 , the amount of inventories in state s  is: 

 

(13)  I s = (φi −φi−1
j=1

J

∑
i=s+1

Z

∑ )njx ji  
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The maximum amount that will be carried as inventories is Imax = I1 . The value of 

inventories is a function, V (I ) , from the beginning of period inventories 0 ≤ I ≤ Imax  

to the real line ( R+ ) defined by the following Bellman equation: 

 

(14)V (I ) = maxL ,x ji ,Γ≥0 qi
i=1

Z

∑ (φi −φi−1) nj
j=1

J

∑ Uj (x ji )− λL +β π iV (φs −φs−1) nj
j=1

J

∑ x js + Γ
s=i+1

Z

∑
⎛

⎝⎜
⎞

⎠⎟i=1

Z

∑  

 s.t.   Γ + (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑ = L + I .   

I now show the following Claim. 

 

Claim 3: The solution to the planner’s problem (14) is characterized by L > 0 , Γ = 0  

and the following first order condition:  

 

(15)  Uj '(x ji ) = βλ + λ(1− β )
qi

 

 
Proof: Since Uj '(0) = ∞ , the amounts supplied are strictly positive ( x ji > 0 ). Total 

supply in each period is: k = (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑ > Imax  because the supply to the first 

market φ1 njx j1
j=1

J

∑  is strictly positive. Since I ≤ Imax , production L = k − I  is strictly 

positive.  

Since L > 0  we must have Γ = 0 . To see this claim, note that when Γ > 0  the 

seller can do better by cutting purely speculative inventories and current production 

by a unit and increasing production in the next period by a unit.  

 We can therefore write the first order conditions and the envelope condition as 

follows:  

 

(16)  qiU j '(x ji )+ β π kV ' (φs −φs−1) nj
j=1

J

∑ x js
s=k+1

Z

∑
⎛

⎝⎜
⎞

⎠⎟k=1

i−1

∑ = λ  
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(17)  V '(I ) = λ  

 

Substituting (17) in (16) leads to:  

 
(18)  qiU j '(x ji )+ (1− qi )βλ = λ   

 

The first order condition (15) follows from (18).  � 

 

Note that a strictly positive amount of production is required to keep total supply at 

the level k  and that inventories are always in the range [0, Imax ] . Thus (14) is well 

defined. Furthermore, optimal production fluctuates with inventories: the larger the 

amount of beginning of period inventories the lower is the amount produced. Here a 

unit increase in the beginning of period inventories reduces production by a unit. In a 

more general setting in which the marginal cost is increasing it will reduce production 

by less than a unit.  

 

UST equilibrium 

Prices in a typical period are given by (P1,...,PZ ) . With some abuse of 

notation, I describe the seller’s problem by the following Bellman’s equation: 

 

 (19)  V (I ) = maxxi ,Γ ,L≥0 qi
i=1

Z

∑ Pixi − λL +β π iV Γ + xs
s=i+1

Z

∑⎛
⎝⎜

⎞
⎠⎟i=1

Z

∑  

 s.t. Γ + xi
i=1

Z

∑ = L + I  

Here xi  is the amount the seller allocates to market i  and as before the range of V (I )  

is 0 ≤ I ≤ Imax .  A solution to (19) with L, xi > 0  must satisfy Γ = 0  and the following 

first order and envelope conditions:  
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(20)  qiPi + β(1− qi )V ' xs
s=i+1

Z

∑⎛⎝⎜
⎞
⎠⎟
= λ  

(21)  V '(I ) = λ  

 

Substituting (21) into (20) yields: 

 

 (22)  qiPi + (1− qi )βλ = λ  

 

A UST equilibrium is a vector (P1,...,PZ ;x1,..., xZ )  that satisfies (22) and the following 

market clearing conditions: 

 
(23)  (φij∑ −φi−1)njd j (Pi ) = xi  

 

 Equilibrium prices (22) can be written as:  

 

(24)  Pi = βλ + λ(1− β )
qi

 

 
Let x ji = dj (Pi )  denotes the amount bought by a type j  buyer who arrives in batch i . 

Then (24) and  (3) imply: 

 

(25)  Uj '(x ji ) = Pi = βλ + λ(1− β )
qi

 

  

We can now show the following Claim. 

 

Claim 4:  The equilibrium outcome is a solution to the planner’s problem (14). 

 

This claim follows from the observation that (25) is the same as (15). 
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Price dispersion:  

 Prices in (24) are a weighted average between λ  and λ
qi . A higher β  reduces 

the mean and the dispersion measures of the price distribution because all prices get 

closer to the lowest price λ . When β →1 , (24) implies that all prices are 

approximately equal to λ  and price dispersion vanishes. Thus discounting is required 

to get price dispersion in equilibrium.  

 In general, price dispersion requires some costs for delaying trade. This cost 

maybe due to discounting of future profits, storage costs or depreciation. 

 

The “strong” planner’s problem:  

A planner who knows the state will produce exactly the amount that he plans 

to deliver and will not carry inventories. In state s , the planner will choose to deliver 

x js  units to type j  by solving the problem (7). Clearly the UST outcome 

characterized by (25) is not a solution to the “strong” planner’s problem. But when 

β →1 , the “strong” planner cannot improve matters by much. To see this claim note 

that when β →1 , the UST allocation of X  is close to the “strong” planner’s choice 

and the benefits from economizing on inventories are small because the maximum 

amount of inventories held is finite.  

 

4. SEASONAL GOODS 
 

 Deneckere and Peck (DP, 2012) consider the case in which the good is offered 

for sale for a limited length of time called the “sale season”. Goods that their use 

depends on the weather (like “summer clothes”) may serve as an example. Here I 

analyze this case in a relatively simple economy in which the season is divided into 

two periods (sub-periods) and all potential buyers are identical (there is one type). 

Unlike the DP model, buyers have a downward sloping demand curve. As in the DP 
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model, the seller chooses capacity at the beginning of the sale season and cannot 

change it during the season. The problem has some common elements with the 

storage model in the previous section but there are some important differences. 

 The economy lasts for 3 periods. Production decisions are made at t = 0 . 

Trade occurs at t = 1  and t = 2 . I start with the case in which the number of active 

buyers  N  can take 2 possible realizations: 1= N1 < N2 . As before the probability of 

state s  ( 
N = Ns ) is π s .  

In the first trading period ( t = 1 ) there are 2 hypothetical UST markets. Market 

1 opens with probability 1 at the price P1 . Market 2 opens with probability π 2  and if 

it opens trade in this market occurs at the price P2 . If market 2 does not open (with 

probability π1 = 1−π 2 ) the seller can sell the unsold goods in the second period 

Walrasian market at the price p ≤ P1 .3  

The utility of an active buyer is given by: 

 

(26)  U(C +δc)+ y  

 

where C  is the amount bought in the first period ( t = 1 ), c  is the amount bought in 

the second period and 0 < δ ≤1  is a parameter that reflects the cost of delay. The 

delay cost may result from the shortening of the length of time that the buyer uses the 

good: A consumer who buys a short sleeve shirt at the beginning of the summer gets 

more use out of it than a consumer who buys it towards the end of the summer. The 

function U  is strictly monotone, strictly concave and differentiable with U '(0) = ∞ . 

                                                
3 There is no real distinction between the UST and the Walrasian markets. In both cases a market 
opens only if there is both supply and demand. The UST second market may not open if there is no 
demand. The second period Walrasian market may not open if there is no supply. And each market that 
open is cleared. But in the first period there is a sequence of Walrasian markets and price dispersion. In 
the second period there is at most one market and one price. So I hope this language will help in 
keeping the two trading periods separated without creating confusion.   
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 A buyer who buys at t = 1  in the first market will take into account the 

possibility that a Walrasian market will open at t = 2  and he will be able to buy at a 

cheaper price. He solves the following problem.  

  

(27)  maxC1 π1 maxcU(C1 +δc)− P1C1 − pc( ) +π 2 U(C1)− P1C1( )  

 

Here C1  is the amount he buys at t = 1  in the first UST market (at the price P1 ) and c  

is the amount he buys at t = 2  in the Walrasian market (at the price p ) if the state of 

demand is low (state 1).   

A buyer who buys at t = 1  in market 2 knows that the state of demand is high 

and the Walrasian market will not open in the next period because inventories will not 

be carried to the next period. He therefore solves the following problem.  

 
(28)  maxC2U(C2 )− P2C2  

 

The first order conditions that an interior solution to (27) must satisfy are: 

 

(29)  δU '(C1 +δc) = p   

(30)  π1U '(C1 +δc)+π 2U '(C1) = P1   

 

The first order condition for an interior solution to (28) is: 

 

(31)  U '(C2 ) = P2  

 

  The seller chooses the amount allocated to each of the hypothetical markets  
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at t = 1  ( xi ) by solving the following problem4.   

 

(32)  maxxi π1(P1x1 + px2 )+π 2 (P1x1 + P2x2 )− λ(x1 + x2 )  

 

Note that the revenue per unit allocated to the first market is P1 . The revenue per unit 

allocated to the second market is random: It is equal to p  in the low demand state and 

P2  in the high demand state.  

The first order conditions for the seller’s problem are: 

 

(33) P1 = λ  

(34)  π 2P2 +π1p = λ  

 

 Condition (34) is similar to (22). The revenues are the quoted price in case the 

market opens and the value of inventories in case it does not open. The left hand side 

of (34) is therefore the expected revenues that must equal the cost.  

 

Equilibrium is a vector (C1,C2,c, x1, x2,P1,P2, p)  that satisfies the buyers’ first order 

conditions (29)-(31), the seller first order conditions (33),(34), the inequalities  

p ≤ P1 < P2 , and the following market clearing conditions:  
(35) C1 = x1   

(36) (N2 −1)C2 = x2  

(37) c = x2  

 

                                                
4 A more general formulation may allow for pure speculations. Let x3  denote the amount that the 
seller does not plan to sell in the first period regardless of the number of markets open. Then we can 
write the seller’s problem as:  
maxxi π1(P1x1 + px2 )+π 2 P1x1 + P2x2( ) + px3 − λ(x1 + x2 + x3)  

It will be shown that in equilibrium p < P1 , and therefore the seller chooses x3 = 0 . 
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Note that also here markets that open are cleared.  

 

Solving for the equilibrium vector:  

 Substituting the market clearing conditions in the buyers’ first order conditions (29)-

(31) and using Δ = N2 −1 , leads to: 

  

(38)  δU '(x1 +δ x2 ) = p  

(39)  π1U '(x1 +δ x2 )+π 2U '(x1) = P1  

(40) U '(Δ−1x2 ) = P2  

 

Substituting (38) and (40) in (34) leads to:  

 

(41)  π 2U '(Δ
−1x2 )+π1δU '(x1 +δ x2 ) = λ  

 

Substituting (39) in (33) leads to: 

 

(42)  π1U '(x1 +δ x2 )+π 2U '(x1) = λ  

 

We now have 2 equations (41)-(42) with 2 unknowns (x1, x2 ) .  

 

Claim 5: There exists a unique equilibrium.  

 

Proof: I start by showing that there exists a unique solution (x̂1, x̂2 )  to (41) and (42). 

For this purpose note that the slope of the locus of points that solve (41) is: 

 

(43)  dx2
dx1

= − π1δU ''(x1 +δ x2 )
π 2U '' (Δ)

−1x2( )(Δ)−1 +π1δ 2U ''(x1 +δ x2 )
> − 1

δ
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The slope of the locus of points that solve (42) is: 

 

(44)  dx2
dx1

= − π 2U ''(x1)+π1U ''(x1 +δ x2 )
π1U ''(x1 +δ x2 )δ

< − 1
δ

 

 

In Figure 1 the locus labeled AA is the solutions to (41) and the locus labeled BB is 

the solutions to (42).  When x1 = 0 , the amount x2  that solves (41) is finite and 

therefore the locus AA intersects the vertical axis. But since U '(0) = ∞ , the locus BB 

does not intersect the vertical axis. Therefore there exists a unique solution to  (41) 

and (42) illustrated by Figure 1.  

 

 

 Figure 1: The solution to (41) and (42) 

 

x1

x2

A

A

B

B

x̂1

x̂2
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We still need to show that p ≤ P1 < P2 . To show this note that since 

U '(x1) >U '(x1 +δ x2 ) , (42) implies: U '(x1) > λ  and U '(x1 +δ x2 ) < λ . It follows that 

δU '(x1 +δ x2 ) = p < λ . Since p < λ , (34) implies P2 > λ = P1 . � 

 

The case of no cost of delay:  

The special case in which δ = 1  provides useful intuition. In this case, (41) and (42) 

imply: 

 

(45)  U '(x1) =U '(Δ
−1x2 )  

(46)  π1U '(x1 + x2 )+π 2U '(x1) = λ  

 

Since (45) implies x2 = Δx1  we can write (46) as:  

 

(47)  π1U ' x1(1+ Δ)( ) +π 2U '(x1) = λ  

 

Since U '(0) = ∞ , there exists a unique solution x̂1  to (47). Since 

U ' x1(1+ Δ)( ) <U '(x1) , (47) implies U '(x̂1) > λ . This, (45) and (40) imply that 

P2 =U '(x̂1) =U '(Δ
−1x̂2 ) > λ .  

 The equilibrium when δ = 1  can be described as follows. The first batch of 

buyers buys at the price P1 = λ  a quantity that is equal to their demand at the higher 

price P2 . They buy less than their demand at the price P1  because there is a chance 

that they will be able to buy more next period at the price p < λ . In state 2 the second 

batch arrives and buy the quantity allocated to the second market ( x2 ) at t = 1 . In 

state 1, this quantity is bought by the first batch at t = 2 .   
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Comparative statics:  

 I now assume that the absolute risk aversion measure is not too low and 

satisfies:  

 

(48)   −U ''(x1 +δ x2 )
U '(x1 +δ x2 )

< δ −2    

 

Claim 6: Under (48) an increase in δ  leads to: (a) an increase in x2  and a decrease in 

x1 , (b) a decrease in P2  and (c) an increase in p .  

 

To show (a), note that under (48), an increase in δ  will shift the AA curve in 

Figure 1 up and to the right and the BB curve to the left and down. Part (b) follows 

from (40) and the increase in x2 . Part (c) follows from (34) and the fact that P2  went 

down.  

Note that since a reduction in δ  increases P2 , an increase in the cost of delay 

increases price dispersion at t = 1 .  

 

The Weak planner’s problem: 

 The weak planner who has to choose production and the quantity he gives to 

the first batch before he knows whether the second batch will arrive or not. He 

therefore solves the following problem. 

 
(49)  maxx1,x2 π1U(x1 +δ x2 )+π 2 U(x1)+ ΔU(Δ−1x2 )( )− λ(x1 + x2 )  

 

The first order conditions for this problem are (41) and (42). Thus,  

 

Claim 7: The equilibrium outcome solves the weak planner’s problem (49).  
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The Semi-strong planner’s problem: 

 The semi-strong planner has to choose capacity (x1 + x2 )  before he knows the state 

but he chooses the amount that he gives to the first batch of buyers at t = 1  after he 

knows the state. Since the semi-strong planner will give the entire capacity to the first 

batch in state 1, we can write his problem as follows.   

 
(50)  maxxi π1U(x1 + x2 )+π 2 U(x1)+ ΔU(Δ−1x2 )( )− λ(x1 + x2 )  
 

This problem is the same as the “weak” planner’s problem (49) only if δ = 1 . Since 

the semi-strong planner has an informational advantage over the weak planner and the 

weak planner mimics the equilibrium outcome, this observation leads to the following 

Claim.   

 

Claim 8: When δ <1 , the semi-strong planner can improve on the equilibrium 

outcome but when δ = 1  he cannot.  

 

 Claim 8 reiterates the importance of the cost of delay. The intuition is in the 

value of the informational advantage that the semi-strong planner has over the weak 

planner (and the sellers in the model). When there is no cost of delay the value of the 

information about the state is zero because the weak planner can distribute a limited 

amount at t = 1  and once he learns about the state, at t = 2  he can deliver the rest 

making sure that each buyer gets an equal amount (or more generally an amount that 

will equate the marginal utility across active buyers) regardless of the order of arrival.  

 Note that unlike the inventories model in the previous section, here there is 

price dispersion (at t = 1 ) even when δ = 1  and there is no cost of delay.  
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 Note also that buyers in the first batch do not buy the amount demanded at the 

first market price because they know that there is the possibility of buying at a bargain 

prices next period. This speculative behavior is similar to the endogenous rationing in 

DP.  

In general, the language here is different from the language in DP. I am using 

the language of general competitive analysis with a non-standard definition of 

markets, while they use game theory.  But I think that the model here is essentially the 

same as a 2 periods version of their model. To make the connection between the two 

models let us think of the utility function (26) as describing the preferences of a 

household that consists of many infinitesimal buyers. The head of the household 

assigns a reservation price to each member and instructs him to maximize the 

expected surplus from buying at most one (infinitesimal) unit. The highest reservation 

price U '(0)  is assigned to the member indexed 0  and in general the reservation price 

U '(x)  is assigned to the member indexed x . With this in mind we can get 

endogenous rationing in the sense described by DP. The members with indices less 

than x̂1  buy in the first market while those with higher indices are “endogenously 

rationed” or to use the language of competitive equilibrium, adopt speculative 

behavior.  
 
 
5. THE MANY STATES CASE 
 

 I now assume that the number of active buyers  N  may take Z ≥ 2  possible 

realizations. To simplify notation I assume Ns − Ns−1 = 1  so there is one buyer per 

batch. As before, the probability that exactly s  markets will open in the first period is 

π s  and the probability that market i  will open is qi = π ss≥i∑ .  

 The price in the first period hypothetical UST market i  is Pi . A single 

Walrasian market will open in the second period at the price ps  if the number of 

markets open in the first period is s < Z . A buyer who arrives in the first period 
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market i  will buy Ci  units and will make plans to buy in the next period cs
i  units if 

i ≤ s < Z . He will choose these quantities by solving the following problem.  

  

(51)  maxCi − PiCi + ( 1qi)π ZU(Ci )+ ( 1qi) π s maxcsi U(Ci +δcs
i )− pscs

i( )
s=i

Z−1

∑  

 

For notational purposes I use cZ
i = 0  and write the first order conditions for (51) as: 

 

(52) δU '(Ci +δcs
i ) = ps   for i ≤ s < Z  

(53)  π sU '(Ci +δcs
i ) = qi

s=i

Z

∑ Pi  

 

 Condition (52) says that the buyer will choose cs
i  in the second period to 

equate the marginal utility with the second period price. To interpret (53) note that 

( 1qi)π s  is the probability that state s  will occur given that s ≥ i . Since the buyer in 

market i  use these conditional probabilities, (53) says that the expected marginal 

utility for a buyer in market i  must equal the price in market i  (after dividing both 

sides of [53] by qi ). 

Sellers will sell in market i , if the price in market i  is greater than the value 

of inventories:  

 

(54) Pi ≥ ( 1qi) π s
s=i+1

Z−1

∑ ps   for all i  

 

Under (54) the seller chooses the supply to market i  by solving the following 

problem.  

 

(55) maxxi − λxi + qiPixi + xi π s ps
s=1

i−1

∑  
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To interpret (55) note, that the seller pays the cost λ  regardless of whether he sells 

the good or not. With probability qi  he sells the good and gets Pi  per unit. If s < i , he 

does not sell the good in the first period but will sell it next period at the price ps . 

The first order condition for an interior solution to the seller’s problem (55) is:  

  

(56) qiPi + π s ps
s=1

i−1

∑ = λ  

 

This condition says that the expected revenue equal the cost. The expected revenue 

calculations take into account the value of inventories in case market i  does not open. 

In this respect it is similar to (22). But in (22) the value of inventories is the value 

from reducing production next period. Here there is no production in the second 

period and it will be shown that the value is less than the cost of production.   
 

 To define equilibrium I use ci = (ci
i ,...,cZ−1

i )  to denote the plan (second 

period’s purchases) of a buyer who arrive in market i .  

Equilibrium is a vector (C1,...,CZ ;c
1,...,cZ−1;x1,..., xZ ;P1,...,PZ ; p1,..., pZ−1)  that 

satisfies (54), P1 < P2,...< PZ , the first order conditions (52), (53), (56) and the 

following market clearing conditions: 

 

(57)  Ci = xi   

 

(58) cs
j

j=1

s

∑ = x j
j=s+1

Z

∑  

 

Condition (57) says that the first period market i  must clear if it opens. Condition 

(58) says that the second period market must clear if it opens (that is if s < Z ). 
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The Weak planner’s problem 

I use xi  to denote the amount that the weak planner distributes to batch i  in the first 

period (if it arrives and carry as inventories if batch i  does not arrive) and cs
i  to 

denote the amount that he will distribute in the second period in state s  to buyers that 

arrive in batch i ≤ s . The weak planner chooses these quantities by solving the 

following problem.   

 

(59)  max
x j ,cs

j − λ x j
j=1

Z

∑ + π s U xj +δcs
j( )

j=1

s

∑
s=1

Z

∑     s.t. (58). 

 

The first term in (59) is the cost of production. The second term is the expected sum 

of the utilities from the consumption of X . The first order conditions for an interior 

solution to this problem are: 

 
(60)  U '(x j +δcs

j ) =U '(x1 +δcs
1)   for all j ≤ s  

 

(61) π sU '(xi +δcs
i )

s=i

Z

∑ + π sδU '(x1 +δcs
1)

s=1

i−1

∑ = λ   

 

Condition (60) says that the marginal utility after distributing cs
j  in the second period, 

must be the same across all active buyers. Condition (61) says that the expected 

marginal utility from consuming xi  must equal the cost of production. The first term 

in the left hand side is the weighted sum of the marginal utilities when batch i  

arrives. The second term on the left hand side is the weighted sum of the marginal 

utilities when batch i  does not arrive. In this case the marginal utility is 

δU ' x1 +δcs
1( )  because the good will be distributed in the second period and will 

“depreciate” by that time. The first order condition (61) can also be described as a no 

arbitrage condition. If the left hand side of (61) is greater than the right hand side, a 
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planner could do better by increasing production by a unit and allocating the unit to 

batch i  if it arrives and to batch 1 if batch i  does not arrive.  

 We can now show the following Claim.  

 

Claim 9: (a) There exists a unique equilibrium, (b) the equilibrium outcome is a 

solution to the “weak” planner’s problem, (c) prices in the second period’s Walrasian 

market are increasing with the state ( p1 < ...< pZ−1 ), (d) the first UST market price is 

λ  (and therefore λ = P1 < ...< PZ ) and (e) pi < Pi .  

 

 The intuition for (c) is straightforward: In higher states, more stuff is sold and 

less inventories are carried to the second period. The intuition for (d) is in the 

arbitrage condition: Market 1 opens with certainty and therefore if P1 > λ  the supply 

will be infinite which is not consistent with market clearing (and if P1 < λ , the supply 

is zero which is also not consistent with market clearing). The intuition for (e) is that 

when pi ≥ Pi  a seller who observes that market i  opens will refuse to sell because he 

can sell it to batch i +1  at a higher price if it arrives and sell it in the second period at 

no loss if batch i +1 does not arrive. Since pi < Pi , the price in the second period 

must be less than the highest transaction price in the first period.  

 

Proof: The first order conditions (60) and (61) must hold in equilibrium. To show this 

claim, note that substituting (52) and (53) in (56) leads to (61). And (52) insures that 

(60) holds.  

 I now compute the equilibrium vector from the solution to the planner’s 

problem. Using the planner’s allocation to the first batch (x1;c1
1,...,cZ−1

1 ) , we can 

compute the second period prices: 

 

(62)  ps = δU '(x1 +δcs
1)   
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When more batches arrive there is less to distribute in the second period and therefore 

the marginal utility δU '(x1 +δcs
1)  is increasing in s  and therefore: p1 < ...< pZ−1 .  

 We can use the planner’s allocation to batch i , (xi;ci
i ,...,cZ−1

i ) , to compute the 

price in market i : 

 

(63)  Pi = ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑  

 

To show that Pi < Pi+1  note that the solution to the planner’s problem must satisfy the 

following condition.   

 

(64)  ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑  = ( 1qi) π sU '(xi+1 +δcs
i+1)

s=i+1

Z

∑ + ( 1qi)π iδU '(xi +δci
i )  

 

To interpret (64) consider the point of view of a planner who observes that batch i  

arrives but does not know yet if batch i +1 will arrive. The left hand side of (64) is 

the expected loss from reducing the amount given to batch i  in the first period by a 

unit. The right hand side is the expected gain from supplying a unit to batch i +1  if it 

arrives and supplying the unit to batch i  if batch i +1  does not arrive. Condition (64) 

thus says that at the optimum the expected loss from transferring a unit from xi  to 

xi+1  must equal the expected gain so that a small deviation from the optimal plan does 

not reduce welfare. From (64) we get:  

 

(65)  ( 1qi) π sU '(xi +δcs
i )

s=i+1

Z

∑ ≤ ( 1qi) π sU '(xi+1 +δcs
i+1)

s=i+1

Z

∑  

 

Since qi+1 < qi , (65) implies:  
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(66) ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑ < ( 1qi+1) π sU '(xi+1 +δcs
i+1)

s=i+1

Z

∑  

 

The inequality Pi < Pi+1  follows from substituting (63) in (66).  

Note that (61) and (63) imply: 

 

(67)  P1 = π sU ' x1 +δcs
1( )

s=1

Z

∑ = λ  

 

To show that (54) is satisfied note that (62) and (63) imply: 

 

(68) Pi = ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑ ≥ ( 1qi) π s
s=i+1

Z−1

∑ δU '(xi +δcs
i ) = ( 1qi) π s

s=i+1

Z−1

∑ ps .  

 

To show (e) note that a seller who observe that market i  opens must be indifferent 

between selling a unit in market i  to transferring it to xi+1 . This leads to the following 

arbitrage condition.  

 
(69) Pi = pi ( 1qi)π i + Pi+1( 1qi) π ss>i∑   

 

Part (e) follows from the observation that Pi  is a weighted average of pi  and Pi+1  and 

Pi+1 > Pi . This completes the proof.  
 
 

6. A UNIFIED FRAMEWORK 

 

 Many goods have both a seasonal and all year round aspects. For example, 

short sleeve shirt is typically used in the summer that it was bought but can also be 

stored and used in the next summer. We may capture both aspects by combining the 

two models (BE and DP).  



Vanderbilt University Department of Economics Working Papers, VUECON-13-00012

        

32 

 

For this purpose, I assume an economy that lasts for infinitely many periods, 

and each period is divided into two sub-periods. In the first sub period demand is not 

known and trade is done in the UST hypothetical markets. The trade in the first sub-

period reveals the state and in the second sub-period there is a single Walrasian 

market with a single price. As in the previous models prices do not change over time 

and I therefore drop the time index.  

As in the DP model, the buyer’s problem is described by (51).  

The value of a unit carried as inventories to the next period is βλ  (because the 

seller can cut next period’s production by a unit and save the unit’s cost). Therefore, 

the seller will supply to the second sub-period market only if:  

 

(70)  ps ≥ βλ  

 

Assuming that (70) holds, the seller will choose the amount supplied to the first sub-

period UST market i  ( xi ) by solving the problem (55). If market i  opens he will sell 

at the price Pi . If market i  does not open in the first sub-period, he will sell in the 

second sub-period xi − Is
i  units at the price ps  and carry Is

i  units as inventories to the 

next period. If the second sub-period Walrasian market opens he will choose the 

amount of inventories by solving the following problem.    
  
  
(71) max0≤Isi≤xi ps (xi − Is

i )+ βλIs
i    

 
 
The first order conditions to this problem requires: 
 

 (72) Is
i = 0  if ps > βλ   and  0 ≤ Is

i ≤ xi  if ps = βλ   
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The amount of inventories carried to the next period in state s  is Is = Is
i

i>s∑ . Given 

(72) the aggregate amount of inventories must satisfy the following condition.  

 

(73)  Is = 0  if ps > βλ  and 0 ≤ Is ≤ xi
i=s+1

Z

∑  if ps = βλ  

 

To allow for inventories I modify the equilibrium definition in the previous section as 

follows.  
 

Equilibrium is a vector (P1,...,PZ ; p1,..., pZ−1;x1,..., xZ ;C1,...,CZ ;c
1,...,cZ−1; I1,..., IZ−1)  

that satisfies (a) the incentive to supply conditions (54), (70) and P1 < ...< PZ ; (b) the 

first order conditions (52), (53), (56), (73); and (c) the market clearing conditions (57) 

and  

(58’) Is + cs
i

i=1

s

∑ = xi
i=s+1

Z

∑   

 

 Note that the BE model is a special case that assumes δ = 0 , while the DP is a 

special case that assumes β = 0 .  

 

The weak planner’s problem for the unified model 

 The planner’s problem for the unified model environment is: 
 

(74) max
x j ,cs

j ,Is≥0
− λ x j

j=1

Z

∑ + π s βλIs + U(x j +δcs
j )

j=1

s

∑
⎛

⎝⎜
⎞

⎠⎟s=1

Z

∑      s.t. (58’) 

 

The first order conditions for this problem are (61) and  

 
(75) δU '(x j +δcs

j ) = δU '(x1 +δcs
1) ≥ βλ   with equality if Is > 0  

 

We can now modify Claim 9 as follows.  
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Claim 9’: (a) There exists a unique equilibrium, (b) the equilibrium outcome is a 

solution to the “weak” planner’s problem, (c) prices in the second period’s Walrasian 

market are increasing with the state (βλ ≤ p1 ≤ ...≤ pZ−1 ), (d) the first UST market 

price is λ  and (e) pi < Pi .  

 

The proof is similar to the proof of Claim 9.  

 

7. CONCLUDING REMARKS 

 

This paper attempts to understand price dispersion and efficiency in versions 

of the Prescott (1975) model. In the paper I focus on flexible price (UST) version of 

the model and use three different benchmarks or planner’s problems to judge the 

equilibrium outcome. The three planners are distinguished by the information they 

have when making decisions. The “weak” planner has the same information as the 

sellers in the model. The “strong” planner knows the state before making any 

decisions and the “semi-strong” planner knows the state only after capacity decisions 

are made but before the arrival of buyers. In all the versions studied the UST outcome 

is a solution to the “weak” planner’s problem under the assumption that the 

probability of becoming active depends on the aggregate state but not on the buyer’s 

type. And in general, the “semi-strong” and the “strong” planners can improve 

matters. An exception is the case in which there are no costs for delaying trade. In this 

case the “semi-strong” planner cannot improve matters and in the general equilibrium 

version of the BE model even the “strong” planner cannot improve matters. The 

“strong” planner can still improve matters in the DP model because of the finite 

horizon assumption.  
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The paper provides a unified framework for Prescott types models. The 

formulation of equilibrium is the same whether we assume rigid or flexible prices. 

But the formulation of the relevant planner’s problem or the definition of feasible 

allocation is different. In rigid price versions the planner faces the constraint that he 

cannot distribute more than the output produced. In flexible price versions he faces an 

additional constraint that he must choose the allocation to each batch of buyers before 

he knows whether more batches will arrive or not. The “semi-strong” planner is 

therefore relevant for the rigid price versions while the “weak” planner is relevant for 

the flexible price versions.  

The intuition for the above results is as follows. Prices are rigid when at the 

time of trade sellers would like to change them but cannot. Therefore, in rigid price 

versions, a planner who has the same information as the sellers in the model but does 

not use rigid prices can in general improve matters. This is not surprising. It is also 

not surprising that in the flexible price versions (UST) a planner that has the same 

information as the sellers in the model cannot in general improve matters. What 

maybe surprising are the exceptions to the rules.  

An exception to the first rule occurs when the costs of delays are not 

important. In this case the value of early information about the state is close to zero 

and price rigidity does not matter much. In the BE model with approximately no 

discounting, sellers will set a single price equal to the marginal cost and will not 

“regret” this choice even if information about the state becomes available before the 

beginning of trade. Similarly, when discounting is not important, the optimal policy of 

a “weak” planner in the BE model is to keep inventories at the beginning of the period 

at some target level and distribute to each active buyer a quantity that does not depend 

on the state (and equates the marginal utility with the marginal cost of production). 

Information about the state can be used to eliminate inventories but since there is no 

discounting the value of doing it is small.   
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When there are no costs of delays, a planner in the DP model, will not value 

information about the state because he can distribute relatively small amounts in the 

first period, learn about the state and then distribute the rest making sure that the 

marginal utility of all buyers is the same regardless of the order of arrival. Buyers in 

the model do what the planner wants them to do. They engage in speculative behavior 

and buy a relatively small amount in the first period. Then once the state is revealed in 

the second period they buy the amount that was not sold in the first period at the 

market-clearing price.  

An exception to the second rule occurs when the probability of becoming 

active is not the same across types. In this case the fact that a buyer of a certain type is 

active is a signal about the state. Sellers do not use this signal because they cannot 

price discriminate and therefore a planner that has the same information as the sellers 

in the model (but is allowed to discriminate by type) can improve matters even in the 

flexible price version of the model. 

The efficiency results can also be stated in terms of the following policy 

implications. If prices are flexible and the government (or the central bank) has no 

informational advantage over the sellers in the model there is in general no room for 

government intervention. An exception to this standard general rule is the case in 

which the government can discriminate in a way that sellers cannot. (The 

governments can use tariffs for example, to discriminate among residents of different 

countries, see Eden [2009]). There is room for government intervention if prices are 

rigid. These conclusions critically depend on the source of the uncertainty about 

demand. Here the source is in taste shocks and there is nothing much that the 

government can do about fluctuations in the desire to consume. In this respect taste 

shocks are similar to productivity shocks. But the government should attempt to 

minimize shocks to demand that arise as a result of shocks to government spending, 

money supply and bubbles. See Eden (1994, 2012). 
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The flexible price version of the model suggests that price dispersion is not 

evidence of market failure. It is required to cope with aggregate demand uncertainty 

in an efficient way. 

The positive implications of the theory are about the relationship between 

price dispersion, demand uncertainty and the cost of delays. In Eden (2013) I analyze 

the case in which demand is uniformly distributed and show that price dispersion 

increases with demand uncertainty and with the cost of delays.  
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APPENDIX: RELAXING ASSUMPTION 1 

 

 I now relax Assumption 1 for the single period case. I use Ns = φ jsn jj∑  for 

the number of active buyers and start with the following special case.  

 

Assumption 2:  

� 

U j (x) =U(x), 

� 

d j (p) = d(p)  for all 

� 

j  and N1 < N2 < ...< NS .  

 

Here the type composition of the buyers who arrive in each batch (

� 

ϑ js) depends on 

the state. Because all types have the same demand function, the value of 

� 

ϑ js is not 

relevant for computing the demand of each batch and for defining equilibrium. But as 

we shall see it is relevant for the social planner. 

 The algorithm for computing the number of buyers in each batch is similar to 

what we had in the previous case. The minimum number of (active) buyers is: 

� 

Δ1 = N1

. The first batch of 

� 

Δ1 buyers arrives with certainty. After buyers in this first batch 

complete trade and go away there are two possibilities. If 

� 

s =1 trade ends. If 

� 

s >1, 

there are 

� 

Ns − N1 unsatisfied buyers. The minimum number of unsatisfied buyers if 

� 

s >1 is: 

� 

Δ 2 =mins{Ns − N1} = N2 − N1 and this is the number of buyers in batch 2. The 

probability that 

� 

s >1 is q2 = 1−π1  and this is the probability that batch 2 will arrive. 

Proceeding in this way we define 

� 

qs  and 

� 

Δ s for all 

� 

s =1,...,Z . As before, it is 

convenient to think of a sequence of Walrasian markets, where batch 

� 

i  buys in market 

� 

i  and the seller supplies 

� 

xi units to market 

� 

i .   

A UST equilibrium is a vector of prices 

� 

(P1,...,PZ ) and a vector of supplies 

� 

(x1,...,xZ )  such that: (a) 

� 

Pi = λ
qi  and (b) 

� 

xi = (Ni − Ni−1)d(Pi) = Δ id(Pi).   

 

The “weak” planner’s problem:  
I assume that the “weak” planner can choose the amount x ji  that he will give to a type 

j  buyer who arrives in batch i  but does not observe the fraction of type j  buyers 
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that arrive in each batch (ϑ js ) and like the sellers in the model, must therefore make 

allocation decisions before he observes the state. The planner’s problem is:       

 

(A1)  maxx ji π s
s=1

Z

∑ ϑ js (Ni − Ni−1)
i=1

s

∑ U(x ji )
j=1

J

∑ −λmaxs ϑ js (Ni − Ni−1)x ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
  

 

To understand the first term in the objective function note that ϑ js (Ni − Ni−1)
i=1

s

∑ U(x ji )  

is the total utility that the planner gets from type j  buyers in state s . The second 

term is the production cost of implementing the plan. To simplify, I assume that the 

maximum amount distributed occurs in state Z : 

Z = argmaxs ϑ js (Ni − Ni−1)x ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
.  

Note that x ji  matters only when 

� 

s ≥ i and market 

� 

i  opens. We can therefore find the 

first order condition to the problem in (A1) by taking the derivative of  

(Ni − Ni−1)U(x ji ) π sϑ js
s=i

Z

∑ −λϑ jZ (Ni − Ni−1)x ji . The first order condition is:  

 

(A2)  U '(x ji ) =
λϑ jZ

π sϑ js
s=i

Z

∑
 

This is different from (5), implying that the UST outcome is not a solution to the 

“weak” planner’s problem.  
Note that under assumption 1, ϑ js =ϑ j  for all j  and (A2) is the same as (5). The 

difference between (A2) and (5) arises when ϑ jZ ≠ ϑ js . In this case, the planner will 

give type j  more relative to the UST outcome, when ϑ jZ <ϑ js  for all s . In the 

extreme case when ϑ jZ = 0  he will satiate type j  agents because this type arrives 

only in state in which there is excess capacity.  
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The general case:  

 I now relax assumption 2. As before buyers arrive in batches but here the size 

of each batch is endogenous and depends on the prices: P1 ≤ P2 ≤ ...≤ PZ . Roughly 

speaking, the size of the first batch is the minimum demand at the price 

� 

P1. Market 2 

opens if there are some buyers who wanted to buy in the first market but could not. In 

general, market 

� 

i  opens if there is residual demand after transactions in market 

� 

i −1 

are complete. The size of batch 

� 

i  is the minimum residual demand.  

 The definition of equilibrium is essentially a choice of indices: (y1,..., yZ ) . 

Demand in state 

� 

s at the price 

� 

P1 is:  
φ jsn j

j
∑ dj (P1) .  I choose indices such that state y1  is the state of minimum demand at 

the price P1 : y1 = argmins φ jsn j
j
∑ dj (P1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. State 2 is the minimum demand at the 

price P2  out of the states s ≠ y1 : y2 = argmins φ jsn j
j
∑ dj (Pi )  s.t. s ≠ y1 . And in 

general: yi = argmins φ jsn j
j
∑ dj (Pi )   s.t. s ≠ yk  for all k < i .   

With the above choice of indices, we may describe equilibrium in the 

following way. The seller puts a price tag of 

� 

Pi on 

� 

xi units and then remains passive. 

He knows that the lowest priced 

� 

x1 units will be sold first with certainty. Then if there 

is additional demand the 

� 

x2  units with the price tag 

� 

P2  will be sold and so on. I 

assume that the seller does not use the type composition of batch 

� 

i  to update the 

probabilities of the states. We may therefore think of the seller as having many outlets 

and since trade does not take real time he cannot get aggregate statistics on the type 

composition during trade. 

 Since the definition of equilibrium describes this choice of indices it is simpler to 

write some subscripts in parenthesis. I use π (s)  instead of π s  for the probability that 

state s  occurs and φ j (s)  instead of φ js  for the fraction of type j  buyers that are 

active in state s .  



Vanderbilt University Department of Economics Working Papers, VUECON-13-00012

        

42 

 

 

A UST equilibrium is a vector of distinct Z  integers (y1,..., yZ )  and a vector of real 

numbers (P1,...,PZ ;x1,..., xZ ;Π1,...,ΠZ ;q1,...,qZ ;Φ11,...,ΦJ1;Φ12,...,ΦJ 2;...;Φ1Z ,...,ΦJZ )  

such that: 

(a) 1≤ yi ≤ Z  for all i ,  
(b) φ j (yi )nj

j
∑ dj (Pi ) < φ j (yk )nj

j
∑ dj (Pi )   for all i < k ≤ Z ,  

(c) Φ ji = φ j (yi ) ,  

(d) Πi = π (yi ) ,  

(e) qi = Πss≥i∑ ,  

(f) xi = Φ jin j
j
∑ dj (Pi )− xs

s=1

i−1

∑  and  

(g) Pi =
λ
qi

. 

 

Part (a) implies that y  is a one to one mapping from (1,...,Z )  to (1,...,Z ) .   

Part (b) requires that at the price Pi  demand in state yi  is less than demand in state yk  

for all k > i . Suppose for example that y1 = 6  and y2 = 3 . Then demand at the price 

P1  is lowest in state 6 and demand at the price P2  is lower in state 3 then in all states 

s ≠ 6 . The fraction of type j  buyers who are active in state 6 is denoted by 

Φ j1 = φ j (y1)  and the fraction of type j  buyers who are active in state 3 is denoted by: 

Φ j2 = φ j (y2 ) . The probability that state 6 occurs is denoted by Π1 = π (y1)  and the 

probability that state 3 occurs is denoted by Π2 = π (y2 ) . Thus Π1  is the probability 

that exactly one batch will arrive and Π2  is the probability that exactly two batches 

will arrive. The probability qi = Πss≥i∑  is the probability that more than i  batches 

will arrive or the probability that market i  opens. Part (f) is a market clearing 

condition: After transactions in market i −1  are complete, the minimum residual 

demand at the price Pi  is Φ jin j
j
∑ dj (Pi )− xs

s=1

i−1

∑  and this must equal the supply to 
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market i . Part (g) requires that the expected revenue per unit is the same across 

markets. 

 

The “weak” planner’s problem: 

I assume that the “weak” planner can observe the aggregate amount distributed and 

the type of each buyer but not the type composition of the buyers. The “weak” 

planner chooses Z  quantities (x1,..., xZ )  and Z  allocation rules. The first allocation 

rule is applied to the distribution of the first batch of x1  units. The second allocation 

rule is applied to the distribution of the second batch of x2  units and so on. In detail,  

the planner distributes x j1  units  to type j  buyers that arrive until the first x1  units are 

distributed. He then use the second allocation rule and distributes x j2  units to type j  

buyers that arrive until the second batch of x2  units are distributed and in general he 

uses the allocation rule x ji  after xs
s=1

i−1

∑  units were already distributed to distribute the 

next xi  units.  

We may say that buyers who arrive after xs
s=1

i−1

∑  units were distributed and before 

xs
s=1

i

∑  units were distributed, arrive in batch i  and x ji  is the amount allocated to a 

type j  agent who arrives in batch i .  

 The choice of xi  and x ji  determine the probability that xi  will satisfy the 

additional demand. If for example x1  is large and x ji  are small, the probability that 

more buyers will arrive after the distribution of x1  units is small. Therefore the 

probabilities of delivery depends on the choice of xi  and x ji .  

We may therefore write the “weak” planner’s problem in the following way.  
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Choose Z  distinct integers (y1,..., yZ )  and a vector of real numbers 
(x1,..., xZ ;Π1,...,ΠZ ;q1,...,qZ ;
Φ11,...,ΦJ1;Φ12,...,ΦJ 2;...;Φ1Z ,...,ΦJZ ;x11,..., xJ1;x12,..., xJ 2;...;x1Z ,..., xJZ )

  

such that: 

(a) 1≤ yi ≤ Z  for all i ,  
(b) φ j (yi )nj

j
∑ x ji < φ j (yk )nj

j
∑ x ji  for all i < k ≤ Z   

(c) Φ ji = φ j (yi ) ,  

(d) Πi = π (yi ) ,  

(e) xi = nj
j=1

J

∑ Φ jsx ji − nj
j=1

J

∑ Φ ji−1x ji−1 > 0  And  

(f) x ji  solve the following problem: 

maxx js Πs
s=1

Z

∑ Φ jsn jU j (x ji )
i=1

s

∑
j=1

J

∑ −λmaxs njΦ jsx ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
 

 

To solve for the planner’s first order condition I assume as before, that the planner 

wants to distribute the maximum amount in state Z : Z = argmaxs njΦ jsx ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
. 

Since the planner knows ϑ js  he can compute for each state s , the number of buyers 

served in batch i , (Nis − Ni−1s )  and the number of type j  buyers served in batch i , 

ϑ js (Nis − Ni−1s ) . In detail, the equations:  

N1s ϑ jsx j1
j=1

J

∑ = x1  and (Nis − Ni−1s ) ϑ jsx ji
j=1

J

∑ = xi  lead to:N1s = x1 ϑ jsx j1
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟

−1

 and  

Nis − Ni−1s = xi ϑ jsx ji
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟

−1

. 

 The planner will choose the amount allocated to a type j  buyers who arrive in batch 

i  by maximizing:  

 

(A3)  maxx ji U j (x ji ) Πsϑ js (Nis − Ni−1s )
s=i

Z

∑ −λϑ jZ (NiZ − Ni−1Z )x ji   
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The first order condition for this problem is: 

 
(A4)  Uj '(x ji )Δ ji = λϑ jZ (NiZ − Ni−1Z ) , 

 

where Δ ji = Πsϑ js (Nis − Ni−1s )
s=i

Z

∑  is the expected number of buyers served in market i

. The interpretation of this first order condition is as follows. The expected marginal 
utility from increasing the allocation to type j  in market i  by one unit: Uj '(x ji )Δ ji . 

The cost of doing it is: λϑ jZ (NiZ − Ni−1Z ) , because only in state Z  we hit the capacity 

constraint. Therefore, (A4) says that the marginal benefits equal the marginal cost.  

Rearranging (A4) leads to: 

 

(A5)  Uj '(x ji ) =
λϑ jZ (NiZ − Ni−1Z )

Πsϑ js (Nis − Ni−1s )
s=i

Z

∑
 

This is different from the UST allocation rule (5) implying that in general, the UST 

outcome is not a solution to the “weak” planner’s problem (and of course not to the 

“strong” planner’s problem). 


