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Abstract

This note shows that in an incomplete information situation the closure condition will be
satisfied by all social choice sets if and only if the set of states of the society which all agents
believeoccur with positive probability satisfies the `connection' condition.It then follows
from Jackson's [1] fundamental theorems that whenever `connection' is satisfied and there are
at least three agents in the society, for the implementability of social choice sets in Bayesian
equilibrium the incentive compatibility and Bayesian monotonicity conditions are both
necessary and sufficient in economic environments. It also follows that the incentive
compatibility and monotonicity-no-veto conditions are sufficient in noneconomic
environments.
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1. INTRODUCTION

In his seminal paper, Jackson [1] examined the problem of implementing collections
of social choice functions in situations where agents have incomplete information about
the state of the society. His work has very important features;he characterized conditions
for implementability not only in economic environments but also in noneconomic envi-
ronments both of which admit situations with externalities. The economic environments
he considered is much more general than exchange economies, as the former cover any
environment in which agents cannot be simultaneously satisfied. Moreover, the existence
of a worst outcome from the viewpoints of all agents in the society is not needed for his
theorems characterizing implementable social choice sets. Regarding the distribution
of information among the members of a society, he allowed for situations where agents
possess exclusive information. Besides, the set of states which all agents in the society
believe occur with positive probability is not necessarily required to coincide with the
set of possible states of the society.

His first theorem showed that a collection of social choice functions in an economic
environment with at least three agents is Bayesian implementable if and only if clo-
sure (C), incentive compatibility (IC), and Bayesian monotonicity (BM) conditions are
satisfied. As he stated, this result closed the gap between the necessary and sufficient
conditions1 of Palfrey and Srivastava [4], who examined2 implementation for exchange
economies in which agents may have exclusive information.

The second theorem of Jackson [1] showed that closure, incentive compatibility, and
a condition that combines Bayesian monotonicity and no-veto power (which he calls
(MNV)) are sufficient for implementation in noneconomic environments with three or
more agents.

The closure condition in the implementation literature requires that the social choice
set be closed under concatenation of common knowledge events. In this paper, we ex-
amine the situations in which the closure condition is satisfied by any collection of social
choice rules in both economic and noneconomic environments. To this end, we define a
new condition for all environments, which we call ‘connection’. An environment is said
to satisfy connection if between any two probable states, there exists a string of probable
states such that from any one of them to the other, there is always one agent who cannot
make the distinction between the two. We first prove that if there is always one agent
who cannot make the distinction between any two probable states, then the only event
which is common knowledge can be the set of all probable states (Lemma 1). Then, it
easily follows that all social choice sets satisfy closure if and only if the environment,
whether economic or noneconomic, satisfies connection (Proposition 1). We also show

1Palfrey and Srivastava [4] showed that a collection of social choice rules is implementable in Bayesian
(Nash) equilibrium if it satisfies the Bayesian monotonicity and incentive compatibility conditions.
Moreover, they showed that Bayesian monotonicity and a stronger incentive compatibility condition
(ε-IC) are sufficient for implementation.

2See also Palfrey and Srivastava [2], and Postlewaite and Schmeidler [5] for Bayesian implementation
results in exchange economies where there are at least three agents and the information is nonexclusive.
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that this new condition for environments becomes less restrictive as the number of pos-
sible information states of agents or the number of agents increases; so we should expect
the connection condition to be satisfied in the limit (Proposition 2).

Apparently, the connection condition allows us to restate Jackson’s [1] implemen-
tation results. We simply argue that when the environment with at least three agents
satisfies connection, the designer should pay attention to only (IC) and (BM) in economic
environments (Corollaries 3-5) and (IC) and (MNV) in noneconomic environments for
Bayesian implementation (Corollary 6).

The paper is organized as follows: Section 2 reintroduces the environment and pre-
liminary definitions of Jackson [1]. Section 3 presents Jackson’s [1] results in Bayesian
implementation. Finally, Section 4 gathers the results of this paper and some concluding
remarks.

2. BASIC STRUCTURES (JACKSON [1])

Environments

There are a finite number, N , of agents. Let Si describe the finite number of possible
information sets of agent i. A state is a vector s = (s1, ..., sN) and the set of states is
S =

∏N
i=1 S

i.
Let A denote the set of feasible allocations. A social choice function is a function

from states to allocations. The set of all social choice functions is X = {x|x : S → A}.
Each agent has a probability measure qi defined on S. It is assumed that if qi(s) > 0

for some i and s ∈ S, then qj(s) > 0 for all j �= i. Let T denote the set of states which
all agents believe occur with positive probability, that is T = {s ∈ S|qi(s) > 0, ∀i}.

Πi are partitions of T defined by qi. For a given information set si ∈ Si, πi(si) =
{t ∈ S|ti = si and qi(t) > 0} ∈ Πi denotes the set of states which i believes may be the
true state. It is assumed that πi(si) �= ∅ for all i and si ∈ Si. Let Π denote the finest
partition which is coarser than each Πi. For a given state s ∈ S, let π(s) be the element
of Π which contains s.

Each agent has preferences U i : A× S → 
+ over social choice functions which have
a conditional expected utility representation. Given x, y ∈ X and si ∈ Si, agent i’s weak
preference relation Ri is such that

xRi(si)y ⇔
∑

s∈πi(si)

qi(s)U i[x(s), s] ≥
∑

s∈πi(si)

qi(s)U i[y(s), s].

Preferences are complete and transitive. The strict preference and indifference relations
associated with Ri are P i and I i, respectively.

An environment is a collection [N,S,A, {qi}, {U i}], whose structure is assumed to be
common knowledge among the agents.

Definitions
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Definition 1. A social choice set is a subset of X.

Definition 2. The social choice functions x and y are equivalent if x(s) = y(s) for
all s ∈ T . The social choice sets F and F̂ are equivalent if for each x ∈ F there exists
x̂ ∈ F̂ which is equivalent to x, and for each x̂ ∈ F̂ there exists x ∈ F which is equivalent
to x̂.

Definition 3. Let x/Cz be a splicing of two social choice functions x and z along a
set C ∈ S. The social choice function x/Cz is defined by [x/Cz](s) = x(s) ∀s ∈ C, and
[x/Cz](s) = z(s) otherwise. An environment satisfies (E) if for any z ∈ X and s ∈ S,
there exist i and j (i �= j), x ∈ X and y ∈ X such that x and y are constant, x/CzP

i(si)z
and y/CzP

j(sj)z for all C ⊂ S such that s ∈ C. Environments satisfying (E) are said
to be economic.

Definition 4. Let B and D be any disjoint sets of states such that B ∪D = T and
for any π ∈ Π either π ⊂ B or π ⊂ D. A social choice set F satisfies closure (C) if for
any x ∈ F and y ∈ F there exists z ∈ F such that z(s) = x(s) ∀s ∈ B and z(s) = y(s)
∀s ∈ D.

Definition 5. Given i, x ∈ X, and ti ∈ Si, define xti by xti(s) = x(s−i, ti), s ∈ S.
A social choice set F satisfies incentive compatibility (IC) if for all x ∈ F , i, and ti ∈ Si,

xRi(si)xti ∀s
i ∈ Si.

Definition 6. A deception for i is a mapping αi : Si → Si. Let α = (α1, ..., αN) and
α(s) = [α1(s1), ..., αN(sN)]. Let x◦α represent the social choice function which results in
x[α(s)] for each s ∈ S.

Definition 7. Consider x ∈ F and a deception α. A social choice set f satisfies
Bayesian monotonicity (BM) if whenever there is no social choice function in F which
is equivalent to x◦α, there exists i, si ∈ Si and y ∈ X such that

y◦αP i(si)x◦α, while xRi(ti) yαi(si) ∀t
i ∈ Si.

Definition 8. A social choice function z ∈ X satisfies the no-veto hypothesis (NVH)
at s ∈ T if there exists i such that zRj(sj)bj/Sz for all j �= i.

Definition 9. Consider the social choice set F , a deception α, and for each x ∈ F
and i consider a set Bi

x ⊂ Si. Let Bx = B1
x × ...×BN

x . Suppose that there exists z such
that for each x ∈ F and s ∈ Bx, z(s) = x◦α(s). Furthermore, suppose that z satisfies
(NVH) for each s ∈ T − (Ux∈FBx). F satisfies monotonicity-no-veto (MNV) if whenever
there is no social choice function in F which is equivalent to z, there exists i, y ∈ X,
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x ∈ F , and si ∈ Bi
x such that

y◦α/Bxz P
i(s) z, while xRi(ti) yαi(si) ∀t

i ∈ Si.

Definition 10. An environment is said to have a “0” outcome if there exists a 0 ∈ A
such that U i(0, s) = 0 for all i and s ∈ T , and for each s ∈ T and a �= 0 there exists i
such that U i(a, s) > 0. In such an environment, given x ∈ X, let x0 denote the allocation
such that x0(s) = x(s) for s ∈ T and x0(s) = 0 otherwise. Given a social choice set
F , let F 0 be the social choice set which is equivalent to F and such that x = x0 for all
x ∈ F 0.

Implementation

A mechanism is a pair consisting of an action space M =
∏N
i=1M

i and a function
g : M → A.

A strategy for agent i is a mapping σi : Si → M i. Let σ = [σ1, ..., σN ] and σ(s) =
(σ1(s1), ..., σN (sN)) and g(σ) be the allocation which results when σ is played.

A vector of strategies σ is a Bayesian (Nash) equilibrium if g(σ)Ri(si) g(σ−i, σ̃i) for
all i, si, and σ̃i.

A mechanism (M, g) implements a social choice set F if:
(i) for any x ∈ F there exists an equilibrium σ with g[σ(s)] = x(s) for all s ∈ T , and
(ii) for any equilibrium σ there exists x ∈ F with g[σ(s)] = x(s) for all s ∈ T .
A social choice set F is implementable if there exists a mechanism (M,g) which

implements F .

3. IMPLEMENTATION RESULTS OF JACKSON [1]

Theorem 1. (Jackson [1]) In an environment which satisfies (E) and N ≥ 3, a
social choice set F is implementable if and only if there exists a social choice set F̂ which
is equivalent to F and satisfies (C), (IC), and (BM).

Corollary 1. (Jackson [1]) In an environment which satisfies (E), S = T , and
N ≥ 3, a social choice set F is implementable if and only if it satisfies (C), (IC), and
(BM).

Corollary 2. [1]) In an environment which satisfies (E) and N ≥ 3, and has a 0
outcome, a social choice set F is implementable if and only if F 0 satisfies (C), (IC), and
(BM).

Theorem 2. (Jackson [1]) If N ≥ 3, social choice set F which satisfies (C), (IC),
and (MNV), is implementable.
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4. RESULTS

Definition 11. A set of states T ⊆ S satisfies the connection (CO) condition if for
all sa ∈ T and sb ∈ T there exists a string of states sa ≡ s0, s1, ..., sr ≡ sb such that for
all k ∈ {0, ..., r − 1} there exists an agent i(k) satisfying s

i(k)
k = s

i(k)
k+1.

Lemma 1. An environment satisfies (CO) if 3 and only if Π = {T}.

Proof. We will first show that Π = {T} implies (CO). Take any environment such
that Π = {T}. Suppose towards a contradiction that (CO) does not hold. Then there
exist some sa, sb ∈ T such that there exists no string of states sa ≡ s0, s1, ..., sr ≡ sb
satisfying that for all k ∈ {0, ..., r−1} there exists some agent i(k) such that s

i(k)
k = s

i(k)
k+1.

Now consider π(sa). We have π(sa) = T since Π = {T}. We also have sb /∈ π(sa) since
(CO) does not hold, contradicting that sb ∈ T . Therefore in any environment satisfying
Π = {T}, (CO) must hold.

To show the sufficiency part, assume (CO) is satisfied. Take any s̃ ∈ T and s ∈ T .
Since (CO) holds by assumption, there exists a string of states s̃ ≡ s0, s1, ..., sr ≡ s such

that for all k ∈ {0, ..., r − 1} there exists i(k) such that s
i(k)
k = s

i(k)
k+1. Thus, s ∈ π(s̃).

Since this is true for all s ∈ T , we have T ⊆ π(s̃). We also have π(s̃) ⊆ T (by the
suppositions that π(s) ∈ Π and Π is a partition of T ). It then follows that π(s̃) = T .
Therefore, Π = {T}. �

Note that S satisfies the (CO) condition since for all sa ∈ S and sb ∈ S the string
sa ≡ s0, s1, s2 ≡ sb with s1 = (s−ia , sib) for some agent i connects sa to sb. (Note s1 is
an element of S as S = S1 × ...× SN ). See Example 1 of Jackson [1] for an example of
T ⊂ S satisfying the (CO) condition.

Proposition 1. All social choice sets satisfy closure if and only if the environment
satisfies connection.4

Proof. To show the ‘if’ part, take any environment which satisfies (CO). Then Π =
{T} by Lemma 1. Let K be defined as

K = {(B,D)|B ∩D = ∅, (B ∪D) = T and ∀π ∈ Π, π ∈ B or π ∈ D}.

It is obvious that whenever Π = {T}, Π has the single element π = T . Thus we have

K = {(T, ∅), (∅, T )}.

3The ‘if part’ of the Lemma 1 as well as the need for the (CO) condition for an iff statement were
proposed by Matthew Jackson, for which the author is grateful. The previous version of Lemma 1 was
just an ‘only if’ statement which stated that a condition stronger than (CO) implies Π = {T}.

4Lemma 1 and the proof of Proposition 1 suggest that Proposition 1 can be restated by replacing
the connection condition in the statement with Π = {T}. The need for Definition 11 will become clear
while proving Proposition 2.
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Any social choice set F then satisfies closure since for any x ∈ F and y ∈ F , we have a
social choice function z ∈ F given by

z =

{
x if B = T
y if D = T

implying that z(s) = x(s) ∀s ∈ B and z(s) = y(s) ∀s ∈ D.
To show the ‘only if’ part, suppose (CO) is not satisfied implying that there ex-

ist π1, π2 ∈ Π such that π1 �= π2. Then the social choice set F = {x(.), y(.)} where
x(s) �= y(s) for all s ∈ S does not satisfy closure. �

We can now obtain a corollary for Theorem 1 of Jackson [1].

Corollary 3. In an environment which satisfies (E), (CO) and N ≥ 3, a social
choice set F is implementable if and only if there exists a social choice set F̂ which is
equivalent to F and satisfies (IC), and (BM).

Since S satisfies the (CO) condition, we can restate the Corollary 1 of Jackson [1] as
follows:

Corollary 4. In an environment which satisfies (E), T = S, and N ≥ 3, a social
choice set F is implementable if and only if it satisfies (IC) and (BM).

As a special case of Corollary 2 of Jackson [1], we obtain the following result.

Corollary 5. In an environment which satisfies (E), (CO), N ≥ 3, and has a 0
outcome, a social choice set F is implementable if and only if F 0 satisfies (IC), and (BM).

The (CO) condition has an implication on Theorem 2 of Jackson [1], as well.

Corollary 6. If N ≥ 3, and (CO) holds, social choice set which satisfies (IC), and
(MNV), is implementable.

It may be of an interest to know how restrictive the (CO) condition may be in soci-
eties involving very large number of states or agents.

Proposition 2. Let |Si| denote the cardinality of the set of states Si and be5 equal to
p ≥ 2 for all i. Let rco(p,N) denote the ratio of the number of possible sets of states
which do not satisfy the (CO) condition to the number of possible sets of states. Then

lim
N→∞

rco(p,N) = 0 and lim
p→∞

rco(p,N) = 0.

5Note when |Si| = 1 for all i, that is when information is common knowledge, we have |S| = 1, and
thus S satisfies the (CO) condition regardless what the number of agents is.
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Proof. I will prove the claim by showing that an upper-bound for rco(p,N) goes
to zero when N or p approaches to infinity. Take any ŝ ∈ S. Let Dŝ represent the set
{s ∈ S|si �= ŝi, ∀i}, at every element of which every agent can make the difference from ŝ.
Note that |Dŝ| = (p−1)N for all ŝ ∈ S. Let E ŝ denote the set {G∪{ŝ}|G ⊆ Dŝ and G �=
∅}, i.e., all nonempty subsets of Dŝ unioned with ŝ. We have |E ŝ| = 2(p−1)

N

− 1. Now
consider the set H = ∪ŝ∈SE ŝ. We have |H| ≤

∑
ŝ∈S |E

ŝ| = [2(p−1)
N

− 1]pN . Note that
for all sa ∈ S and sb ∈ S such that sia �= sib ∀i, we have {sa, sb} ∈ Esa ∩ Esb, thus
|H| < [2(p−1)

N

− 1]pN . The cardinality of the set of possible nonempty subsets of S is
equal to 2p

N

− 1. Hence, we have

rco(p,N) ≤
|H|

2pN − 1
<

2(p−1)
N

pN

2pN − 1

for any p and N . Therefore, limN→∞ rco(p,N) = 0 and limp→∞ rco(p,N) = 0, which
completes the proof. �

A stronger condition than (CO) is that between any two states of the society, there
exists a state through which one agent can always serve as a link. Clearly, when (CO)
fails, this stronger condition fails, too. As the number of possible states or the number
of agents becomes infinitely large, the measure of the possible sets of states which do not
satisfy this stronger condition become zero. Thus, we get the proof of Proposition 2.

Even though Proposition 2 does not cover situations where Si may differ across
agents, it, nevertheless, helps to make a conjecture that the fraction of possible sets of
states which satisfy connection will be ‘almost’ one when the number of possible states
or the number of agents in the society is sufficiently large. This observation strengthens
the fundamental theorems of Jackson [1] as in ‘large’ environments the closure may have
no bite at all in Bayesian implementation.
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