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Abstract

The paper develops a simple theoretical framework for analyzing repeated contests. At each
stage of the infinitely repeated game, a Tullock contest is played by two players. We consider
local stability of the Nash equilibrium with respect to adjustment speed and the level of the
prize. The model is extended to an asymmetric valuation of the prize and to the case with an
endogenous prize, where the level of the prize is influenced by the investments of the players.
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1 Introduction

In various circumstances, contests are used to model the rivalry for a resource.1

There are many examples where the contest is not only organized once. For exam-
ple, many military conflicts endure for long time periods. Furthermore, duopolists
compete for customers every season just like politicians or lobbyists, who campaign
for a political rent repeatedly. Therefore, we consider a dynamic contest, where a
Tullock contest is played every period. We assume the players to adjust their ex-
penditures according to their marginal profits and we analyze the local asymptotic
stability of the Nash equilibrium. We solve the simplest possible case with an exoge-
nous prize in the contest. In this case, our contest model is algebraically isomorphic
to a duopoly model, with an iso-elastic demand function. The supplied quantities
of the duopolists map to the contest investments, with the prize representing the
market size.2 Our finding is that the contest is asymptotically stable if the prize is
high enough or the adjustment speeds are low enough. The adjustment speed can
be interpreted as aggressiveness of bidding in our contest setting. Thus, the contest
will not be stable if the players use a very aggressive adjustment strategy for their
bids.
As there are many contests where the prize is not valued equally by the players, we
will generalize the game regarding asymmetries. In addition to the above findings,
we show that a sufficient asymmetric valuation has a destabilizing effect.
If we consider the above-mentioned examples, we observe that contested prizes are
often endogenous. In a war, the contested land will be damaged by the struggle
for it. Thus, we have a negative externality of the contest investments. Otherwise,
there are cases where we have positive externalities on the prize. We can use con-
tests to model advertising campaigns in oligopoly markets. Here, investments would
have positive effects on market size. Furthermore, in innovation contests, the prize
can rise with investments as a superior innovation yields a higher reward. This can
also be true in a rent seeking or lobbying setting, where a higher rent is assigned if
the lobbying efforts are rising.3 Therefore, we extend the endogenous prize model
of Shaffer (2006) to our dynamical setting. We find that a positive externality has
a positive impact on stability, whereas negative externalities have destabilizing ef-
fects. In this case, a higher basic contested prize only has a stabilizing effect if the
externality is positive or negative and sufficiently small-sized.
Finite repeated contests have been modeled as elimination tournaments, see the
seminal paper of Rosen (1986) and e. g. the more recent paper of Groh et al. (2003).
The optimal number of stages in a contest is considered by Gradstein and Konrad
(1999) and Moldovanu and Sela (2006). Contrary to elimination tournaments, we
consider a constant number of participants and an infinite number of stages.

1For a recent survey containing an overview over examples of use see Konrad (2007).
2There are various examples for dynamic duopoly models. The first consideration of stability of

oligopolies is Theocharis (1960). For surveys of the topic see Okuguchi (1976) as well as Gandolfo
(1996). See also Puu (1993), pp. 205-217, who considers the iso-elastic demand function with
adaptive players.

3See Chung (1996) for a rent seeking contest with an endogenous prize, which is increasing in
aggregate investments of the contestants.
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A dynamic contest is modeled by Xu and Szidarovszky (1999) which develop a model
of dynamic rent-seeking games under continuous and discrete time scales. They use
a general contest success function4 with the probability that player i will win the
rent given as pi =

fi(xi)
∑

j

fj(xj)
. They focus on the ”production functions”5 fi(xi) in the

contest and assume the prize of the contest to be 1. Furthermore, in the discrete
part of their model, the players have naive expectations. Whereas we use a much
simpler contest success function, allowing for an analysis of the case with players
adjusting their investments according to marginal profits and a variable prize. We
do not consider different production functions in the contest. Instead we analyze
situations with different valuations of the prize and an endogenous prize.6

The remainder of the paper is organized as follows: Section 2 presents the basic
model of an infinitely repeated contest. Section 3 extends this model to the cases
with different valuation of the prize and an endogenous prize, and Section 4 con-
cludes.

2 The basic model

In this study, we consider two players in a dynamic setting, where a Tullock contest7

takes place at discrete-time periods t = 0, 1, 2, . . .. We assume the information in the
market to be incomplete so that players cannot play their optimal responses imme-
diately but have to adjust their investments proportionally to their local marginal
profits. This adjustment process is called boundedly rational in oligopoly theory.8

The player i who behaves in this manner makes its decision on contest investments
xi ∈ R+ based on a local estimate of the marginal profit

∂Πi

∂ xi
. A player decides to

increase its contest investment if it has a positive marginal profit, or decreases its
investment if the marginal profit is negative. Then the dynamical system of the two
players is described by the two-dimensional map C : R2

+ 7→ R
2
+

C :

{

x1(t+ 1) = x1(t) + α ∂Π1

∂ x1(t)

x2(t+ 1) = x2(t) + β ∂Π2

∂ x2(t)
,

(1)

where α, β are positive parameters representing the adjustment speed or aggressive-
ness of player 1 and 2, respectively.9

4See Chiarella and Szidarovszky (2002) for a dynamic model with a standard Tullock contest
success function but different cost functions.

5They assume fi(0) = 0, f
′

i
(xi) > 0, and f

′′

i
(xi) < 0 for all i.

6For a model which considers global stability instead of local stability but does not examine the
cases of asymmetric and endogenous prizes, see Okuguchi and Yamazaki (2007).

7See Tullock (1980) for the first use in a rent seeking setting and Skaperdas (1996) as well as
Kooreman and Schoonbeek (1997) for its axiomatisation.

8Boundedly rational duopolists are considered by Zhang et al. (2007), Agiza and Elsadany
(2007) and Agiza and Elsadany (2003). All this articles focus on different costs of the duopolist,
which we do not consider at all. See also Chiarella and Szidarovszky (2002) for a related behavior
in contests.

9We get qualitatively equivalent results if we use a relative adjustment process with the adjust-
ment speed being linear in investments, i. e.α = a x1(t); β = b x2(t); a, b > 0 as in e. g. Zhang et al.
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In each time period, a contest takes place, so that the profit of player i in period t
is given by10

Πi(t) =

{

P
xi(t)

xi(t)+xj(t)
− xi(t) if max {xi(t), xj(t)} > 0

1
2
P otherwise,

(2)

i ∈ {1, 2}, i 6= j, where P is the prize in the contest.

Exogenous prize. We first consider the case of an exogenous given prize P in
the contest and discuss the local stability of the linearization of system (1) in the
Nash equilibrium. The Nash equilibrium is the fixed point of the two-dimensional
map, which is obtained by setting xi(t+ 1) = xi(t) for both players, or equivalently
∂Πi

∂ xi
= 0. This can be calculated to be

xNi =
P

4
, i ∈ {1, 2}. (3)

As we are interested in the local stability of the Nash equilibrium, we have to
calculate the eigenvalues of the Jacobian matrix of the map C. The Jacobian matrix
at the state (x1, x2) has the form

J(x1, x2) =

(

1− 2P x2 α
(x1+x2)3

P (x1−x2)α
(x1+x2)3

P (x2−x1)β
(x1+x2)3

1− 2P x1 β

(x1+x2)3

)

. (4)

In order to consider stability at the Nash equilibrium, we estimate the eigenvalues
of the Jacobian at (xN1 , x

N
2 ), which are

λ1 = 1−
4α

P
, λ2 = 1−

4 β

P
. (5)

Obviously, both eigenvalues are real and less than 1. As for stability the eigenvalues
must be located inside the unit circle of the complex plane, we can calculate the
value of α, β, where the system loses stability, labeled α.

1− 4α
P
= −1 ⇔ α =

1

2
P. (6)

Thus, we have proven the following proposition

Proposition 1

The Nash equilibrium of the dynamic contest with exogenous prize is locally stable

provided that {α, β} ∈
]

0, 1
2
P
[

.

(2007), who model a duopoly.
10There are two interpretations of the contest success function. The first is that each player i

receives a fraction xi

xi+xj
of the contested prize. Or we might have a winner-take-all contest with

risk-neutral contestants and the winning probability being given by xi

xi+xj
.
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We have obtained the result that the Nash equilibrium is stable as long as the
adjustment speeds of the players are small enough or the contested prize is high
enough. We can say that an increase of the speeds of adjustment or a decrease
of the prize has a destabilizing effect.11 The intuition behind this result is that if
one player is to aggressive, it overshoots the equilibrium point which leads to less
stability. This overshooting is attenuated by a higher absolute value of the prize.
Thus, aggressiveness in contests has a negative impact on stability of the equilibrium.

3 Asymmetric valuation and endogenous prize

Asymmetric valuation of the prize. In the following we consider the case where
the prize in the contest does not have the same value to the two contestants. We
assume that player 1 values the prize with k P (k ∈ ]0,∞[), so that we have the
profits

Π1(t) = P k
x1(t)

x1(t) + x2(t)
− x1(t),

Π2(t) = P
x2(t)

x1(t) + x2(t)
− x2(t).

(7)

In this case the Nash equilibrium is

xN1 =
k2 P

(1 + k)2
, xN2 =

k P

(1 + k)2
. (8)

The players use the same adjustment strategy as above but we use the assumption
that both players are equal aggressive, i. e.β = α.
The Jacobian matrix at the Nash equilibrium takes the form

J(xN1 , x
N
2 ) =

(

k P−2α (1+k)
k P

(k2
−1)α
k P

(1−k2)α
k2 P

k P−2α (1+k)
k P

)

. (9)

The two eigenvalues are

λk1 = 1−
2α (1 + k)

k P
− ı

√
k |1− k2| α
k2 P

,

λk2 = 1−
2α (1 + k)

k P
+ ı

√
k |1− k2| α
k2 P

,

(10)

with ı representing the imaginary unit. As the two eigenvalues are complex conju-
gates and have the same absolute value, we can calculate the unique value of α where
this absolute value equals 1 and stability disappears. This value will be labeled αk:

αk =
4 k2 P

(1 + k)3
. (11)

11This result is just in line with the outcome of the above mentioned duopoly models with the
prize representing the size of the market.
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The Nash equilibrium is stable for adjustment speeds low enough, i. e.α ∈ ]0, αk[. It
is easy to see that

∂ αk

∂ k
=
4(2− k)k P

(1 + k)4

{

> 0 for k ∈ ]0, 2[
< 0 for k ∈ ]2,∞[

,

∂ αk

∂ P
> 0

(12)

holds. If the valuation of player 1 increases, the contest gets less asymmetrical for
k ∈ ]0, 1[ and more asymmetrical for k ∈ ]1,∞[. A higher valuation of player 1 has
a stabilizing effect as long as the contest is not too asymmetrical (k < 2). Thus,
the stability region increases if the contest is enough symmetrical and the overall
valuation of the prize rises. By (11) and (12), we have Proposition 2 about local
stability of the Nash equilibrium in the asymmetrical case.

Proposition 2

If the two players have different valuations of the prize, the Nash equilibrium of
the dynamic contest is locally stable as long as the aggressivenesses of the players

satisfy α ∈
]

0, 4 k
2 P

(1+k)3

[

. A lower prize or a sufficient asymmetrical valuation has a

destabilizing effect.

Endogenous prize. In the following, we extend the analysis of Shaffer (2006) on
an endogenous prize to a dynamic contest. In this case, the prize of each period is
influenced by the players’ investments in this period by means of the parameter γ.
As an example of a negative externality, i. e. γ < 0, we can consider war, where parts
of the contested resource (e. g. land) are destroyed in the course of the struggle for
its ownership. On the other hand, we could have positive externalities, i. e. γ > 0,
if we look at an advertising contest or an innovation contest, where the contested
prize rises because of a higher demand in the market or a more valuable innovation.
We use the contest with linear externalities, where the prize takes the shape of

P = P0 (1 + γ x1(t) + γ x2(t)). (13)

Here, P0 > 0 is the basic prize and the value of γ determines whether the prize is
enhanced (γ > 0) or abased (γ < 0) by the investments of the players. We assume
γ < 1

P0

to assure the equilibrium investments in the contest to be non-negative.12

The Nash equilibrium can be calculated to be

xNi =
P0

4 (1− P0 γ)
i ∈ {1, 2}. (14)

As the players behave according to system (1), we can again calculate the Jacobian
in the Nash equilibrium and find the eigenvalues:

λ
γ
1 = 1− 4α

(

1

P0
− 2 γ + P0 γ

2

)

λ
γ
2 = 1− 4 β

(

1

P0
− 2 γ + P0 γ

2

)

.

(15)

12This is also a sufficient condition to assure the endogenous prize P to be positive.
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In our model, both eigenvalues are real and less than 1. Thus, the system shows
stability as long as {λγ1 , λγ2} ∈ ]−1, 1[ holds. We can calculate the supremum of the
stability region for α and β, which will be labeled αγ:

αγ =
1

2
(

1
P0

− 2 γ + P0 γ2
) . (16)

As we have
∂ αγ

∂ γ
=

1− P0 γ
(

1
P0

− 2 γ + P0 γ2
)2 , (17)

αγ is rising in γ as long as our assumption γ < 1
P0

applies. Thus, if the externality
becomes more positive, the interval of stability is widened.
The influence of the prize on stability is as follows:

∂ αγ

∂ P0
=

1
P 2

0

− γ2

2
(

1
P0

− 2γ + P0 γ2
)2 > 0 ⇔ |γ| < 1

P0
. (18)

Thus, we can state the following proposition.

Proposition 3

In the case with an endogenous prize in the dynamic contest, we have local stability
of the Nash equilibrium for {α , β} ∈ ]0, 1

2
(

1

P0
−2γ+P0 γ2

) [. The region of stability

increases if a negative externality has less impact or a positive externality has more
impact on the prize. Furthermore, a raising of the basic prize has only a positive
effect on stability if the externality is positive or not too largely negative.

We will give an interpretation by applying these results to our examples:
In our example of a positive externality, where two duopolists invest in advertising
to increase their market shares, a higher positive impact of these advertising ex-
penditures on the market would have positive impact on the stability of the Nash
equilibrium. If the duopolists are very effective in influencing the consumers to buy
their products, stability is maintained even with a higher adjustment speed. In this
case, a higher basic prize, which is interpreted as initial overall market size, also
increases stability.
In the case of a negative externality, we had used war as example. Here, a more
destructive war technology has destabilizing effects. Interestingly, in this case, a
higher basic prize, i. e. initial contested land, only has a stabilizing effect if the de-
structive influence is not very large. If the negative externality is very strong it is
favorable for stability to only have a small initial contested resource.

4 Conclusion

We have considered stability in a repeated contest with two players. The Nash equi-
librium in the dynamic contest with exogenous prize is locally stable provided that
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the prize is high enough or the aggressivenesses of the players are low enough. In the
next step we extended this to the case where the players have different valuations
of the prize. In this case, a higher prize also yields to more stability. On the other
hand, asymmetries between the players are destabilizing if the asymmetry is severe
enough. Thus, very asymmetric contests will not converge to the Nash equilibrium
(assuming that adjustment speeds are not too low) and should not be observed very
often.
Finally, we considered endogenous prizes. If there are large negative externalities,
e. g. war, the Nash equilibrium will not be stable. The Nash equilibrium in a war is
only stable if the negative impact of the struggle for land is not very severe. Having
said that, a positive externality, e. g. advertising campaigns, leads to higher stability.
Here, the higher the impact of advertising on attracting additional consumers to the
market the larger is the region of stability. Thus, we should observe many contests
with positive externalities.
If we apply this result to innovation contests, we have a desire for productive invest-
ments (high γ). As the innovation contests where investments are very productive
are especially stable, the intended contests are promoted. Unfortunately, this is not
true for rent seeking frameworks with positive externalities, where we desire low
rents to be allocated. Here, our findings show that equilibria with severe external-
ities are supported. Having considered externalities, we can consider the level of
the basic prize in these contests. We see that with positive externalities and small
negative externalities, a lower prize has destabilizing effects. Thus, if we do not want
a repeated rent seeking contest to be stable, we have to lower the possible rent, even
if this rent is influenced by the rent seeker. In the case of war, contesting less land
only has a negative impact on the stability of the equilibrium if the war technology
is not very destructive. Large negative externalities (i. e. destructive technology) are
the only cases where a lower initial prize leads to more stability.
As we have used a special function for endogenizing the contested prize, further
research should focus on generalizing our results with respect to the kind of influ-
ence of the investments. Furthermore, it would be interesting to analyze the case
where the contest investments in one period influence the prize in another -e. g. the
following- period, as can be imagined in the frame of common pool resources like
fishing or pasture.
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