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Abstract

This paper examines the bargaining problem between firms' owners and managers over their
managerial delegation contracts in a duopolistic market with differentiated-products.
Assuming that delegated managers make every managerial decision in the market, we
analyze how the managers' bargaining power affects social welfare and firms' profits for each
case of sequential quantity competition and sequential price competition. We show that the
relative increase in the managers' bargaining power leads to decrease in firms' profits but
improves social welfare in each case, and that this result holds for any case of the degree of
product differentiation. This shows that the existing results obtained for the simultaneous
move case and a single homogeneous product case are robust in the sequential move cases.
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1 Introduction

This paper presents a theoretical analysis of the bargaining over managerial delegation contracts between
owner-shareholders and firms’ managers in a duopolistic market with differentiated-products. The anal-
ysis of strategic delegation contracts can be traced back to the seminal papers by Fershtman (1985),
Fershtman and judd (1987), Sklivas (1987), and Vickers (1985). They independently showed that, in
an oligopolistic market, when a firm hires a manager and delegates managerial decision to him with an
incentive contract defined in terms of the firm’s profit and quantity of sales, the firm often achieves a
higher profit than in the case where the owner of the firm directly operate to maximize the profit of the
firm. Recently, the recent literature on managerial delegation provides the analysis focusing on the bar-
gaining between an owner and a manager of a firm for the purpose of exploring the issue of disclosure of
managerial compensation required by modern corporate governance codes. The pioneering work by van
Witteloostuijn et al. (2007) analyzes the following two-stage delegation-bargaining game in duopolistic
market with a single homogeneous product. In the 1st stage, an owner and a manager in each firm nego-
tiate over a compensation scheme formalized as an incentive contract à la Fershtman, Judd, and Sklivas,
i.e. so-called FJS contract. Then, in the second stage, each firm’s manager simultaneously chooses the
quantity of output. In this model, they obtain that the managers’ bargaining power has a positive affect
on the equilibrium social welfare but leads to decrease in firms’ profits. In the recent paper of Nakamura
(2008), he maintains the assumption of simultaneous moves of firms and extends this model so as to deal
with the case of a differentiated-products market. Then, he shows that the result by van Witteloostuijn et
al. (2007) is robust with respect to the the form of firms’ competition, quantity or price, and also to the
degree of substitution of the products.

The purpose of this paper is to explore a further robustness result with respect to an order of firms’
move. We extend the framework set up by van Witteloostuijn et al. (2007) not only to deal with the
case of differentiated-products but also to consider the case of sequential decision-makings of firms’
managers. For this purpose, we basically work with the model by van Witteloostuijn et al. (2007) and
extend it as follows: (i) introducing the degree of substitution of products as in Nakamura (2008); (ii)
changing the 2nd stage of the delegation game by van Witteloostuijn et al. (2007) from simultaneous
move game into sequential move game. Consequently, our analysis can be regarded as the extension not
only of van Witteloostuijn et al. (2007) but Nakamura (2008). Then, we examine how the managers’
bargaining power has an affect on the equilibrium social welfare for each case of the quantity competition
and the price competition. The result obtained in this paper is that the managers’ bargaining power has
a positive affect on the equilibrium social welfare and negative affect on firms’ profits regardless of
the degree of substitution of the goods and also of the form of competition, quantity or price, in our
sequential move framework. In other words, we show that the results by van Witteloostuijn et al. (2007)
and Nakamura (2008) are still robust when we consider the sequential move case.

The remainder of this paper is organized as follows. In Section 2, we present the basic setting. In
Section 3, we examine the effect of the managers’ bargaining power on social welfare and firms’ profits
for each case of quantity competition and price competition. Section 4 concludes with a few remarks.
The proofs of the propositions are relegated in Appendix.
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2 Model

We examine a managerial delegation in the Stackelberg duopoly with two differentiated goods, one for
each product by a firm i (i = 1, 2). The inverse demand is Pi = A − qi − bq j, for each i = 1, 2 and
j , i, where qi denotes the output of firm i and b ∈ [0, 1] denotes the degree of product differentiation.
Each firm i has the same production technology represented as a linear cost function c(qi) = cqi with
A > c ≥ 0. The profit function of a firm i (= 1, 2) is given as πi = Piqi − cqi.

Each firm is owned by a single private shareholder. Each owner delegates the output decision to a
manager. The firm i’s manager receives the payoff ui defined in terms of an incentive contract wi, à la
Fershtman and Judd (1987) and Sklivas (1987), offered from the owner of the firm:

ui = πi + wiqi = (A − qi − bq j − c + wi)qi, i, j = 1, 2 and j , i. (1)

We assume that the domain of admissible contracts wi are restricted to those generating non-negative
profit πi ≥ 0 for each firm i = 1, 2.

Our delegation model is formulated as the 2-stage game. In the 1st stage, an owner and a manager
in each firm i (= 1, 2) negotiate over the content of the contract wi. We follow van Witteloostuijn et
al. (2007) and assume that they reach an agreement on the contract parameter which maximizes the
(weighted) Nash product:

uβi π
1−β
i , i = 1, 2, (2)

where β ∈ [0, 1) is the parameter which is interpreted as the manager’s bargaining power. Then, in
the 2nd stage, each manager sets the output of the firm to maximize her/his payoff. We examine two
types of sequential competition: one is sequential quantity competition, and the other is sequential price
competition. The case of the Cournot competition competition with homogeneous goods is analyzed
in van Witteloostuijn et al. (2007). For the differentiated goods case, Nakamura (2008) examines the
simultaneous quantity competition and the simultaneous price competition. In both papers, it is shown
that increase in the manager’s bargaining power β leads to decrease in the firm’s profit and increase
in social welfare. In this paper, we examine the robustness of these results for each of the sequential
quantity competition and the sequential price competition. Throughout the paper, we suppose that the
firm 2 is the follower of the sequential competitions.

Our use of the Nash product in the 1st stage of the delegation game should be justified with some elab-
oration. The Nash bargaining solution is widely-used solution concept in the literature on the bargaining-
delegation game partly because it is the only one solution concept that satisfies Nash’s (1950) moderate
conditions and also because it is known that the prescription given by the Nash bargaining solution can be
arbitrarily approximated by the subgame perfect Nash equilibrium in the alternate-offer game in Rubin-
stein (1982) and Binmore et al. (1986) with sufficiently large discount factor δ ∈ [0, 1] of a player. Some
readers may wonder whether the convexity of the payoff possibility set, one of the analytical assumptions
in Nash’s (1950) formulation of the bargaining problem, is ensured in our model. Nevertheless, we need
not be troubled by this. Kaneko (1980) proposes the direct extension of the Nash bargaining solution for
the bargaining problem with compact but not necessarily convex payoff possibility set and shows that
his extension is the only one solution (set-valued function) that satisfies his moderate conditions which
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are similar to those in Nash (1950).1 As discussed by Myerson (1991, p. 374), the effective negotiations
should be those satisfies moderate conditions suggested by an impartial arbitration. From this point of
view, Kaneko’s (1980) axiomatization of the extended Nash solution strongly support our use of the Nash
bargaining solution without any checking the convexity of the payoff possibility set. As will be shown
later, the boundedness of payoff possibility set is ensured in our model.

3 Results

3.1 Sequential quantity competition

First, we examine how managerial power β affects social welfare and profits of the firms for the case of
the sequential quantity competition. We derive the subgame perfect equilibrium (hereafter, SPNE) of the
bargaining-delegation game by the backward induction. From the first-order condition (hereafter, FOC)
of the payoff-maximizaton by the follower, i.e. the manager of the firm 2, we have

∂u2

∂q2
= 0⇔ A − q2 − bq1 − c + w2 = q2 (3a)

⇔ q2(q1,w2) =
1
2

(A − c − bq1 + w2). (3b)

Given (3b), the manager of the firm 1 chooses the output q1 to maximize her/his payoff u1. The FOC is
given as:

∂u1

∂q1
= 0⇔ A − q1 − b

[
(A − c − bq1 + w2)

2

]
− c + w1 =

2 − b2

2
q1. (4)

From (3b) and (4), the equilibrium outputs in the 2nd stage are determined as functions of the contract
parameters (w1,w2): q1(w1,w2) = (A−c)(−2+b)−2w1+bw2

2(−2+b2) (5a)

q2(w1,w2) = (A−c)(−4+2b+b2)+2bw1−(4−b2)w2
4(−2+b2) . (5b)

Next, we derive the equilibrium contracts in the 1st stage. Note that, from the FOCs (3b) and (4), we
have u1 =

(
2−b2

2

)
q2

1 and π1 =
(

2−b2

2

)
q2

1 − w1q1 (6a)

u2 = q2
2 and π2 = q2

2 − w2q2 . (6b)

From (6a) and (6b), we have

π1 =
(

2−b2

2

)
q1(q1 − w1) and π2 = q2(q2 − w2), (7)

and moreover, by (5a) and (5b), we can check that ∂
2π1
∂w2

1
= 1
−2+b2 < 0 and ∂

2π2
∂w2

2
= −16+16b2−3b4

8(−2+b2)2 < 0 for
all b ∈ [0, 1]. Thus, πi is a strictly concave quadratic function of wi with two different real solutions

1In Kaneko (1980), the axiomatic foundation is established for the symmetric version of the extension of the Nash bargaining
solution. Nevertheless, from the proof of his characterization theorem, it can be easily checked that the asymmetric version is
characterized when the symmetricity condition is dropped.
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for the case of πi = 0, which ensures that the admissible domain of wi, denoted by Ωi, is a compact
interval with non-empty interior for each i = 1, 2. Since ui and πi are continuous on Ωi, the payoff
possibility set defined by the pair of attainable payoff to a manager and attainable profit of a firm, i.e. the
pair (ui(Ωi), πi(Ωi)), is well-defined as a compact set of R2. Furthermore, by (6a) and (6b), there exists
(s, t) ∈ (ui(Ωi), πi(Ωi)) such that s > 0 and t > 0. Then, from Kaneko’s (1980) characterization, the use
of the (weighted) Nash product as a solution concept is supported by his moderate conditions.

Using (6a) and (6b), the FOC of the maximization of the Nash product is obtained as follows:

∂

∂w1

(
uβ1 · π

1−β
1

)
= 0⇔ ∂

∂w1

{[(
2−b2

2

)
q2

1

]β
·
[(

2−b2

2

)
q2

1 − w1q1
]1−β}

= 0

⇔
[
−(1 − β)w1 + (2 − b2)q1

]
∂q1
∂w1
− (1 − β)q1 = 0; (8)

∂

∂w2

(
uβ2 · π

1−β
2

)
= 0⇔ ∂

∂w2

[
q2β

2 ·
(
q2

2 − w2q2
)1−β]

= 0

⇔ [−(1 − β)w2 + 2q2
] ∂q2
∂w2
− (1 − β)q2 = 0. (9)

By (8) and (9), the equilibrium contracts (w∗1,w
∗
2) are determined as follows:

w∗1 =
(A−c)(2−b2)β(8−4b(1+β)+2b2(−2+β)+b3(1+β))

16−4b2(4+β2)+b4(3−β+2β2) (10a)

w∗2 =
(A−c)(16β−8bβ(1+β)+4b2(1−3β+β2)+2b3(−1+β+2β2)−b4(1−3β+2β2))

16−4b2(4+β2)+b4(3−β+2β2) . (10b)

Substituting the equilibrium contracts (w∗1,w
∗
2) into (5a) and (5b), we obtain the equilibrium outputs

(q∗1, q
∗
2) as follows:


q∗1 =

(A−c)(1+β)(8−4b(1+β)+2b2(−2+β)+b3(1+β))
16−4b2(4+β2)+b4(3−β+2β2) (11a)

q∗2 =
(A−c)(4−b2)(1+β)(4−b(2+b)+(b−2)bβ)

2(16−4b2(4+β2)+b4(3−β+2β2)) . (11b)

Then, substituting the equilibrium outputs (11a) and (11b) into the firms’ profit functions, we can derive
the equilibrium profits (π∗1, π

∗
2):

π∗1 =
(A−c)2(−2+b2)(−1+β2)(8−4b(1+β)+2b2(β−2)+b3(1+β))2

2(16−4b2(4+β2)+b4(3−β+2β2))2 , (12a)

π∗2 =
(A−c)2(16−16b2+3b4)(β2−1)(4−2b(1+β)+b2(β−1))2

4(16−4b2(4+β2)+b4(3−β+2β2))2 , (12b)

Social welfare in the equilibrium which is, as usual, measured by the sum of consumer surplus 1
2 (q∗1

2 +

2bq∗1q∗2 + q∗2
2) and producer surplus π∗1 + π

∗
2 is obtained as:

S W =
(A−c)2(1+β)

[
−512(−3+β)+512b(−2−β+β2)−128b2(17−11β+5β2+β3)+256b3(5+2β−2β2+β3)+32b4(31−36β+22β2+β3)
−16b5(29+5β−11β2+13β3)+8b6(−21+38β−29β2+4β3)+4b7(13−β−5β2+9β3)−b8(−1+β)2(−7+5β)

]
8(16−4b2(4+β2)+b4(3−β+2β2))2 . (13)

Now, for the equilibrium profits (π∗1, π
∗
2) and social welfare, we obtain the following result.

Proposition 1. For all (b, β) ∈ [0, 1] × [0, 1), ∂π
∗
i
∂β ≤ 0 for each i = 1, 2 (equality holds only when

(b, β) = (0, 0)), and ∂S W
∂β > 0, that is, in the case of the Stackelberg competition, if the managers’

4



bargaining power increases, then profitability of the firms decreases but social welfare increases in any
case of (b, β) ∈ [0, 1] × [0, 1).

Proof. See Appendix. �

From the above proposition, we can conclude that it can be said that the result obtained by van
Witteloostuijn et al. (2007) robustly holds still in the case of the sequential quantity competition for any
case of the degree of substitution of the goods β ∈ [0, 1) excepting β = 0.

3.2 Sequential price competition

Next, we examine the case of the sequential price competition. From the inverse demand functions
Pi = A − qi − bq j for i, j = 1, 2 and j , i, the demand functions are derived as:

qi =
A(b − 1) + Pi − bP j

b2 − 1
, i, j = 1, 2 and j , i. (14)

In what follows, we limit ourselves to the case of b ∈ [0, 1).
In the 2nd stage, the managers choose the prices of their own products to maximize their payoffs in

a sequential order of decision-making. The price set by the manager in the firm 2, the follower, satisfies
the following FOC:

∂u2

∂P2
= 0⇔ (1 − b2)

[
A(b − 1) + P2 − bP1

b2 − 1

]
= P2 − c + w2 (15a)

⇔ P2 =
1
2

(A(1 − b) + bP1 + c − w2) . (15b)

Given that the firm 2 sets the price satisfying (15b), the manager of the firm 1 chooses the price P1 to
maximize her/his payoff:

∂u1

∂P1
= 0⇔

[
2(1 − b2)

2 − b2

] A(b − 1) − P1 − b
[

A(1−b)+bP1+c−w2
2

]
b2 − 1

 = P1 − c + w1 (16a)

⇔ P1 =
(A − c)(2 + b − b2) − (2 − b2)w1 − bw2

2(2 − b2)
. (16b)

Substituting (16b) into (15b), the equilibrium prices in the 2nd stage are obtained as follows: P1(w1,w2) = (A−c)(2+b−b2)−(2−b2)w1−bw2
2(2−b2) (17a)

P2(w1,w2) = (A−c)(4−2b−3b2+b3)+c(8−4b2)+(b3−2b)w1+(b2−4)w2
4(2−b2) . (17b)

From (14), (17a), and (17b), the equilibrium outputs are determined as: q1(w1,w2) = (A−c)(−2+b+b2)−(2−b2)w1+bw2
4(−1+b2) (18a)

q2(w1,w2) = (A−c)(1−b)(4+2b−b2)−(2b−b3)w1+(4−3b2)w2
4(2−3b2+b4) . (18b)

Next, we move to the derivation of the equilibrium contracts. Note that, from the FOCs (15a) and
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(16a), the objectives of the managers and the profits of the firms can be rewritten as follows: u1 =

(
2(1−b2)

2−b2

)
q2

1 and π1 =

(
2(1−b2)

2−b2

)
q2

1 − w1q1 (19a)

u2 = (1 − b2)q2
1 and π1 = (1 − b2)q2

1 − w1q1 . (19b)

By the same argument as in Sec.3.1, the use of the (weighted) Nash product as a solution concept of the
owner-manager negotiation is supported by Kaneko’s (1980) conditions.

Using (19a) and (19b), the FOC of the maximization of the Nash product is obtained as follows:

∂

∂w1

(
uβ1 · π

1−β
1

)
= 0⇔ ∂

∂w1

{[(
2(1−b2)

2−b2

)
q2

1

]β
·
[(

2(1−b2)
2−b2

)
q2

1 − w1q1

]1−β}
= 0

⇔
[
−(1 − β)w1 +

(
4(1−b2)

2−b2

)
q1

]
∂q1
∂w1
− (1 − β)q1 = 0; (20)

∂

∂w2

(
uβ2 · π

1−β
2

)
= 0⇔ ∂

∂w2

{[
(1 − b2)q2

2

]β · [(1 − b2)q2
2 − w2q2

]1−β}
= 0

⇔
[
−(1 − β)w2 + 2(1 − b2)q2

]
∂q2
∂w2
− (1 − β)q2 = 0. (21)

Solving the system of equations (20) and (21), we obtain the equilibrium contracts (w∗1,w
∗
2), which, in

turn, allow us to determine the equilibrium outputs (q∗1, q
∗
2) in terms of the degree of substitution b ∈ [0, 1)

and the managers’ bargaining power β ∈ [0, 1):
w∗1 =

2(A−c)(1−b)β(8−4b(−1+β)−2b2(2+β)+b3(−1+β))
16−4b2(4+β2)+b4(3+β+2β2) (22a)

w∗2 =
(A−c)(1−b)(16β−8b(−1+β)β−4b2(1+3β+β2)+b4(1+3β+2β2)−2b3(1+β−2β2))

16−4b2(4+β2)+b4(3+β+2β2) . (22b)


q∗1 =

(A−c)(b2−2)(1+β)(8−4b(−1+β)−2b2(2+β)+b3(−1+β))
2(1+b)(16−4b2(4+β2)+b4(3+β+2β2)) (23a)

q∗2 =
(A−c)(4−3b2)(1+β)(4+2b(1−β)−b2(1+β))

2(1+b)(16−4b2(4+β2)+b4(3+β+2β2)) . (23b)

We are now ready to examine how the bargaining power β affects the profits and social welfare in
the case where the price competition takes place in the 2nd stage. By the equilibrium outputs (23a) and
(23b), the equilibrium profits (π∗1, π

∗
2) and social welfare S W are determined as:

π∗1 =
(A−c)2(1−b)(−2+b2)(−1+β2)(8−4b(−1+β)−2b2(2+β)+b3(−1+β))2

2(16−4b2(4+β2)+b4(3+β+2β2))2 , (24a)

π∗2 =
(A−c)2(1−b)(4−3b2)2(1+β)2(−4+2b(−1+β)+b2(1+β))2

4(16−4b2(4+β2)+b4(3+β+2β2))2 , (24b)

S W =
(A−c)2(1+β)

[
−512(−3+β)+512b(−1+β)2−128b2(25−7β+β2+β3)+128b3(−7+β)(−1+β)2+32b4(73−12β+4β2+9β3)
−16b5(−1+β)2(−31+9β)−8b6(87+2β+7β2+24β3)+4b7(−1+β)2(−23+11β)+b8(71+17β+17β2+39β3)

]
8(1+b)(16−4b2(4+β2)+b4(3+β+2β2))2 . (25)

The following proposition tells that the result obtained in the case of the sequential quantity compe-
tition still robustly holds.

Proposition 2. For all (b, β) ∈ [0, 1) × [0, 1), ∂π
∗
i
∂β ≤ 0 for each i = 1, 2 (equality holds only when

(b, β) = (0, 0)), and ∂S W
∂β > 0, that is, in the case of the price competition, if the managers’ bargaining
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power increases, then profitability of the firms decreases but social welfare increases in any case of
(b, β) ∈ [0, 1) × [0, 1).

Proof. See Appendix. �

Our Propositions 1 and 2 and the existing results by Nakamura (2008) together conclude that the
result in van Witteloostuijn et al. (2007) is completely robust with respect to the form of competition,
sequential or simultaneous move, and to the degree of substitution of the goods. More precisely, in the
current framework of the managerial delegation in the private duopoly, we always observe that increase
in the managers’ bargaining power leads to the decrease in the firms’ profits but improves social welfare
regardless of the form of competition and of the degree of substitution of the goods. We summarize these
results in Table 1.

Table 1: Affect of managers’ bargaining power on profit and social welfare

Order of firms’ moves
simultaneous sequential

Quantity homogeneous
goods

van Witteloostuijn et al. (2007)
∂πi

∂β
< 0 and

∂S W
∂β
> 0

Proposition 1

competition heterogeneous
goods, b ∈ [0, 1]

Nakamura (2007)
∂πi

∂β
< 0 and

∂S W
∂β
> 0

∂πi

∂β
≤ 0 and

∂S W
∂β
> 0

(equality holds when (b, β) = (0, 0))

Price homogeneous
goods

Nakamura (2007) Proposition 2

competition heterogeneous
goods, b ∈ [0, 1)

∂πi

∂β
< 0 and

∂S W
∂β
> 0

∂πi

∂β
≤ 0 and

∂S W
∂β
> 0

(equality holds when (b, β) = (0, 0))

4 Concluding Remarks

In this paper, we examined how managers’ bargaining power β affects the profits and social welfare in the
private duopoly framework originally set up by van Witteloostuijn et al. (2007). In particular, we extend
their original framework so as to deal with the case of differentiated products. Then, we obtained that the
result by van Witteloostuijn et al. (2007) is still robust with respect to the form of the firms’ competition
in the market stage, quantity competition or price competition, and also to the degree of substitution of
the goods in our sequential move framework. This also shows that the result of Nakamura’s (2008) is
robust with respect to the order of firms move, simultaneous or sequential.

Two interesting extension of the model remain. Our analysis as well as van Witteloostuijn et al.
(2007) and Nakamura (2008) is carried out in the duopoly setting. Once we establish the robustness of
the effect of the managers’ bargaining power on the firms’ profits and social welfare, the natural question
to ask is whether or not this robustness holds in the oligopoly setting with more than two firms. We leave
this issue for future research.
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Appendix

Proof of Proposition 1

Let φ(b, β) = 16 − 4b2(4 + β2) + b4(3 − β + 2β2). Then, the partial derivatives,
∂π∗1
∂β ,

∂π∗2
∂β , and ∂S W

∂β , are
obtained as:

∂π∗1
∂β
= Ξ1(A, b, c) · [φ(β, b)

]−3 ·
 10∑

i=0

φ1,i(b, β)

 , (26)

where Ξ1(A, b, c) = (A − c)2(2 − b2), φ1,0(b, β) = −1024β, φ1,1(b, β) = 512b(−1 + 2β + 3β2), φ1,2(b, β) = −256b2(−2 −
10β + 6β2 + 3β3), φ1,3(b, β) = 128b3(6 − 20β − 21β2 + 6β3 + β4), φ1,4(b, β) = −64b4(11 + 32β − 42β2 − 16β3 + 2β4), φ1,5(b, β) =

−32b5(14−63β−48β2+33β3+4β4), φ1,6(b, β) = 16b6(20+42β−93β2−25β3+9β4), φ1,7(b, β) = 8b7(16−78β−45β2+52β3+3β4),

φ1,8(b, β) = −4b8(14+19β−75β2−16β3+10β4), φ1,9(b, β) = 2b9(−7+33β+15β2−25β3), and φ1,10(b, β) = b10(1+β)2(4−11β+3β2);

∂π∗2
∂β
= Ξ2(A, b, c) · [φ(β, b)

]−3 ·
 8∑

i=0

φ2,i(b, β)

 , (27)

where Ξ2(A, b, c) = 1
2 (A− c)2(−16+ 16b2 − 3b4), φ2,0(b, β) = 256β, φ2,1(b, β) = −128b(−1+ 2β+ 3β2), φ2,2(b, β) = 64b2(−2−

8β + 6β2 + 3β3), φ2,3(b, β) = −32b3(4 − 16β − 15β2 + 6β3 + β4), φ2,4(b, β) = 16b4(8 + 17β − 33β2 − 10β3 + 2β4), φ2,5(b, β) =

8b5(5 − 33β − 15β2 + 25β3 + 2β4), φ2,6(b, β) = −4b6(9 + 14β − 45β2 + 6β4), φ2,7(b, β) = 4b7(−1 + 10β − 10β3 + β4), and

φ2,8(b, β) = b8(β − 1)2(2 + 9β + β2) ;

∂S W
∂β
= Ξs(A, c, β) ·

[
φ(β, b)

]−3 ·
 12∑

i=0

φs,i(β, b)

 , (28)

where Ξs(A, c, β) = 1
4 (A − c)2(β − 1), φs,0(b, β) = −8192, φs,1(b, β) = 12288b(1 + β), φs,2(b, β) = −2048b2(−7 + 9β + 3β2),

φs,3(b, β) = 1024b3(−26−18β+9β2+β3), φs,4(b, β) = −256b4(31−141β−30β2+6β3), φs,5(b, β) = −256b5(−86−27β+63β2+4β3),

φs,6(b, β) = 64b6(15−405β−21β2+37β3, φs,7(b, β) = −64b7(136−18β−153β2+β3), φs,8(b, β) = −16b8(−27−522β+84β2+73β3),

φs,9(b, β) = 16b9(104−63β−150β2 +17β3), φs,10(b, β) = 12b10(−11−98β+41β2 +16β3), φs,11(b, β) = 4b11(−31+33β+51β2 −
13β3), and φs,12(b, β) = b12(11 + 51β − 39β2 − 7β3).

First, we show that ∂π
∗
i
∂β < 0 for all (b, β) ∈ (0, 1] × [0, 1) for each i = 1, 2, and ∂π∗i

∂β = 0 when
(b, β) = (0, 0). The latter is straightforward, and thus, we only prove the former. It is easily checked
that, for all b ∈ (0, 1], Ξ1(A, b, c) > 0 and Ξ2(A, b, c) < 0. In what follows, we show that φ(b, β) > 0,∑10

i=0 φ1,i(b, β) < 0, and
∑8

i=0 φ2,i(b, β) > 0 for all (b, β) ∈ (0, 1] × [0, 1). These functions are quite
complicated, and we compute the values of the functions on (b, β) ∈ (0, 1] × [0, 1). Note that φ(1, 1) =∑10

i=0 φ1,i(1, 1) =
∑8

i=0 φ2,i(1, 1) = 0. Thus, together with this fact, Figures 1 to 8 where the values of these
three functions on the domain (0, 1] × [0, 1) are plotted confirm that φ(b, β) > 0,

∑10
i=0 φ1,i(b, β) < 0, and∑8

i=0 φ2,i(b, β) > 0 for all (b, β) ∈ (0, 1] × [0, 1). Thus, by (26) and (27), we can conclude that ∂π
∗
i
∂β < 0 for

all (b, β) ∈ (0, 1] × [0, 1) for each i = 1, 2.
We next show that ∂S W

∂β > 0 for all (b, β) ∈ [0, 1] × [0, 1). Note that Ξs(A, c, β) < 0 for all β ∈ [0, 1).
Thus, from the above argument, we are enough to show that

∑12
i=0 φs,i(b, β) < 0 for all (b, β) ∈ [0, 1] ×

[0, 1). From the fact that
∑12

i=0 φ
s
i (1, 1) = 0 and Figures 9 and 10, we can check that

∑12
i=0 φs,i(b, β) < 0 for
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all (b, β) ∈ [0, 1] × [0, 1). Hence, by (28), ∂S W
∂β > 0 holds for any (b, β) ∈ [0, 1] × [0, 1).

Proof of Proposition 2

Let φB(b, β) = 16 − 4b2(4 + β2) + b4(3 + β + 2β2), and also Ξ1(b, β), Ξ2(b, β), and Ξs(b, β), be the
same as considered in the proof of Proposition 1, i.e. Ξ1(A, b, c) = (A − c)2(2 − b2), Ξ2(A, b, c) =
1
2 (A − c)2(−16 + 16b2 − 3b4), and Ξs(A, c, β) = 1

4 (A − c)2(β − 1). Then, the partial derivatives,
∂π∗1
∂β ,

∂π∗2
∂β ,

and ∂S W
∂β , are obtained as:

∂π∗1
∂β
=

(
1 − b
1 + b

)
· Ξ1(A, b, c) ·

[
φB(β, b)

]−3 ·
 10∑

i=0

φB
1,i(b, β)

 , (29)

where φB
1,0(b, β) = −1024β, φB

1,1(b, β) = 512b(−1− 2β+ 3β2), φB
1,2(b, β) = −256b2(2− 10β− 6β2 + 3β3), φB

1,3(b, β) = 128b3(6+

20β−21β2−6β3+β4), φB
1,4(b, β) = 64b4(11−32β−42β2+16β3+2β4), φB

1,5(b, β) = −32b5(14+63β−48β2−33β3+4β4), φB
1,6(b, β) =

−16b6(20−42β−93β2+25β3+9β4), φB
1,7(b, β) = 8b7(16+78β−45β2−52β3+3β4), φB

1,8(b, β) = 4b8(14−19β−75β2+16β3+10β4),

φB
1,9(b, β) = 2b9(−7 − 33β + 15β2 + 25β3), and φB

1,10(b, β) = −b10(−1 + β)2(4 + 11β + 3β2);

∂π∗2
∂β
=

(
1 − b
1 + b

)
· Ξ2(A, b, c) ·

[
φB(β, b)

]−3 ·
 8∑

i=0

φB
2,i(b, β)

 , (30)

where φB
2,0(b, β) = 256β, φB

2,1(b, β) = −128b(−1 − 2β + 3β2), φB
2,2(b, β) = 64b2(2 − 8β − 6β2 + 3β3), φB

2,3(b, β) = −32b3(4 +

16β − 15β2 − 6β3 + β4), φB
2,4(b, β) = −16b4(8 − 17β − 33β2 + 10β3 + 2β4), φB

2,5(b, β) = 8b5(5 + 33β − 15β2 − 25β3 + 2β4),

φB
2,6(b, β) = 4b6(9 − 14β − 45β2 + 6β4), φB

2,7(b, β) = 4b7(−1 − 10β + 10β3 + β4), and φB
2,8(b, β) = −b8(β + 1)2(2 − 9β + β2) ;

∂S W
∂β
=

(
1 − b
1 + b

)
· Ξs(A, c, β) ·

[
φB(β, b)

]−3 ·
 12∑

i=0

φB
s,i(β, b)

 , (31)

where φs,0(b, β) = −8192, φs,1(b, β) = 4096b(−1 + 3β), φs,2(b, β) = −2048b2(−11 − 3β + 3β2), φs,3(b, β) = 1024b3(10 −
30β − 3β2 + β3), φs,4(b, β) = 256b4(−93 − 57β + 54β2 + 2β3), φs,5(b, β) = −256b5(36 − 111β − 27β2 + 8β3), φs,6(b, β) =

−64b6(−193−189β+171β2 +17β3, φs,7(b, β) = 64b7(58−192β−81β2 +21β3), φs,8(b, β) = 16b8(−205−270β+234β2 +45β3),

φs,9(b, β) = −48b9(14−53β−32β2+7β3), φs,10(b, β) = b10(404+672β−540β2−168β3), φs,11(b, β) = 4b11(11−51β−39β2+7β3),

and φs,12(b, β) = b12(−17 − 39β + 21β2 + 11β3).

The rest of the proof is similar to that of Proposition 1. Note that 1−b
1+b > 0 for all b ∈ [0, 1). Thus, the

same conclusion as in the proof of Proposition 1 can be obtained by Figures 11 to 20.
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Figure 1: φ(β, b) with b ∈ [0, 1] and β ∈ [0, 1)
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Figure 2: Contours of φ(β, b) with b ∈ [0, 1] and β ∈
[0.95, 1)
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Figure 3:
∑12

i=0 φ
1
i (β, b) with b ∈

[0, 1] and β ∈ [0, 1)
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Figure 4: Contours of∑12
i=0 φ

1
i (β, b) on (b, β) ∈ [0, 0.1]2
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Figure 5: Contours of∑12
i=0 φ

1
i (β, b) on (b, β) ∈

[0.85, 1] × [0, 1)
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Figure 6:
∑12

i=0 φ
2
i (β, b) with b ∈

[0, 1] and β ∈ [0, 1)
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Figure 7: Contours of∑12
i=0 φ

2
i (β, b) on (b, β) ∈ [0, 0.1]2
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Figure 8: Contours of∑12
i=0 φ

2
i (β, b) on (b, β) ∈

[0.85, 1] × [0, 1)
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Figure 9:
∑12

i=0 φ
s
i (β, b) with b ∈ [0, 1] and β ∈ [0, 1)
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Figure 10: Contours of
∑12

i=0 φ
s
i (β, b) with b ∈ [0.75, 1]

and β ∈ [0, 1)
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Figure 11: φB(β, b) with b ∈ [0, 1] and β ∈ [0, 1)
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Figure 12: Contours of φB(β, b) with b ∈ [0.9, 1) and
β ∈ [0.9, 1)
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Figure 13:
∑10

i=0 φ
B
1,i(β, b) with

b ∈ [0, 1] and β ∈ [0, 1)
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Figure 14: Contours of∑10
i=0 φ

B
1,i(β, b) on (b, β) ∈ [0, 0.1]2
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Figure 15: Contours of∑10
i=0 φ

B
1,i(β, b) on (b, β) ∈

[0.85, 1] × [0, 1)

12



0
0.2

0.4
0.6

0.8
1

b
0

0.2

0.4

0.6
0.8
1

Β
0

100

200!Φ2B
0
0.2

0.4
0.6

0.8b

Figure 16:
∑8

i=0 φ
B
2,i(β, b) with

b ∈ [0, 1] and β ∈ [0, 1)
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Figure 17: Contours of∑8
i=0 φ

B
2,i(β, b) on (b, β) ∈ [0, 0.1]2
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Figure 18: Contours of∑8
i=0 φ

B
2,i(β, b) on (b, β) ∈

[0.85, 1] × [0, 1)
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Figure 19:
∑12

i=0 φ
B
s,i(β, b) with b ∈ [0, 1] and β ∈ [0, 1)
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Figure 20: Contours of
∑12

i=0 φ
B
s,i(β, b) with b ∈ [0.75, 1]

and β ∈ [0, 1)
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