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Abstract

Type I (censored regression) and Type II Tobit (sample selection) models are widely used in
the various fields of economics. The Type I Tobit model is a special case of the Type II Tobit
model. However, the dimension of the error terms decreases and the distribution of the error
terms degenerates in the Type I Tobit Model. Therefore, we cannot use the standard
asymptotic theorems for the Type II Tobit Maximum Likelihood Estimator (MLE) when the
sample is obtained from the Type I Tobit model. Results of Monte Carlo experiments show
strange behavior that has never been reported before for the Type II MLE.
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1. Introduction 

Type I (censored regression) and Type II Tobit (sample selection) models are widely 

used in the various fields of economics.  For details of the models, see Amemiya (1985).   

The Type I Tobit model is a special case of the Type II Tobit model.  The former model is 

obtained from the latter with some restrictions to the parameters.  However, the dimension of 

the error terms decreases from two (Type II Tobit model) to one (Type I Tobit model); that is, 

the distribution of the error terms degenerates in the Type I Tobit model. Therefore, the 

standard asymptotic theorems cannot be used with it. In this paper, I use Monte Carlo 

experiments to analyze the behavior of the Type II Tobit Maximum Likelihood Estimator 

(MLE) when the sample is obtained from the Type I Tobit model.  Results of the Monte 

Carlo experiments show strange behavior that has never been reported before for the Type II 

Tobit MLE. 
 

2. Type I and Type II Tobit Models 

The Type I Tobit model is given by 

(2.1) iii uxY += β'* , and 

Yi
*  Yi

* >0, 

Yi = {    ni ,...,2,1= , 

  0 Yi
* ≤ 0 . 

The value of Yi
*  is not observable if it is negative. ix  is a vector of explanatory variables. 

iu  follows the normal distribution with a mean of 0 and a variance of 2σ . 

On the other hand, the Type II Tobit model is given by 

 (2.2) Y x ui i i1 1 1 1
* '= +β , 

 Y x ui i i2 2 2 2
* '= +β ,       and 

  Y i2
*  Y i1 0* > , 

 Y i2 = {     ni ,...,2,1= , 

  0 Y i1 0* ≤ . 
*

1iY  is not observable and only its sign is observable. Y i2
*  is observable if and only if Y i1 0* > . 
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ix1  and ix2  are vectors of explanatory variables. u i1  and u i2  are jointly normal with 

means of 0, variances of 1 and 2
2σ , respectively, and a covariance of σ 12 .  The likelihood 

function is given by 

(2.3)  )}'(1{),,,( 1
0

1
2
221 βρσββ ∏

=

Φ−=
id

ixL  

⋅−−+Φ⋅∏
=

]1/}/)'('[{ 2
22221

1
1 ρσβρβ ii

d
i xYx

i

}/)'{( 2222
1

2 σβφσ ii xY −−  

Suppose that iii xxx == 21  in (2.2). In this case, if 

(2.4)  221 /σββ =  and 221 /σii uu = , ni ,...,2,1= , 

the Type II Tobit model becomes the Type I Tobit model. The second condition of (2.4) gives 

(2.5) 0.1=ρ , 

where ρ  is the correlation coefficient between  u i1  and u i2 .  Therefore, when 

iii xxx == 21 , the Type I Tobit model is a special case of the Type II Tobit model satisfying  

(2.6)  221 /σββ =  and .0.1=ρ  

However, under these conditions, the error terms change from ),( 21 ii uu  to iu .  The 

dimension of the error terms decreases from 2 to 1 and the distribution degenerates. Since the 

likelihood function of the Type II Tobit model is a function of )1/(1 2ρ− , we cannot analyze 

the likelihood function in the neighborhood of 0.1=ρ  by the standard asymptotic theorems.  

Therefore, I have analyzed the MLE by the Monte Carlo experiments in the following section.  

 

3. Monte Carlo Experiment 

    The true model is the Type I Tobit Model, and the data is generated by  

(3.1)  iii uY ++= x1211
*

1 ββ , 

 iii uY ++= x2221
*
2 ββ ,   ni ,...,2,1= ,  and 

 22122111 , ββββ == .   

ix  follows a uniform distribution over (0,2) and iu  follows a standard normal distribution. 

For the values of ijβ , two cases such that i) 0.02111 == ββ  and 0.02212 == ββ , and ii) 

0.12111 −== ββ  and 0.12212 == ββ  are considered. The sample sizes are =n 100, 200, 

400, 800, and 1600.  The number of trials is 1,000 for each case. Since the data used in this 

study is a special case of the Type II Tobit Model, the standard algorithms such as the ones 
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used in LIMDEP and STATA seldom converge. Therefore, the scanning method proposed by 

Nawata (1994 and 1995), Nawata and Nagase (1996) and Nawata and McAleer (2001) is used 

in the estimation. The program is written in the C-language, and all calculations are done 

using double precision.  The maximum value of ρ  is set to be 0.999999 due to the 

accuracy of the calculations.  Note that the program guarantees to calculate the global 

maximum up to ρ  = 0.999999. 

The results of ρ̂ , the estimator of ρ , are given in Table 1.  ρ̂  becomes 0.999999, 

the maximum of ρ , in the majority of trials. Among 1,000 trials, ρ̂  becomes 0.999999 in 

949 and 955 trials when n =100, 903 and 913 trials when n=200, 935 and 923 trials when 

n=400, 948 and 949 trials when n=800, and 912 and 920 trials when n=1600 (the former 

numbers are in the 0.02111 == ββ  and 0.02212 == ββ  case and the latter numbers are in 

the 0.12111 −== ββ  and 0.12212 == ββ case). Figure 1 shows the graph of Llog given by 

(2.3) in the trial where ρ̂  = 0.999999 (n=100, 0.12111 −== ββ  and 0.12212 == ββ ). logL 

is calculated by maximizing the conditional likelihood function for a given value of ρ .  

Since the shape of the likelihood function in the neighborhood of ρ =1.0 is important, the 

horizontal axis is set to be )}1/(1{log)1(log 1010 ρρ −=−− . Although logL increases as ρ  

approaches 1.0, it does not diverge but rather converges at a certain value. 

Although ρ̂  becomes 0.999999 in the majority of trials, the interesting finding is that 

ρ̂  is not 0.999999 in some (5-10%) trials. Let 122 / βσβγ −= .  Then 

(3.2) =
ρd

Ld log
}/)')(1(/){()1( 22

1

2/32 σβργσψλρ iiii
d

i xYxY
i

−−+−− ∑
=

− , 

where 2
2222222 1/}/)')(1('/{),,,( ρσβργσρσγβψ −−−−−= iiiii xYxY  and 

 )(/)()( zzz Φ=φλ . 

Therefore, it is possible to obtain ρ∂∂ /log L =0 at a value 0.1<ρ , and such trials are 

actually observed.  Figure 2 is the graph of LogL in the trial where ρ̂ =0.9374 (n=100,  

0.12111 −== ββ  and 0.12212 == ββ ). In this case, ρ̂  is considerably different from 1.0.  

logL reaches its maximum value, -100.531, at =ρ 0.9374 (value of the horizontal axis 

= )1(log10 ρ−− =1.2037), decreases after that and reaches a local minimum, -103.11, at 

=ρ 0.9966（value of the horizontal axis=2.4684）.  LogL increases for >ρ 0.9966, but the 
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increment rate decreases, and LogL converges to a certain value.   

In other problems where the dimension decreases and the distribution degenerates )1 , we 

always get the true parameter values for some parameters. For example, let us consider the 

principle component analysis when some eigenvalues are 0.  If eigenvalues are 0, the 

dimension of the sample space decreases and eigenvalues calculated from the sample data 

always become 0.  This means that the null hypothesis, that eigenvalues are 0, is rejected 

unless sample eigenvalues are exactly equal to 0. Considering observation errors and other 

factors, this test is meaningless in practice. We can interpret the cointegration methods such as 

those of Johansen (1988 and 1991) as making practically meaningful tests possible by 

introducing I(0) and I(1) processes. Although the ratios of eigenvalues approach 0 as the 

number of observations increases, they are not 0 in finite sample sizes. 

In the Type II Tobit model, we can also consider a test of the Type I Tobit model using the 

null hypothesis given by )2  

(3.3) 22111 /σββ =  and 22212 /σββ = . 

The distributions of 22111 ˆ/ˆˆ σββ −  and 22212 ˆ/ˆˆ σββ −  are given in Table 2. The biases are 

small. For the 0.02111 == ββ  and 0.02212 == ββ  case, the standard deviations are 0.1694 

and 0.09983 when n=100, 0.0530 and 0.0422 when n=200, 0.0239 and 0.0208 when n=400, 

0.0136 and 0.0112 when n=800, and 0.00679 and 0.0061 when n=1600 (the former values are 

standard deviations of 22111 ˆ/ˆˆ σββ −  and the latter values are those of 22212 ˆ/ˆˆ σββ − ).  For 

the 0.12111 −== ββ  and 0.12212 == ββ   case, they are 0.1355 and 0.1090 when n=100, 

0.0752 and 0.0422 when n= 200, 0.0306 and 0.0256 when n=400, 0.0163 and 0.0142 when 

n=800, and 0.0085 and 0.0072 when n=1600. The decreasing rates of the standard deviations 

are much faster than those of the individual estimators.  Although it is not as notable as the 

ρ̂  cases, this fact suggests the possibility of super-consistency; that is 2,1,ˆ/ˆˆ
221 =− jjj σββ  

converges to zero faster than 2/1−n .   

Let 2/1)( jMSE  be the square root of the mean squared error of 2,1,ˆ/ˆˆ
221 =− jjj σββ .  

2/1
2 )(MSE  is approximately proportional to 1−n . Estimating the equation 

(3.4) ij nMSE εαα ++= )log()log( 21  

by the least squares method, we get 2α̂  = -1.0312 (0.1043), -0.9938 (0.0413), -0.9727 
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(0.0452) and -0.9407 (0.0578) for each case (standard errors are in parentheses).  2α̂  is 

close to 1.0 for all cases, and it is suggested that 2,1,ˆ/ˆˆ
221 =− iii σββ  is of order 1−n . For the 

test of 2210 /: σββ =H , Fin and Schmidt (1984) proposed a Lagrange multiplier test, and 

Greene (2000, pp. 915) proposed a test based on the probit and truncated regression models. 

However, the likelihood function of the Type II Tobit model is not considered in these tests, 

and the tests are of order 2/1−n . Considering the fact that the dimension of the error terms 

decreases and the distribution of the error terms degenerates, it may be possible that we can 

perform a super-consistent test where the rate of convergence of the test statistic is faster than 
2/1−n . 

 

4. Conclusion 

In this paper, I compare the Type I and Type II Tobit models.  The former model is a 

special case of the latter model.  However, since the dimension of the error terms decreases 

and the distribution degenerates, the standard asymptotic theorems cannot be used for the 

Type II Tobit MLE when the sample is obtained from the Type I Tobit model.  This paper is 

the first attempt to analyze this problem. The results of Monte Carlo experiments show the 

strange behavior of the MLE.  Although ρ̂  becomes 0.9999999 (the maximum value of the 

calculation) in majority of trials, it becomes other values in 5-10% of the trials.  It is also 

considered that the rate of convergence of 221 ˆ/ˆˆˆ σββγ −=  is 1−n . The asymptotic 

distributions of ρ̂  and γ̂  are not yet known.  It is necessary to find out their asymptotic 

distributions in future studies.  Note that the dimension of the error terms decreases and the 

distribution of the error terms degenerates in multinomial probit and ordered probit models. 

An analysis of multinomial probit and ordered probit models is another subject that should be 

studied in the future. 

 

Notes 

1) There exit several studies of hypothesis testing when a parameter is on the boundary of 

the maintained hypothesis (for details, see Andrews (2001)).  However, problems where 

the dimension of error terms decreases and the distribution degenerates are not considered 
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in these studies. 

2)  ijβ̂  do not converge quickly and they are considered to be ordinal estimators of 

)( 2/1−nOp . 
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Table 1. Distributions of ρ̂   

0.02111 == ββ  and 0.02212 == ββ  

 n=100 n=200 n=400 n=800 n=1600 
Mean 0.993041 0.999508 0.999952 0.999980 0.999994 
Standard Deviation 0.075229 0.004740 0.000243 0.000120 0.000043 
Frequency      
0.8 or less 7 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-0.95 5 1 0 0 0 
0.95-0.99 12 7 0 0 0 
0.99-0.999 25 45 9 6 1 
0.999-0.9999 2 44 55 34 12 
0.9999-0.999998 0 0 1 12 75 
0.999999 949 903 935 948 912 

0.12111 −== ββ  and 0.12212 == ββ  

 n=100 n=200 n=400 n=800 n=1600 
Mean 0.998823 0.998309 0.999922 0.999974 0.999993 
Standard Deviation 0.011143 0.025277 0.000395 0.000167 0.000041 
Frequency      
0.8 or less 1 2 0 0 0 
0.8-0.9 0 1 0 0 0 
0.9-0.95 5 2 0 0 0 
0.95-0.99 20 10 0 0 0 
0.99-0.999 18 41 22 5 0 
0.999-0.9999 1 29 54 36 15 
0.9999-0.999998 0 0 1 10 65 
0.999999 955 915 923 949 920 
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Table 2. Estimates of 2,1,ˆ/ˆˆ
221 =− jjj σββ  

 n Mean Standard Deviation  25% Percentile Median 75% Percentile (MSE)^0.5

0.02111 == ββ  and 0.02212 == ββ  

22111 ˆ/ˆˆ σββ −  

100 -0.04190 0.16944 -0.07771 -0.01899 0.01354 0.17454
200 -0.02335 0.05299 -0.03964 -0.01154 0.00732 0.05790 
400 -0.01102 0.02395 -0.02059 -0.00682 0.00351 0.02637 
800 -0.00830 0.01363 -0.01471 -0.00587 0.00040 0.01596 

1600 -0.00638 0.00680 -0.01092 -0.00556 -0.00112 0.00932 

22212 ˆ/ˆˆ σββ −  

100 0.00049 0.09831 -0.04032 -0.00019 0.03930 0.09831 
200 0.00100 0.04218 -0.01710 0.00072 0.01893 0.04220 
400 -0.00050 0.02077 -0.01118 0.00026 0.01067 0.02077 
800 0.00060 0.01115 -0.00627 0.00053 0.00707 0.01117 

1600 0.00012 0.00610 -0.00400 0.00047 0.00432 0.00610 

0.12111 −== ββ  and 0.12212 == ββ  

22111 ˆ/ˆˆ σββ −  

100 -0.05319 0.13545 -0.09332 -0.02602 0.01632 0.14552 
200 -0.02717 0.07522 -0.04754 -0.01186 0.00897 0.07998 
400 -0.01394 0.03063 -0.02651 -0.00741 0.00457 0.03366 
800 -0.00732 0.01634 -0.01416 -0.00418 0.00264 0.01790 

1600 -0.00624 0.00852 -0.01165 -0.00509 0.00024 0.01056 

22212 ˆ/ˆˆ σββ −  

100 0.00461 0.10898 -0.04258 0.00374 0.04792 0.10907 
200 0.00100 0.04218 -0.01710 0.00072 0.01893 0.04220 
400 0.00106 0.02556 -0.01280 0.00014 0.01323 0.02559 
800 -0.00080 0.01424 -0.00783 -0.00048 0.00668 0.01426 

1600 -0.00004 0.00720 -0.00493 -0.00031 0.00500 0.00720 
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Figure 1.　Values of Log L
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