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Abstract

This paper deals with the analysis of the German nominal GNP quarterly data (1973q1 –
1996q4) using a new approach based on seasonal fractional integration that allows us to
incorporate a structural break that is endogenously determined by the model. The results
show that the break occurs at 1990q2, the time of the German re-unification, and the order of
integration is slightly above 1 before the break, and strictly smaller than 1 (though highly
persistent) after the unification.
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1. Introduction

Modelling seasonality in macroeconomic time series is a matter that still remains
controversial. Deterministic models based on seasonal dummy variables have been
employed for many years. However, in many cases, the seasonal component changes or
evolves over time, and seasonal unit root models have been preferred. Test statistics
developed for testing seasonal unit roots are among others those of Dickey, Hasza and
Fuller (1984), Hylleberg, Engle, Granger and Yoo (1990), Tam and Reimsel (1997), etc.
The seasonal unit root model, however, is merely one very specialized case of a more
general class of model, called seasonal fractional integration, where the number of
seasonal differences required to get stationary I(0) disturbances may not necessarily be an
integer value but a fractional one, (see, e.g., Gil-Alana, 2002). Lildholdt (2002) provides
both theoretical and Monte Carlo evidence that seasonal fractional integration may be
generated by: a) cross-sectional aggregation of seasonal data; b) aggregation of seasonal
duration models, and c) regime-switching if the underlying Markov process possesses
seasonal dependencies.

In this paper we apply a seasonal fractional integration model to the quarterly
nominal GNP data in Germany. Moreover, given the structure of the series and the time
period considered (1975q1 – 1996q4) we also allow for a structural break that is
endogenously determined by the model.

The outline of the article is as follows: In Section 2 we describe the statistical
model and present a simple procedure for estimating the coefficients associated to the
deterministic terms and the fractional differencing parameters at each subsample along
with the time of the break. In Section 3 the procedure is applied to the German GNP data
while Section 4 contains some concluding comments.

2. The statistical model

We suppose that yt is the observed seasonal time series, with a periodicity s = 4, generated
by the model:
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where the �'s and the �'s are the coefficients corresponding respectively to the intercept
and the linear trend; d1 and d2 may be real values, ut is I(0) and Tb is the time of the break
that is supposed to be unknown. Note that the model in equations (1) and (2) can also be
written as:
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The procedure presented here is based on the residuals sum square principle. First
we choose a grid for the values of the fractionally differencing parameters d1 and d2, for
example, dio = 0, 0.01, 0.02, …, 1, i = 1, 2. Then, for a given partition {Tb} and given d1,
d2-values, ),( 21 oo dd , we estimate the �'s and the �'s by minimizing the sum of squared
residuals,1
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Then, the estimated break date, kT̂ , is such that
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where the minimization is taken over all partitions T1, T2, …, Tm, such that Ti - Ti-1 � ��T�.
Then, the regression parameter estimates are the associated least-squares estimates of the
estimated k-partition, i.e. });ˆ({ˆˆ kii T�� �  }),ˆ({ˆˆ kii T�� �  and their corresponding

differencing parameters, }),ˆ({ˆˆ
kii Tdd � for i = 1 and 2.

The model can easily be extended to the case of multiple breaks. Thus, we can
consider the model,
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for j = 1, …, m+1, T0 = 0 and Tm+1 = T. Then, the parameter m is the number of changes.
The break dates (T1, …, Tm) are explicitly treated as unknown and for i = 1, …, m, we
have λi = Ti/T, with λ1 < … < λm < 1. Note that this model is similar to the one proposed
by Bai and Perron (1998) and Boutahar and Jouini (2004) for the case of stationary AR
processes, though we extend it to the case of I(d) models with the singularity or pole in the
spectrum not restricted to the zero frequency.

Following the same lines as in the previous case, for each j-partition, {T1, …Tj},
denoted {Tj}, the associated least-squares estimates of αj, βj and the dj are obtained by
minimizing the sum of squared residuals in the di-differenced models, i.e.,

                                                
1 In case of autocorrelated disturbances the coefficients can be estimated by GLS.
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where )(ˆ),(ˆ jiji TT �� and )T(d̂ j  denote the resulting estimates. Substituting them in the
new objective function and denoting the sum of squared residuals as RSST(T1, …, Tm), the
estimated break dates ( )ˆ...,,ˆ,ˆ 21 mTTT  are obtained by:  )...,,2,1(min

mTTT  ),...,( 1 mT TTRSS ,
where the minimization is again obtained over all partition (T1, …, Tm).2

3. The empirical application

The time series data analysed in this section correspond to the quarterly, seasonally
unadjusted, nominal German Gross National Product, GNP, for the time period 1975q1 -
1996q4, obtained from the Deutsches Institut für Wirtschaftsforschung,
Volkswirtschaftliche Gesamtrechnung. Until 1990q2 the data refer to West Germany only,
and all of Germany is included after the re-unification. The time series data are displayed
in Figure 1.

Figure 1:  Original time series data: Quarterly nominal GNP in Germany

0

200

400

600

800

1000

1975q1 1996q4

1990q3

We observe in this figure a clear seasonal pattern that is changing across time.
Thus, the series seems to be nonstationary, and a structural break seems to occur due to the
unification. Moreover, the inclusion of seasonal dummies produced insignificant
coefficients in practically all cases.

We now present the results of the procedure described in Section 2. We assume
that there is a single break across the sample and consider the cases of white noise, AR(1)
and seasonal AR(1) disturbances. In the latter case, we suppose that ut follows a process of
form: ut = α ut-4 + εt. The results are displayed in Table I.

Assuming that the disturbance term ut is white noise or AR(1), the break date
occurs at 1990q3, which corresponds to the first quarter after the unification. However, if
ut is modelled throughout a seasonal AR process, the break takes place two periods before
(1990q1). Starting with the case of white noise ut, the orders of integration are 1.23 and

                                                
2  Note that the deterministic structure in (1) and (2) can also include seasonal dummies and the procedure
can be carried out exactly in the same lines as the one reported here.
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0.73 respectively for each subsample, and the coefficients associated to the time trends are
statistically significant in the two cases. If we permit an AR(1) structure for ut, the order of
integration is slightly smaller in the first subsample, though still above 1 (d1 = 1.03), while
d2 = 0.85. Finally, if ut is seasonally AR, the structure completely changes, with d1 = 0.06
and d2 = 0.54. The low orders of integration in the latter case are clearly due to the
competition between them and the AR coefficients in describing the seasonal
nonstationarity.3 Note that for the first subsample d1 is very close to 0, though the AR
coefficient is then very close to the unit circle (α1 = 0.908).

Table I: Estimation based on seasonal fractional integration with a linear trend and a
single break

Estimation based on seasonal fractional integration with a linear trend and a single break

First subsample Second subsampleut Tb

d1 α1 β1 AR1 d2 α2 β2 AR2

White
noise

1990q3 1.23 242.63
(65.51)

5.911
(14.04) --- 0.73 156.56

(3.820)
8.383

(14.20) ---

AR (1) 1990q3 1.03 259.27
(43.27)

5.921
(11.31) 0.645 0.85 157.23

(2.254)
8.310
(8.09) 0.426

Seasonal
AR (1)

1990q1 0.06 24.366
(0.30)

7.903
(8.775) 0.908 0.54 423.23

(10.94)
5.711

(12.68) 0.020

t-values in parenthesis.

4. Concluding comments

In this article we have applied a procedure for estimating linear trends and orders of
integration in the context of seasonal fractional integration with a structural break to the
nominal German GNP quarterly data. The procedure is based on the residuals sum square
principle for a grid of values of the fractional differencing parameters and time-breaks.
The method correctly detects the break at 1990q2, the time of the German re-unification,
and finds that the two subsamples are nonstationary (d1, d2 > 0.5) with a higher degree of
persistence before the break. In fact, d1 seems to be above 1 in the first subsample, while
d2 is strictly below 1 (and thus showing mean reversion) after the unification.
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