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Abstract

The scheduling problem faced by a firm (or by a government agency) that is responsible for
providing transportation to tourists who would like to visit a particular location has received
scant theoretical attention in the tourism literature. Therefore, we conduct a probabilistic
analysis of the scheduling problem in this paper. Specifically, we first delineate a generic
model that accounts for the common features of visits to many locations such as fiords, game
parks, lakes, and wildlife reserves. Next, we derive the transportation providing firm’s long
run expected profit per unit time function. Finally, we show that the optimal frequency with
which transportation ought to be provided to tourists is the solution to our firm’s long run
expected profit maximization problem.
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Go to www.unwto.org/aboutwto/eng/aboutwto.htm and see Chao et al. (2004), Mansfield and Winckler (2004), and Melisidou and
Varvaressos (2004) for more details on international tourism and its economic impacts.
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1. Introduction

As the World Tourism Organization (UNWTO), a specialized agency of the United Nations,
celebrates its sixtieth anniversary in 2006, there is no gainsaying the fact that tourism is one of the
biggest growth industries in the world today. As noted by the UNWTO,1 international tourism is the
world’s largest export earner and hence it is a significant factor in the balance of payments of most
countries. In addition, tourism is also one of the world’s most salient generators of employment.
Many new tourism jobs and businesses are created in the non-urban parts of the world’s developing
nations and this provides a positive incentive to rural residents to stay in rural areas and not migrate
to already overcrowded cities. Finally, it should not go unsaid that the intercultural awareness and
personal friendships that are created through tourism can be a potent force in ameliorating
international understanding and in contributing to peace between the various nations of the world.

Tourists from different parts of the world typically place a high premium on visiting naturally
beautiful locations such as fiords, lakes, national parks, and wildlife reserves. Examples of such
locations include the spectacular fiord known as Milford Sound in New Zealand’s South Island, Lake
Geneva bordering the city of Geneva in Switzerland, Grand Canyon National Park in the state of
Arizona in the United States, and Krueger National Park in South Africa. Individuals wishing to tour
these kinds of naturally beautiful locations typically do not arrange their own transport. Instead,
private firms (or government agencies) generally provide the relevant transportation services. The
reader should note that such firms also commonly provide transportation services to individuals
interested in going on city tours, museum tours, canal tours (in Amsterdam), etc. 

Whatever kind of tour one has in mind—lake, museum, national park, etc.—a key decision
problem faced by a firm that is responsible for providing transportation services to tourists is a
scheduling problem. This scheduling problem concerns the frequency with which a particular kind of
transportation service ought to be provided. If this frequency is too high then it is quite likely that the
buses, boats, or airplanes will be operating at less than full capacity and this excess capacity will have
a negative impact on the transport providing firm’s profits. In contrast, if the frequency is too low
then this is likely to lead to long queues, congestion, loss of actual and potential customers and this
negative publicity, as before, will also tend to have a negative impact on the transport providing firm’s
profits. Therefore, as far as the profit maximizing transport providing firm is concerned, it is of
considerable importance to determine the optimal frequency with which transport service ought to
be provided.

With regard to scheduling, Yan and Chen (2002) have developed a mixed integer multiple
commodity network model to assist inter-city bus carriers in Taiwan with timetable and route
maintenance. With an eye on the environmental impacts of fleet vehicle routing, Dessouky et al.
(2003) have analyzed an optimization model and have shown that with only marginal increases in
operating costs and service delays, it is possible to mitigate the environmental impacts of
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transportation substantially. Focusing on busy train stations, Carey and Carville (2003) have
developed an algorithmic approach to what they call the scheduling and the “platforming” of trains.
Miller et al. (2005) have used a random utility framework to study a tour based model of travel mode
choice in which each individual selects the best combination of modes available to execute a tour
subject to automobile availability constraints. 

Focusing specifically on tourism, Kim and Ngo (2001) have attempted to model and forecast
monthly airline passenger flows between three cities in Australia. Their analysis shows that univariate
models generate more accurate forecasts than do multivariate models and that the time series for the
Sydney/Melbourne route has a great impact on the other routes being analyzed. Finally, Nordstrom
(2005) has modeled the demand for international tourism in Sweden and has shown that when
studying this demand, it is important to use a utility function that has a dynamic and a stochastic part
to it.

The studies that we have just discussed in the previous two paragraphs have certainly
advanced our understanding of some aspects of scheduling in general and demand and forecast issues
in the context of tourism. This notwithstanding, to the best of our knowledge, the existing literature
has paid virtually no attention to the problem of theoretically determining the optimal frequency with
which transportation ought to be provided to tourists by a profit maximizing firm. Therefore, we
conduct a probabilistic analysis of this question in this paper. In particular, we first delineate a
generic model that accounts for the common features of visits to many locations such as fiords, game
parks, lakes, and wildlife reserves. Next, we derive a transportation providing firm’s long run
expected profit per unit time function  Finally, we show that the optimal frequency with(LREΠ).
which transportation ought to be provided to tourists is the solution to our firm’s long run expected
profit maximization problem.

The rest of this paper is organized as follows. Section 2.1 describes the renewal-reward
theorem that will form an essential part of our transport providing firm’s  determinationLREΠ
problem. Section 2.2 delineates the probabilistic features of a general model that captures the typical
features of visits to places such as fiords, game parks, lakes, and wildlife reserves. Section 2.3 derives
our transport providing firm’s  from the probabilistic model features described in section 2.2.LREΠ
Section 2.4 solves this transport providing firm’s  maximization problem and, in the process,LREΠ
determines the optimal frequency of transport provision. Section 3 concludes and discusses plausible
extensions of the research described in this paper.

2. The Theoretical Framework
2.1. Preliminaries

The textbook by Ross (2003, pp. 416-425) tells us that a stochastic process  is a{Z(t):t$0}
counting process if  represents the total number of counts that have taken place by time Z(t) t.
Obviously, since  etc. are stochastic, the time between any two counts  and Z(t&1), Z(t), Z(t%1), Z(t) Z(t&1)
is also stochastic. This time between any two counts is called the interarrival time. A counting process
for which the interarrival times have a general cumulative probability distribution function is said to
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See Ross (2003, chapter 5) or Tijms (2003, chapter 1) for textbook accounts of the Poisson process.
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be a renewal process.

Consider a renewal process  with interarrival times  which have a{Z(t):t$0} Xz, z$1,
cumulative probability distribution function  In addition, assume that a monetary reward  isF(@). Rz
earned when the  renewal is completed. Let  the total reward earned by time  be zth R(t), t, Σ

Z(t)
z'1Rz,

and let  and  The renewal-reward theorem—see Ross (2003, p. 417) orE[Rz]'E[R], E[Xz]'E[X].
Tijms (2003, p. 41)—tells us that if  and  are finite, then with probability one,E[R] E[X]

(1)limt64
E[R(t)]

t
'

E[R]
E[X]

.

In words, equation (1) is telling us that if we think of a cycle being completed every time a
renewal occurs, then the long run average reward—the left-hand-side (LHS) of equation (1)—is the
average reward in a cycle or  divided by the average amount of time itE[reward per cycle]'E[R]
takes to complete that cycle or  We now proceed to the probabilisticE[length of cycle]'E[X].
features of a generic model that captures the typical features of visits to places such as fiords, game
parks, lakes, and wildlife reserves.

2.2. A generic model

Consider a profit maximizing private firm that provides transportation to tourists wishing to
visit a particular location. For concreteness, we shall think of this location as a lake but the reader
should note that, without loss of generality, our analysis holds for other locations—such as fiords,
national parks, and wildlife reserves—as well. Our transport providing firm’s boat departs for a tour
of the lake under study every  time periods where  is deterministic. T T

We suppose that visitors wishing to go on a sightseeing tour of the lake arrive in accordance
with a Poisson process with rate 2 Now, it is clear that not every tourist in the vicinity of the lakeλ.
will want to take the boat trip. For a variety of reasons, some tourists may prefer to simply stroll
along the lake shore. To model this feature of the underlying problem, we suppose that a potential
tourist who sees a boat leaving  time periods from now will join the boat with probability t e &δt

where  t0[0,T].

Revenues and costs accrue to our firm from the provision of transport (boat rides) to tourists.
There are various ways to model these revenues and costs but one straightforward way is as follows:
The firm in question incurs a fixed cost of  for every boat round trip. In addition, this firmC>0
collects ticket or marginal revenue of  from each tourist who takes the boat ride. With thisR>0
specification of revenues and costs, our task now is to derive the firm’s long run expected profit per
unit time function or LREΠ.
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The non-homogeneous Poisson process is sometimes also referred to as the non-stationary Poisson process. For textbook accounts
of this process, see Ross (2003, pp. 316-321) or Tijms (2003, pp. 22-24).
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2.3. Long run expected profit

We want to use the renewal-reward theorem (see equation (1)) to undertake the necessary
derivation. However, before we do this, we must first resolve three matters. To this end, we now note
that the renewal stochastic process that we want to work with is the continuous time stochastic
process describing the number of tourists waiting for the departure of a boat. Further, the renewal
epochs or time points for this renewal stochastic process are the epochs or time points at which a boat
departs for a lake trip. 

The second matter to resolve is the stochastic process describing the arrival of tourists who
actually take a boat trip. Note that because all arriving tourists at the lake under study do not
necessarily take a boat trip, even though the arrival process of tourists in general is Poisson, the
arrival process of tourists who actually take a boat trip is not a Poisson process but instead a non-
homogeneous Poisson process with intensity function 3 whereλ(t)

(2)λ(t)'{λe &δ(T&t), t0[0,T)
λ(t&T), t$T

.

Finally, we note for subsequent use that because the arrival of tourists who actually take a
boat trip follows a non-homogeneous Poisson process with intensity function described by equation
(2), we can use Theorem 5.10 in Kulkarni (1995, p. 224) and conclude that the number of tourists
who actually take a boat trip is Poisson distributed with mean 

(3)m

T

0

λ(t)dt'
λ

δ
(1&e &δT).

With equation (3) in place, we can now derive our transport providing firm’s LREΠ.
Specifically, because the renewal epochs of the renewal stochastic process we are working with are
the epochs at which a boat departs for a lake trip, it is clear that the expected length of a cycle or

 Further, to compute the mean profit per cycle note that the mean revenue perE[length of cycle]'T.
cycle equals  Further, the mean cost is simply  Therefore, the average profit perR×(λ/δ)(1&e &δT). C.
cycle or  Now, using the two previous expectations andE[reward per cycle]'R×(λ/δ)(1&e &δT)&C.
the renewal-reward theorem (equation (1)), we can tell that our transport providing firm’s long run
expected profit per unit time function is 

(4)LREΠ'
R×(λ/δ)(1&e &δT)&C

T
.
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Equation (4) conforms well with our intuition regarding the expected impact of changes in
the marginal revenue term  and the cost term  on our firm’s long run expected profit. SpecificallyR C
and as expected, we see that an increase in  raises the firm’s  In contrast, an increase in R LREΠ. C
lowers the firm’s  The two parameters  and  are related to the stochastic arrival processLREΠ. λ δ

of the tourists and hence it is reasonable to suppose that they are not controllable by our transport
providing firm. In contrast, the trip frequency variable or  is the key control variable for our firmT
and hence this firm can certainly maximize its profits from the provision of transport services to
tourists by choosing  optimally. Therefore, we now turn to this long run expected profitT
maximization problem.

2.4. The profit maximization problem

Our firm’s objective function is given by equation (4). Therefore, this firm’s optimization
problem is to solve

(5)max{T}[
R×(λ/δ)(1&e &δT)&C

T
].

The first order necessary condition for an optimum is

(6)e &δT(λRT% λR
δ

)' λR
δ
&C.

Now, to keep the transport providing firm’s maximization problem meaningful, let us suppose
that the right-hand-side (RHS) of equation (6) is positive, i.e.,  Then, we can say that this(λR)/δ>C.
firm’s profits are maximal for the unique value of  say  which satisfies equation (6). PutT, T (,
differently, the optimal frequency with which our firm ought to provide transport service to tourists
is given by  and  is the unique solution to the optimality equation (6). This completes ourT ( T (

discussion of the transport providing firm’s optimization problem. 

3. Conclusions

In this paper, we conducted a probabilistic analysis of the optimal frequency with which
transport ought to be provided by a private firm (or by a government agency) to tourists who would
like to visit a particular location. Specifically, we first delineated a generic model that accounted for
the common features of visits to many locations such as fiords, game parks, lakes, and wildlife
reserves. Next, we derived the transportation providing firm’s long run expected profit per unit time
function. Finally, we demonstrated that the optimal frequency with which transportation ought to be
provided to tourists is the solution to our firm’s long run expected profit maximization problem.

The analysis in this paper can be extended in a number of directions. Here are two suggestions
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for extending the research described in this paper. First, it would be useful to generalize the analysis
in this paper by analyzing a scenario in which tourists arrive at the location of interest such as a lake
in accordance not with a Poisson process but instead with a more general renewal process. Second,
it would be interesting to investigate a model in which the cost per trip incurred by the transport
providing firm is not fixed but variable and a function of the expected number of tourists who actually
make use of the transport service being offered. Studies of scheduling in general and optimal trip
frequency determination in particular that incorporate these features of the problem into the analysis
will provide additional insights into a demand management problem in tourism that has salient
economic implications.
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