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Abstract

The standard Le Chatelier Principle states that the long−run demand for a good (in which by
definition there are fewer restraints on the variables) is more elastic than short−run demand.
The fundamental insight above goes well beyond demand theory, and proofs of this basic
idea have been found in various settings. Nearly all of these have been continuous
optimization problems requiring assumptions on the continuity of the objective function and
on the convexity of the choice set. However, the statement and intuition for the original
principle do not seem to rely on any such `technical' assumptions. Work by Milgrom
Shannon on monotone [ordinal] comparative statics provides an obvious framework to
pursue a broader result in a discrete environment. The present paper therefore formulates and
proves a very general Le Chatelier Principle in the context of lattices. A further
generalization is that we allow the choice set to vary (potentially as a function of the
underlying parameter).

This idea arose in discussions with Kim Border, who provided much helpful advice. I also appreciate comments from Dean
Jamison, Preston McAfee, Chris Shannon, and an associate editor.
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1 Introduction

The Le Chatelier Principle1 is a basic but extremely useful property of equilibria. The

connection to optimization was made by Paul Samuelson in [6] as part of his pioneering work

on comparative statics. The simplest form of the result is that the long-run demand for a

good is more elastic (i.e. price-sensitive) than the short-run demand, though the fundamental

insight — that there is added interaction between variables when fewer constraints are imposed

— holds true in a wide variety of situations. Formally, the standard version of the Le Chatelier

Principle might start with the optimization problem

maximize y = f(x1, ..., xn)−
nX
i=1

αixi

where the Hessian of f is negative definite. Then if we let x∗i,r be the ith coordinate of

argmax y subject to r independent [nested] constraints on x, we have that

∂x∗i,0
∂αi

≤
∂x∗i,1
∂αi

≤ ... ≤
∂x∗i,n−1
∂αi

≤
∂x∗i,n
∂αi

= 0 (1)

for all i = 1, ...n. E.g., this says that the optimal value of an input x1 to a production function

f will vary more with its price α1 when the quantity x2 of another input is allowed to vary

than when x2 is fixed (at its original maximizing level). It also follows that we can consider

it part of the Le Chatelier Principle to conclude that all such changes are negative (i.e. that

demand decreases with price), though this has not generally been pointed out.2

Since the time of Samuelson’s original result, the Le Chatelier Principle has been

generalized in several ways, mostly involving calculus and a continuous choice variable; see
1Originally due to Henri Louis Le Chatelier in 1888 (see [3]). As used in chemical thermodynamics, it says

roughly that if stress is applied to a system in equilibrium, then the system readjusts to a new equilibrium in

which that stress is relieved, if possible.
2Note that if we had taken derivatives with respect to the ‘actual’ coefficient on xi in y, which is −αi, the

inequalities would reverse in sign; this will be useful for comparison below.
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[7] and references therein. The present paper, based on [2] and building on the monotone

methodology developed in [8] and later [5] for discrete choice sets, proves a general version

of the Le Chatelier Principle in lattices.

2 Background

Consider a lattice (X,≤) with meet ∧ and join ∨. We use Veinott’s strong set order ≤s:

for Y,Z ⊆ X, Y ≤s Z if for every y ∈ Y and z ∈ Z we have y ∧ z ∈ Y and y ∨ z ∈ Z. Thus

Y ≤s Y iff Y is a sublattice of X. We will call a function f : T → ℘(X) from a poset T to

the power set of a lattice nondecreasing if it is nondecreasing with respect to the strong set

order. Finally, if X and Y are lattices, then we can form the product lattice X × Y , with

(x, y) ≥ (x0, y0) only when x ≥ x0 and y ≥ y0 in the respective partial orders. In this case we

also have coordinate-wise projection functions ΠX(X × Y ) and ΠY (X × Y ) onto X and Y

respectively.

In order to prove ordinal comparative statics results in the context of optimization

over lattices, [5] introduces the following definitions3. A real-valued function f on a lattice

X is called quasisupermodular (or qsm) if both

f(x) ≥ f(x ∧ x0) =⇒ f(x ∨ x0) ≥ f(x0) and

f(x) > f(x ∧ x0) =⇒ f(x ∨ x0) > f(x0).

If X is a lattice and T is a poset, then f : X × T → R has the single crossing property (scp)

in (x; t) if for every x0 ≥ x and t0 ≥ t

f(x0, t) ≥ f(x, t) =⇒ f(x0, t0) ≥ f(x, t0) and

f(x0, t) > f(x, t) =⇒ f(x0, t0) > f(x, t0).
3These extend the analogous cardinal (as opposed to ordinal) definitions and results in [8].
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Finally, define M(t, S) = argmaxx∈S f(x, t). They are then able to prove

Theorem 1 (Milgrom and Shannon) If X is a lattice with S ⊆ X, T is a poset, f is a real-

valued function on X × T that is qsm in x and scp in (x; t), then M(t, S) is nondecreasing

in t and in S.

In fact, they also prove the converse of this result, so the conditions are tight. The

forward direction, however, is the more relevant here. One immediate corollary is that if S is

a sublattice of X and f satisfies qsm and scp, then the maximizing setM(t, S) is a sublattice

of S for any t. Technically, only if S is a sublattice can the choice set be held fixed to find

that M(t, S) is nondecreasing in t alone.

3 The Le Chatelier Principle

We want to formulate and prove a Le Chatelier Principle for lattices. Our choice variables

xi will be drawn from lattices and our parameters t (analogous to the prices αi before) from

a poset, as above. One extension of the standard Le Chatelier Principle, other than simply

the setting, is that we will allow the choice sets to vary in addition to the parameters. So

let f be a real-valued function on X1 × ... × Xn × T , where each Xi is a lattice and T

is a poset (possibly ‘multidimensional’ itself in the Euclidean sense, of course). Let S =

×n
i=1Si and S0 = ×n

i=1S
0
i be sublattices of ×n

i=1Xi. Define M(t, S) = argmaxx∈S f(x, t)

to be the set of maximizers as before, for t ∈ T , and Mi(t, S) = ΠXi(M(t, S)). Finally,

define M r(t, t0;S, S0) = argmaxx∈Sr f(x, t0), where Sr = Π×ri=1Xi(M(t, S)) × Π×ni=r+1Xi(S
0).

Conceptually, Mr is an in-between maximizing set where we fix the first r components of

x to remain in the argmax set for the original conditions of t and S, whereas the final

n − r components are allowed to vary optimally under the new conditions of t0 and S0. As
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always, Mr
i (t, t

0;S, S0) = ΠXi(M
r(t, t0;S, S0)). From now on, for ease of notation, we drop

the arguments to M r(t, t0;S, S0) and the subscripts to Π (which are always the appropriate

section of ×n
i=1Xi).

Theorem 2 In the setting above, if f is qsm in x and scp in (x; t), then for any t0 ≥ t in T

and S0 ≥s S, we have

Mi(t
0, S0) =M0

i ≥s M1
i ≥s ... ≥s Mn−1

i ≥s Mn
i ≥s Mi(t, S) (2)

for every i = 1, ...n.

Note the similarities to equation 1 in the introduction; the final inequality would be

an equality (this is essentially the comparison to 0 in the standard version) if we leave t fixed

and change only S, or if we consider only the least upper bounds of the maximizing sets. It

may also be worth pointing out that the statement of the theorem allows S0 itself to be a

[nondecreasing] function of the parameter t. For instance, this allows a setting in which not

only are the prices of inputs changing, but so is the set of available inputs.

Proof. The equality at the beginning of equation 2 follows directly from the definition. Now

pick xi ∈ M r−1
i and x0i ∈ Mr

i , with 1 ≤ r ≤ n. We need to prove that xi ∨ x0i ∈ Mr−1
i

and that xi ∧ x0i ∈ Mr
i . From the definitions, there must exist x−i and x0−i such that

x = (xi, x−i) ∈Mr−1 and x0 = (x0i, x
0
−i) ∈Mr. We begin by showing that x ∨ x0 ∈ Sr−1 and

is thus ’eligible’ for Mr−1. Clearly, both (x1, ..., xr−1) and (x01, ..., x
0
r−1) are in Π(M(t, S)).

ButM(t, S) is a sublattice as in Theorem 1 (and therefore so is its projection), and (x∨x0)1 =

x1 ∨ x01 by construction of ×n
i=1Xi, so we get that ((x ∨ x0)1, ..., (x ∨ x0)r−1) ∈ Π(M(t, S))

also. Similarly, (xr+1, ..., xn) and (x0r+1, ..., x
0
n) are in Π(S

0), which is a sublattice, and so
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((x ∨ x0)r+1, ..., (x ∨ x0)n) ∈ Π(S0). Finally, xr ∈ S0r and x0r ∈Mr(t, S) ⊆ Sr, but S0r ≥s Sr so

we know xr ∨ x0r ∈ S0r. Hence, x ∨ x0 ∈ Sr−1 as desired.

We next show that x ∧ x0 ∈ Sr. Just as above, it is easy to see that ((x ∧ x0)1, ..., (x ∧

x0)r−1) ∈ Π(M(t, S)) and that ((x ∧ x0)r+1, ..., (x ∧ x0)n) ∈ Π(S0). Now x0r ∈ Mr(t, S) so ∃y

such that y = (x0r, y−r) ∈M(t, S) ⊆ S. Thus x∧ y ∈ S (using that Si is a sublattice for i < r

and that Si ≤s S0i for i ≥ r) and (x∧ y)r = (x∧x0)r. So either (x∧x0)r ∈Mr(t, S) and we’re

done, or (x ∧ y)r /∈ Mr(t, S) and f(y, t) > f(x ∧ y, t), since y ∈ M(t, S). But in that case,

quasisupermodularity of f implies that f(x ∨ y, t) > f(x, t), and hence f(x ∨ y, t0) > f(x, t0)

by single crossing. By the reasoning in the paragraph above, x ∨ y ∈ Sr−1 (using the

final argument not just for the rth coordinate but for all i ≥ r), which would lead to the

contradictory conclusion that x /∈Mr−1. So it must have been that (x∧ x0)r ∈Mr(t, S) and

x ∧ x0 ∈ Sr as we wished.

It remains to prove that f(x∨ x0, t0) and f(x∧ x0, t0) are sufficiently large. Since x0 ∈Mr

and x ∧ x0 ∈ Sr, f(x0, t0) ≥ f(x ∧ x0, t0) and so by qsm f(x ∨ x0, t0) ≥ f(x, t0). But x ∈Mr−1

and x∨ x0 ∈ Sr−1 , so we must also have x∨ x0 ∈M r−1, and thus xi ∨ x0i = (x∨ x0)i ∈Mr−1
i .

Analogously, x ∈Mr−1 and x ∨ x0 ∈ Sr−1 imply that f(x, t0) ≥ f(x ∨ x0, t0). Then qsm says

f(x0, t0) ≯ f(x∧x0, t0) , i.e. f(x∧x0, t0) ≥ f(x0, t0). Using x0 ∈Mr and x∧x0 ∈ Sr, we see that

x∧x0 ∈Mr and hence xi∧x0i ∈Mr
i . [In fact, it is clear at this point that f(x, t

0) = f(x∨x0, t0)

and f(x0, t0) = f(x ∧ x0, t0).]

From the definition of ≥s, this completes the proof of everything but the last inequality.

Since Sn = M(t, S), Mn ⊆ M(t, S). So pick x ∈ Mn and x0 ∈ M(t, S), a sublattice. Then

x ∧ x0 ∈M(t, S) ⊆ S and f(x0, t) ≥ f(x ∧ x0, t). Now qsm implies that f(x ∨ x0, t) ≥ f(x, t),

and so by single crossing f(x ∨ x0, t0) ≥ f(x, t0). Thus, x ∨ x0 ∈Mn and Mn ≥s M(t, S).

6



Intuitively, what the theorem says is that the maximizing values of x are increasing

in the parameters and choice set, but that they increase more when there are more degrees

of freedom, which is the unifying conceptual notion of a Le Chatelier Principle. Clearly,

Theorem 1 (as stated) follows from Theorem 2. In both cases, this is a verification of the

idea that these results (i.e. various comparative statics in the case of [5]; Le Chatelier in

the present case) do not depend on the standard classical framework, but rather that the

underlying intuition continues to hold true in a more flexible and widely applicable setting.

One previous paper, following [2], discusses the idea of a Le Chatelier-type principle over

lattices. They state an elementary version (Theorem 3 in [4]) as an immediate corollary of

Theorem 1 above. Their statement requires n = 2 & S = S0, and is point-valued (it compares

the largest elements of the maximizing setsMi). The general version (Theorem 2 above) does

not follow from Theorem 1, and is thereby able to dispense with these extra assumptions.4

It is difficult to directly compare this result to the classical Le Chatelier Principle. For

instance, if the Hessian matrix of the production function f (as in the introduction) is negative

definite with non-negative off-diagonal elements, then f is quasisupermodular and we can

apply Theorem 2. However, there are specific examples where a Le Chatelier-type conclusion

obtains despite f not being quasisupermodular; see [7] for further discussion.

The main innovation of the lattice approach is that it applies to non-differentiable objec-

tive functions and discrete choice sets. An additional advantage, although the techniques may

at first be unfamiliar, is that the lattice-theoretic proofs are generally more elementary and

far more intuitive than the standard ones. For instance, Samuelson’s original proof invokes

4For instance, because they consider only point-valued comparisons, they need an order continuity restric-

tion to ensure that the supremum of the maximizing set is itself a maximizer. And with n = 2 only, they have

nothing to say regarding the ‘in-between’ maximizing sets.
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a “well-known theorem on determinants (Jacobi)”, but it is apparently so well-known that

finding a reference to it proved difficult! (see [1])
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