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Abstract

This paper analyzes optimal nonlinear pricing of a congestible network good. In contrast to
the traditional efficiency−on−the−top result in the standard screening model, we show that
the presence of a delay cost borne by users leads to upward distortions in consumption for the
high−demand users.
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1. Introduction

In many networks, consumers�utility decreases with the number of users who are
linked to the same network. Indeed, when these consumers share a �xed amount of
capacity, the increase in the aggregate consumption decreases the utility of users (i.e.
there is a negative externality).1 This congestion externality characterizes, among others,
the delay systems in which all users receive a service at a quality that degrades with
aggregate consumption.2

For this type of systems, the delay can arise from the development of queues, �ow
congestion or crowding. We are interested in this paper in the delay that takes the
form of a waiting time to satisfy the need of the user. This kind of delay concerns the
industries in which the aggregate demand is served at the same time (all customers have
the same service order) such as computer loads, electronic mail systems... The time
that an E-mail arrives at one�s destination and the duration for loading a �le provide
appropriate examples of this delay. In other terms, the delay is considered as the timing
of delivery.3 In this systems, each user bears a delay cost, interpreted as a congestion cost,
that depends on the aggregate consumption and on the amount of the shared capacity.
The textbook congestion pricing which allows an e¢ cient use of the resource shows

that each user should use the system until the marginal bene�t from his usage equals
the marginal cost of production plus the marginal cost of congestion that he imposes on
other users. Scotchmer (1985) examines the implications of this rule to determine the
optimal number of �rms that supply shared facilities having a natural �xed size, such as
golf courses, ski scopes, etc... As for MacKie-Mason and Varian (1995), they consider
resources such as an ftp server, a router, a Web site, etc... and explore the implica-
tions of this textbook pricing for capacity expansion in centrally planned, competitive,
and monopolistic environments. These analyses are considered in a context of complete
information.
Our scope in this paper is to analyze the implications of the textbook congestion

pricing when a monopoly o¤ering a delay system with a single capacity,4 shared by some
users who bear a delay cost, faces asymmetric information on consumers�preferences.5

Comparing the optimal consumption in complete information with the optimal con-
sumption in incomplete information, we show that the standard under-consumption in
incomplete information does not hold anymore.
Generally, in nonlinear pricing, leaving a surplus to consumers is costly to the monopoly.

The latter reduces this rent by inducing users to consume much less than their �rst-best
optimal quantities (see Maskin and Riley,1984). Thus the aggregate consumption is lower
in asymmetric information. This has important implications in the context of congestible

1We use the term aggregate consumption to designate the total use of the network resource.
2We are not interested in this paper in the loss systems which provide an all-or-nothing service at

a constant quality such as electricity and natural gas distribution. For this type of systems see Wilson
(1989).

3We are not interested in the delay that consists in delivery delays due to queues. This concerns the
industries in which demand is backlogged in queues for service such as a service industry in which each
worker serves one customer at a time or the industries of the service sector that rent capacity or servers
to customers... . For this kind of delay see also Wilson (1989).

4We consider a vertically integrated monopoly, that is, we omit the interdependence among congestible
elements in a network.

5Oren et al. (1985) propose a model of nonlinear pricing for both usage and capacity where the
customers� demand is represented by the load duration curve. They show that the capacity charges
induce the buyers to truncate their purchase sets in order to reduce their charge for capacity.

1



network resources. Indeed, when the amount of the capacity is �xed, it implies that the
level of congestion and its marginal cost are greater in complete information. So, a new
phenomenon appears: a feedback-in-demand; the decrease of consumption of the low-
demand consumers leads to a reduction of congestion inciting the high-demand users to
increase their consumptions above their �rst-best quantities. So, the optimal nonlinear
tari¤ leads to upward distortions in the consumption of the high-demand users. The
well-known e¢ ciency-on-the-top result in the standard screening model no more holds
when we consider a congestible network good.6

In section 2, we describe the model. In section 3, we study the properties of the
optimal pricing in symmetric and in asymmetric information in order to analyze the
refereeing between rent and e¢ ciency.

2. The model

A monopolistic �rm produces a congestible network good with a �xed amount of
capacity K > 0. To sell it, it designs a nonlinear pricing for a continuum of better-
informed consumers. Consumers have taste (i.e.: the type) for the good characterized
by t; t 2

�
tL; t

H
�
. The �rm is not able to observe a given consumer�s type, but has prior

beliefs over the distribution summarized by a density function g(:) > 0. The cumulative
distribution function is noted G(:). Let �(t) be the inverse of the hazard rate.
Consumer t 2

�
tL; t

H
�
who consumes x > 0 units of the resource gets a gross surplus

S(t; x) > 0. Let subscript j denote partial derivative with respect to the jth argument.
We make the following standard assumptions. Gross customer�s surplus is an increasing
concave function; S2(:) > 0;S22(:) < 0. Higher taste results in higher surplus for a given
quantity; S1(:) > 0. The gross surplus function is also characterized by the single crossing
property; S12(:) > 0, 8t;8x:
Moreover, if user t consumes x(t) units of the resource, the aggregate consumption is:

X =

Z tH

tL

x(t)g(t)dt (1)

Since the capacity is shared by the consumers, the latter su¤er from congestion and
its level is given by the ratio X

K
.7 This ratio measures the intensity of use of the network

resource. To simplify the analysis, we assume that the users have the same unit cost of
waiting (or the same willingness to pay in order to avoid congestion), so that, they bear
the same delay cost due to congestion. This delay cost is given by the function D(X

K
)

and it is supposed to be common information, increasing and convex.
Like Scotchmer (1985) and MacKie-Mason and Varian (1995) we assume that the

consumers have separable preferences. So, the utility function is:

V (t) = S(t; x(t))� P (x(t))�D
�
X

K

�
where P (x(t)) is the payment associated to the consumption of units. We assume that

each user does not take into account his own contribution to congestion when deciding
6The e¢ ciency-on-the-top is also violated in other microeconomic contexts: when we take into account

the call externality in the nonlinear tari¤ of a two-way telecommunication service market (Hahn 2003)
or when a positive externality depends on the type of the user (Sundararajan 2004).

7See Reitman (1991) for the formulation of congestion functions of di¤erent forms of congestion in
particular for the processor sharing.
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his optimal quantity to consume. So, he consumes a quantity such as:

S2(t; x(t)) = P
0(x(t)) = p(x) (2)

where p(x) is the marginal price which the user must dispense to get an extra unit of
the good.
The monopoly constructs a menu of optional tari¤s

�
x(et); P (x(et))	 which o¤ers con-

sumer et the quantity x(et) at price P (x(et)).
Without loss of generality, we assume that the service supply cost is zero. So, the

problem of the monopoly is to:

max
x(:);P (:)

Z tH

tL

P (x(t))g(t)dt

subject to: (1) and 8t;et 2 t 2 �tL; tH�
PC: V (t) � 0
IC: V (t) � V (t; t) � V (et; t) = S(t; x(et))� P (x(et))�D �X

K

�
PC guarantees the participation of consumer . IC is for truth-telling by the agent.

From the well-known standard arguments (see Guesnerie and La¤ont 1984), the problem
can be reformulated as follows:
PC and IC are satis�ed if V 0(t) = S1(t; x(t)) and V (tL) = 0, so the problem of the

monopoly leads to:

max
x(:)

Z tH

tL

[S(t; x(t))� �(t)S1(t; x(t))] g(t)dt�D
�
X

K

�
subject to x0(t) and (1), where �(t)S1(t; x(t)) is the expected informational rent of

user t.
In order to ensure that an optimal fully separating pricing exists (i.e.: di¤erent types

are served at di¤erent quantities), we make the following assumptions. The �rm�s rev-
enue, S(t; x(t))� �(t)S1(t; x(t)), is strictly concave in x; 8t. The expected marginal rent
�(t)S12(t; x(t)) is non increasing in t, and S211(t; x) � 0;8x; 8t.8For the sake of simplicity,
we assume that K is su¢ ciently high so that all types, even tL, are willing to purchase.

3. The properties of the optimal pricing

Before presenting the optimal selling strategy of the monopoly, let us brie�y remind
the benchmark result of Maskin and Riley (1984) in the case of a non-congestible good.
The optimal selling strategy is such that every type (except for those with the strongest
preference) faces a higher marginal price in a context of incomplete information. So users
consume less than as in the full information setting. Indeed, in the second-best allocation,
the monopoly seeks to reduce informational rent for consumers with strong willingness
to pay.
Now, we present the optimal pricing for a good that presents congestion.

3.1 Optimal pricing
As we will see, the presence of asymmetric information don�t modify the principle of

the textbook congestion pricing, but it has a direct e¤ect on the surplus and an indirect
one on the congestion.

8Standard speci�cations of the function S(.) and g(.) lead to check these assumptions.
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Proposition 1 Optimal pricing for a congestible good is such as:

p(x) = D0
�
X

K

�
1

K
in complete information

p(x) = �(t)S12(t; x) +D
0
�
X

K

�
1

K
in incomplete information

Proof. See appendix A.
As it might be expected, in complete information, optimal pricing implies that the

marginal surplus of each consumer equals the marginal cost of congestion. We obtain
then the textbook congestion pricing, which gives the �rst-best optimal quantity. It tells
us that the consumer uses the resource until the marginal utility from his usage equals
the marginal cost of congestion that he imposes on other users.
In a context of incomplete information, the marginal price is distorted in such a

way that virtual marginal surplus, that is marginal surplus minus expected marginal
informational rent of user, becomes equal to the marginal cost of congestion. The �rm
modi�es its marginal pricing so as to take into account the informational rent that it
must leave to users.
With the presence of the delay cost, the asymmetric information (hereafter AI) has

then a direct e¤ect on the surplus and an indirect one on the congestion. First, the price
depends on the virtual marginal surplus which in�uences the quantity consumed by the
users (direct e¤ect). The individual quantity is thus adjusted according to the �rst-best
quantity, and so is the aggregate consumption. Second, this change of the aggregate
consumption modi�es the level of the congestion and its marginal cost (indirect e¤ect).
Having observed the two e¤ects, it seems interesting to study the properties of the

pricing under symmetric and asymmetric information in order to analyze the distortions
between �rst and second-best allocations. For the rest of the paper, we adopt the following
notations: subscripts i and c denote respectively the optimal values in incomplete and in
complete information.

3.2 Comparison of the equilibrium allocations
Before comparing the equilibrium allocations, let us compare the congestion levels.

Proposition 2 The congestion level is reduced in the incomplete information setting.

Proof. See appendix B.
This proposition shows that the aggregate consumption decreases in the incomplete

information setting. The well-known interpretation of this result is that the seller tends
to reduce consumption in order to limit informational rent. His aggregate supply is then
reduced in the incomplete information setting. But, since the capacity is �xed, the level
of congestion is greater in full information. It implies that the delay cost borne by the
users is higher under symmetric information, and so is the marginal cost of congestion.
Let us note the di¤erence between the marginal costs of congestion by:

�MC =
1

K

�
D0
�
Xc

K

�
�D0

�
Xi

K

��
> 0 (3)

We can present the following proposition.
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Proposition 3 The distortion between the �rst and the second best allocations is ex-
pressed as:

p(xc(t)) T p(xi(t)) if t T t�

with t� 2
�
tL; t

H
�
such that �(t�)S12(t�; x(t�)) = �MC

Proof. For a given t, the use of proposition 1 gives:

p(xc(t)) T p(xi(t)), �(t)S12(t; xi(t)) S �MC > 0

where the last inequality follows from (3). Since �(t)S12(t; xi(t)) is monotonic, t� is
unique and must exist since Xc > Xi.
The presence of congestion implies over-consumption for customers with strong pref-

erences with regard to their consumptions under complete information. It is explained by
the occurrence of a feedback-in-demand. Because the informational rent is costly to the
monopoly, this one tends to reduce the quantity more for low-t consumers (direct e¤ect of
AI). This decrease of the consumption, involving a reduction of the congestion level, in-
cites the high-t consumers to increase their demands above their �rst-best levels (indirect
e¤ect of AI). Hence, if the expected marginal informational rent, i.e.: �(t)S12(t; xi(t)),
is lower than the di¤erence of the marginal costs of congestion �MC, the user gets a
greater marginal gross surplus in AI. Such a user must consequently consume a higher
amount of units and the marginal price must be lower in the asymmetric information
setting.
As the expected marginal rent decreases with the willingness to pay, the highest types

are served at a lower marginal price. On the other hand, the lowest types receive a higher
amount of units in complete information. The type served at the �rst-best level is thus
strictly interior when expected marginal rent exactly o¤sets the di¤erence of the marginal
costs of congestion.

4. Conclusion

We have shown in this paper that the well-known e¢ ciency-on-the-top in the standard
nonlinear pricing models no more holds when we consider a congestible network good.
The presence of a delay cost borne by users leads to a feedback in demand. The high
demand users consume above their �rst-best quantities and the type served at his �rst
best level is strictly interior.
Nevertheless, in our model, it has been assumed that all users have the same unit

cost of waiting. The analysis could be extended till taking into account the di¤erences
among users concerning their unit costs of waiting. A multidimensional asymmetry of
information clearly appears.9 Moreover, the model developed here assumes a given time
during which all users simultaneously consume. More generally delay may depend on
peak utilization or the variance of utilization. There is then another possible extension
of the model.

9Jebsi and Thomas (2004) have determined the optimal pricing for a congestible good when the user
has unit-demand and his unit waiting cost is perfectly correlated to his valuation.
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Appendix A

In order to use standard control theory optimization, let us introduce the following
variable z(t) =

R t
tL
x(s)g(s)ds, so that

z(tL) = 0 ; z(tH) = X (A.1)

and by di¤erentiation:
z0(t) = x(t)g(t) (A.2)

Then, (1) is replaced by (A.1) and (A.2).
Ignoring for instance the constraint x0(t) � 0, we have an optimal control problem

with a scrap value where z(t) is a state variable and x(t) is a control. The Hamiltonian
is:

H(t) = [S(t; x(t))� �(t)S1(t; x(t))] g(t) + �(t)x(t)g(t)
where �(t) is the costate variable associated to the state.
Necessary conditions are (see Seierstadt and Sydsaeter, theorem 3, page 182):

[S2(t; x(t))� �(t)S12(t; x(t))] g(t) + �(t)g(t) = 0 (A.3)

�0(t) = 0 (A.4)

�(tH) = �D0
�
X

K

�
1

K
(A.5)

From (A.4) and (A.5), �(t) = �D0 �X
K

�
1
K
;8t: So (A.3) gives:

S2(t; x(t)) = �(t)S12(t; x(t)) +D
0
�
X

K

�
1

K
(A.6)

From Seierstadt and Sydsaeter, theorem 4, page 182, we check that necessary condi-
tions are su¢ cient because D(:) is convex and H(t) is independent in z(t) and strictly
concave in x(t). Last, by totally di¤erentiating (A.6), we can make sure that the ignored
constraint is veri�ed under assumption of the model.
Solving the complete information problem follows the same arguments except that

V (t) = 0;8t 2
�
tL; t

H
�
. So the expected informational rent is null and (A.6) becomes:

S2(t; x(t)) = D
0
�
X

K

�
1

K

Using (2) completes the proof.

Appendix B

Adopting our convention on subscripts i and c, we check that Xi � Xc is not feasible.
Xi � Xc implies, from the convexity of the disutility, that:

D0
�
Xi

K

�
1

K
� D0

�
Xc

K

�
1

K

Proposition 1 implies that:

p(xi(t))� p(xc(t)) � 0 (B.1)
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since �(t)S12(t; x(t)) � 0.
From (2), p0(x) = P 00(x) = S22(t; x) < 0, so (B.1) implies that:

xc(t) > xi(t)8t if Xi > Xc

or
xc(t) � xi(t)8t (with equality holding at tH) if Xi = Xc

These conditions lead to a contradiction with the initial assumption Xi � Xc. Hence,
we must have Xc > Xi and so, XcK > Xi

K
.
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