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Abstract

The present paper introduces the Bi−parameter Smooth Transition Autoregressive (BSTAR)
model that generalizes the LSTR2 model, see Terasvirta (1998). In contrast to the LSTR2
model, which features the symmetric transition function, the BSTAR model is characterized
by the asymmetric transition function which implies different local dynamics in the
neighborhood of the respective location parameters. An empirical example using the time
series of the annual growth rates of the Italian industrial production index is provided.
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1 Introduction.

Since the seminal articles of Teräsvirta and Anderson (1992) and Teräsvirta (1994), smooth
transition autoregressive (STAR) models have become one of most popular classes of non-linear
models in modern applied economics. The STAR models have been employed in modelling
the dynamics of various types of economic time series, for example industrial production in
Teräsvirta and Anderson (1992), unemployment in Skalin and Teräsvirta (2002), interest rates
in van Dijk and Franses (2000), exchange rates in Taylor, Peel, and Sarno (2001), inter alia.
Also there are a number of surveys that review features of modelling with STAR models such as
Granger and Teräsvirta (1993), Teräsvirta (1998), Potter (1999), and most recently, van Dijk,
Teräsvirta, and Franses (2002).

A typical univariate STAR model1 has the following form

yt = φ′xt + θ′xtFt(γ, c; yt−d) + ut, (1)

where xt = {1, yt−1, ..., yt−p}′ is a vector of the lags of the dependent variable including the
constant term. The vectors of the autoregressive parameters are φ = (φ0, φ1, ..., φp)

′ and θ =
(θ0, θ1, ..., θp)

′ . The error term ut is usually assumed to be the NID random variable with mean
zero and variance σ2. The transition function Ft(γ, c; yt−d) defines regime-specific dynamics
and governs the transition between these regimes, depending on the values of the transition
variable yt−d relative to those of the slope γ and of the location c parameters. The magnitude
of the slope parameter measures smoothness of transition between the regimes while the value
of the threshold parameter indicates the location of the transition. Observe that depending on
model complexity, the slope and location parameters can be either scalar or vector. The delay
parameter d of the transition variable can take values in the range of 1 ≤ d ≤ p or p < d.

Teräsvirta and Anderson (1992) introduce the two types of two-regime STAR models, each
having its own attractive features: logistic and exponential STAR models2. The former model
is based on the first-order logistic transition function

Ft (γ, c; yt−d) =
1

1 + exp (−γ (yt−d − c))
, γ > 0 (2)

and therefore is usually referred to as LSTR1 model. Two different regimes are defined by the
small or large values of the transition variable yt−d relative to the threshold parameter c. Such
models have been widely applied to capture the business cycle asymmetries, e.g. different time
series dynamics during expansions and contractions. Observe that on the one hand when the
slope parameter γ −→ 0 the LSTR1 model becomes a linear model, and on the other hand
when γ −→ ∞ the LSTR1 model converts into the Self-Exciting Threshold Autoregressive
(SETAR) model, popularized in Tong (1983, 1990).

The latter model utilizes the exponential transition function

Ft (γ, c; yt−d) = 1− exp
(
−γ (yt−d − c)2

)
, γ > 0 (3)

1Smooth transition regression (STR) models are not necessary univariate models. The STR models that
include other exogenous variables as well as the vector STR models have been already suggested in the literature,
see e.g. van Dijk et al. (2002).

2Other extensions of the STAR models that involve more than two regimes as well as time varying param-
eters have been suggested in van Dijk and Franses (1999) and Lundbergh, Teräsvirta, and van Dijk (2003),
respectively. In order to save space, we omit discussion of these models.
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and therefore is usually referred to as ESTAR model. The ESTAR model defines different
regimes in terms of small and large absolute deviations of the transition variable values from
the threshold parameter value. Hence, this model has a ‘sandwich’ structure with the outer
regime (defined for large absolute values of the transition variable with respect to the value
of the threshold parameter), that is contrasted with the inner regime (defined by the values
of the transition variable that are rather close to the threshold parameter value). Observe
that the outer regime consists of two phases: lower and upper, defined for the values of the
transition variable that are respectively smaller and larger than the threshold parameter value.
Such models have proved to be particularly useful for modelling exchange rates, see Taylor,
Peel, and Sarno (2001) for an example. The properties of the exponential function suggest that
in both cases when the slope parameter γ −→ ∞ or γ −→ 0, the nonlinear ESTAR model
collapses into a linear model. Hence it does not nest the SETAR model as a special case.

The ESTAR model allows for smooth change in the values of coefficients from (φ+θ) to φ at
yt−d = c and then back to (φ+θ). As noted in Jansen and Teräsvirta (1996), it may be desirable
to allow for possibility of abrupt changes in the values of the coefficients in both directions.
This is achieved using the following second-order logistic transition function (LSTR2)

Ft (γ, c1, c2; yt−d) =
1

1 + exp (−γ (yt−d − c1) (yt−d − c2))
, γ > 0. (4)

The LSTR2 model has been introduced in Jansen and Teräsvirta (1996) and Teräsvirta (1998).
Note that contrary to the ESTAR model, the LSTR2 model has two location parameters c1 and
c2. This fact ensures that for rather large values of the slope parameter, the LSTR2 corresponds
to the SETAR model with inner and outer regimes.

Observe that both ESTAR and LSTR2 models only allow for symmetric transition between
the inner regime and each of the phases of the outer regime. Clearly, this is a restrictive
assumption that can be relaxed. Motivation for relaxing the symmetry assumption comes from
the observation, supported by economic theory, that in various situations the economic agents
adjust their behavior differently in response to positive and negative shocks, see e.g. Cover
(1992) for discussion of the asymmetric effects of positive and negative money-supply shocks
on output, Ball and Mankiw (1994) for discussion of asymmetric price responses to positive and
negative shocks, Huizinga and Schiantarelli (1992) and Andolfatto (1997) for models describing
a cyclical asymmetry in unemployment rate fluctuations, and Jackman and Sutton (1982) for
a model of asymmetric effects of interest rate changes on aggregate consumption, inter alia.

Anderson (1997) made the first attempt to relax the symmetry assumption in STAR models
that define different regimes in terms of small and large absolute deviations of the transition
variable values from the threshold parameter value. Modelling investor response to changes in
the yield spreads between the US Treasury Bills of different maturity, Anderson (1997) suggests
that in the presence of the heterogenous transaction costs, investors adjust their portfolios
gradually depending on the size and, possibly, the sign of deviations of the yield spreads from
the implied equilibrium levels. Such that the investor response is rather weak for the small
values of disequilibrium on the one hand, and it is rather strong for the rather large values
on the other hand. Moreover, the model of Anderson (1997) allows for asymmetric investor
response to situations when the bill of shorter maturity is either over- or under-priced relative
to the bill of longer maturity.

In order to capture this possible asymmetry in the investor response, Anderson (1997)
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Table 1: Classification of transition functions.

Transition function
Symmetric Asymmetric

Collapses as YES ESTAR AESTAR
γ →∞ NO LSTR2 BSTAR

modifies the symmetric ESTAR transition function as follows

Ft (γ, c, δ; yt−d) = 1− exp{−γ [yt−d − c]2 × h (yt−d)} , γ > 0, (5)

ht (c, δ; yt−d) = {0.5 + (1 + exp{−δ [yt−d − c])−1} , δ 6= 0.

The resulting transition function (5) is asymmetric around the location parameter value c,
depending on whether the parameter δ takes a positive or negative value. Hence the model
with the transition function (5) allows for different speeds of transition between the inner regime
and each of the phases of the outer regime. Moreover, the transition function (5) corresponds to
the ESTAR transition function when δ = 0. We refer to the model with the transition function
(5) as the Asymmetric ESTAR model or AESTAR in short.

Observe that the AESTAR model has a similar feature to the ESTAR model, i.e. in both
cases when γ → 0 and γ → ∞, the model becomes a linear model. In this paper, we suggest
a two-regime model with the transition function that has two important features: First, it
allows for asymmetric speed of transition between the inner regime and each of the phases
of the outer regime. Second, for rather large values of the slope parameter, it becomes the
SETAR model with inner and outer regimes. Hence, it extends the LSTR2 model with the
symmetric transition function by allowing for asymmetric speed of transition between each of
the phases of the outer and middle regimes in a similar way to how the AESTAR model of
Anderson (1997) extends the ESTAR model. Similarly to the LSTR2 model, the suggested
model has the transition function with two location parameters, but the transition function
asymmetry is achieved by introducing an additional threshold parameter, such that each of
the two slope parameters determines the transition speed between the inner regime and the
respective phases of the outer regime. Henceforth, the model in question is referred to as the
Bi-parameter Smooth Transition Autoregressive model (BSTAR in short).

The paper proceeds as follows. Section 2 introduces the BSTAR model. Section 3 provides
an empirical example. The final section concludes.

All computations were performed using the object-oriented programming language Ox 3.30
Professional, see Doornik (2001), and the empirical modelling program package PcGive 10.3,
see Hendry and Doornik (2001).
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2 BSTAR model

It was stated earlier that the asymmetric transition function of Anderson (1997) provides an
extension of the symmetric transition function of the ESTAR model. Therefore it has a sim-
ilar inherent problem when the slope parameter tends to infinity: then it is problematic to
distinguish this non-linear model from a linear one.

In this section, the BSTAR model with following transition function is introduced

Ft (γ1, c1, γ2, c2; yt−d) =
exp [−γ1 (yt−d − c1)] + exp [γ2 (yt−d − c2)]

1 + exp [−γ1 (yt−d − c1)] + exp [γ2 (yt−d − c2)]
(6)

γ1 > 0, γ2 > 0, c1 < c2.

This transition function has two threshold parameters c1 and c2, and two slope parameters γ1

and γ2. In the BSTAR model, different values of the slope parameters γ1 and γ2 result in the
different slopes of the transition function at the corresponding threshold parameters c1 and c2.
This allows for an asymmetric speed of transition between the inner and the lower and upper
phases of the outer regime. Note that when the restriction of equality of the slope parameters
is imposed, i.e. γ1 = γ2 = γ, the BSTAR model imposes the symmetric transition between the
outer and inner regimes and thus it replicates the features of the LSTR2 model.

Observe that Ft (γ1, c1, γ2, c2; yt−d) → 1 for yt−d → ±∞. The minimum value of Ft(γ1, c1, γ2,
c2; yt−d) lies in the interval between 0 and 2/3, the upper limit holds for c1 = c2 and γ1 =
γ2. When γ1 → ∞ and γ2 → ∞, Ft (γ1, c1, γ2, c2; yt−d) → 0 for c1 ≤ yt−d ≤ c2 and
Ft (γ1, c1, γ2, c2; yt−d) → 1 otherwise. These features of the BSTAR transition function are
comparable to those of the LSTR2 transition function with the only difference that the mini-
mum value of the latter transition function lies in the interval between 0 and 1/2, see Teräsvirta
(1998) for details.

Notice that the transition function (6) offers a more expository way to capture the asym-
metry in the speed of transition when it is compared to the approach of Anderson (1997) and
embodied in the transition function of the AESTAR model. In the transition function of the
BSTAR model, the values of each slope parameter determine steepness of the transition func-
tion at the corresponding transition locations separately one from each other. In contrast, in
case of the AESTAR model, both the slope and asymmetry parameters, γ and δ, jointly deter-
mine the degree of asymmetry of the AESTAR transition function. This comes from the fact
that there is only one slope parameter γ that determines how steep the corresponding AESTAR
transition function is.

Table 1 provides a classification of the two (i.e. inner and outer) regime STAR models
according to whether they allow for symmetric or asymmetric speeds of transition between the
inner regime and each phase of the outer regime, and whether they collapse to a single spike for
rather large values of the slope coefficient(s). As seen in Table 1, the suggested BSTAR model
fills the appropriate niche in this classification of the STAR models and in so doing, naturally
complements the family of nonlinear STAR models.

Observe that since the BSTAR model possesses the basic features of the other STAR models,
the steps of the modelling cycle such as specification, model estimation, and model evaluation,
suggested in Teräsvirta (1994, 1998), can be easily adapted in order to accommodate the BSTAR
model. Hence given that the modelling cycle has already been discussed extensively in the
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Figure 1: Annual growth rate of IIP of Italy, 1960.1:2000.4, source: Main Economic Indicators

Table 2: Linearity tests

Transition variable
yt−1 yt−2 yt−3 yt−4 yt−5 yt−6 yt−7 yt−8 yt−9 yt−10 yt−11 yt−12

H0: 0.275 0.223 0.065 0.004 0.141 0.030 0.128 0.041 0.015 0.006 0.151 0.194
H01: 0.008 0.020
H02: 0.011 0.031
H03: 0.810 0.371

Results of linearity tests (p−values) are based on the following auxiliary regression: yt =
β′1xt + β′2x̃t · yt−d + β′3x̃t · y2

t−d + β′4x̃t · y3
t−d + ηt. The null hypotheses H0, H01, H02, and

H03 are β2 = β3 = β4 = 0, β4 = 0, β3 = 0|β4 = 0, and β2 = 0|β3 = β4 = 0, respectively, see
Teräsvirta (1994).

literature and in order to save space, we relegate the details to the technical appendix available
upon request.

3 Empirical example

As an illustration of the empirical relevance of the suggested model, the modelling strategy
suggested in Teräsvirta (1994, 1998) is applied to the industrial production index of Italy. The
data are taken from Main Economic Indicators and were adjusted for the effects of the wide-
spread industrial strike in 1969. The seasonally adjusted quarterly data span the period from
1960:1 until 2000:4. The sample size is 164 observations. Following Teräsvirta and Anderson
(1992), we model the annual growth rate of the time series in question, displayed in Figure 1.
Note that in order to avoid having to deal with small numbers, the transformed time series was
multiplied by 100 and it is denoted as yt.

The results of the sequence of the linearity tests of Teräsvirta (1994) are reported in Table
2. As seen, the strongest rejection occurs at the fourth and the tenth lags of the transition
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variable. Furthermore, the linearity test results are rather inconclusive regarding the choice
between a LSTR1 or a BSTAR model. On the one hand, rejection of H01 favors a LSTR1
model, on the other hand, acceptance of H03 after rejecting H02 points at a BSTAR model.
Hence, we estimate both types of models and let the diagnostic tests choose between the two
alternatives. The diagnostic tests for the estimated LSTR1 models (not reported to save space)
report problems with remaining nonlinearity and autocorrelation indicating inadequacy of the
LSTR1 models for the present time series. However, the estimated BSTAR models pass the
diagnostic tests as reported below. Next, we find that the BSTAR models with the delay
parameters d = 4 and d = 10 provided a similar in-sample fit, and hence in order to save space,
we report the estimation results for the BSTAR models with unrestricted slope coefficients
γ1 6= γ2 and with restricted slope coefficients γ1 = γ2 only for the delay parameter d = 4. These
models are presented in equations (7) and (8), respectively. Figure 2 displays the estimated
transition functions for both BSTAR models plotted against the time variable (upper panel)
and the transition variable (lower panel). The diagnostic tests are reported in Table 3.

As expected, the nonlinear models provide better in-sample fit than a linear AR(10) model.
The ratio of residual variances of either nonlinear model to that of the AR(10) model is 0.831.
We also are unable to reject the null hypotheses of no ARCH effects and normality of residuals
for both BSTAR model specifications. The long-run properties of the estimated models imply
that both the unrestricted and the restricted models have a stable stationary point, which is
2.632 for the former and 2.378 for the latter.

Note that despite the similarity in the autoregressive coefficient estimates of the both
BSTAR models, the transition function of the model with unrestrictive slope parameters is
much smoother in the neighborhood of the lower location parameter c1 and it is very similar
to the shape of the transition function of the model with equal slope parameters at the other
location parameter c2. Hence, the local behavior of the model near the location parameter
c1 constitutes the difference between these two specifications. Finally, the diagnostic tests for
autocorrelation, parameter constancy, and remaining nonlinearity suggest that even though the
restricted model displays no autocorrelation in residuals as well as stable parameters, there is
some evidence of remaining nonlinearity. In contrast, we are unable to reject the null of no
autocorrelation, parameter constancy, and no remaining nonlinearity at the 5% significance
level for the unrestricted BSTAR model.

yt = 0.625
(0.341)

+ 0.783
(0.067)

yt−1 + 0.259
(0.078)

yt−2 − 0.565
(0.073)

yt−4 + 0.457
(0.079)

yt−6 − 0.355
(0.077)

yt−8 + 0.183
(0.059)

yt−10 (7)

+
[
−0.315

(0.120)
yt−1 − 0.457

(0.079)
yt−6 + 0.433

(0.145)
yt−7 + 0.560

(0.250)
yt−9 − 0.419

(0.223)
yt−10

]
Ft(γ̂1, ĉ1, γ̂2, ĉ2; yt−4) + êt

Ft(γ̂1, ĉ1, γ̂2, ĉ2; yt−4) =
exp

[
−7.466

(6.562)

(
yt−4 + 4.025

(0.924)

)]
+ exp

[
94.66
(164.7)

(
yt−4 − 11.360

(0.11)

)]

1 + exp
[
−7.466

(6.562)

(
yt−4 + 4.025

(0.924)

)]
+ exp

[
94.66
(164.7)

(
yt−4 − 11.360

(0.11)

)]

Log − Lik = −350.90, T = 150, σ̂2
BSTAR = 6.302, σ̂2

BSTAR/σ̂2
AR(10) = 0.831,

χ2
normality(2) = 1.429[0.489], FARCH(4) (4, 141) = 1.153[0.334]
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(a) Transition function against time: ‘dashed line’ - γ1 6= γ2, ‘solid
line’ - γ1 = γ2
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(b) Transition function against yt−10: ‘◦’ - γ1 6= γ2, ‘×’ - γ1 = γ2

Figure 2: Transition functions of estimated unrestricted (γ1 6= γ2) and restricted (γ1 = γ2)
BSTAR models

yt = 0.502
(0.331)

+ 0.789
(0.067)

yt−1 + 0.258
(0.078)

yt−2 − 0.555
(0.072)

yt−4 + 0.459
(0.077)

yt−6 − 0.345
(0.076)

yt−8 + 0.184
(0.059)

yt−10 (8)

+
[
−0.281

(0.108)
yt−1 − 0.459

(0.077)
yt−6 + 0.422

(0.141)
yt−7 + 0.441

(0.205)
yt−9 − 0.325

(0.197)
yt−10

]
Ft(γ̂1, ĉ1, γ̂2, ĉ2; yt−4) + êt

Ft(γ̂1, ĉ1, γ̂2, ĉ2; yt−4) =
exp

[
−431.2

(1592)

(
yt−4 + 3.231

(0.075)

)]
+ exp

[
431.2
(1592)

(
yt−4 − 11.380

(0.075)

)]

1 + exp
[
−431.2

(1592)

(
yt−4 + 3.231

(0.075)

)]
+ exp

[
431.2
(1592)

(
yt−4 − 11.380

(0.075)

)]

Log − Lik = −350.90, T = 150, σ̂2
BSTAR = 6.302, σ̂2

BSTAR/σ̂2
AR(10) = 0.831,

χ2
normality(2) = 1.308[0.520], FARCH(4) (4, 141) = 1.242[0.296]
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Table 3: Diagnostic tests

Tests for qth order serial correlation
q 1 2 3 4 5 6 7 8 9 10
γ1 6= γ2 0.338 0.617 0.648 0.411 0.413 0.542 0.665 0.108 0.155 0.218
γ1 = γ2 0.542 0.838 0.842 0.278 0.226 0.336 0.473 0.073 0.105 0.139

Tests for parameter constancy
All Linear Nonlinear All Linear Nonlinear

γ1 6= γ2 0.394 0.229 0.468 γ1 = γ2| 0.340 0.289 0.386

Transition Tests for remaining nonlinearity
variable yt−1 yt−2 yt−3 yt−4 yt−5 yt−6 yt−7 yt−8 yt−9 yt−10

γ1 6= γ2 0.225 0.723 0.814 0.547 0.670 0.159 0.531 0.608 0.055 0.213
γ1 = γ2 0.340 0.683 0.765 0.679 0.539 0.160 0.664 0.472 0.029 0.288

Table reports p−values of the diagnostic tests for estimated unrestricted (γ1 6= γ2) and re-
stricted (γ1 = γ2) BSTAR models for the annual growth rates of industrial production of
Italy.

4 Conclusion.

The present paper has introduced a nonlinear model that is related to the STAR class of mod-
els. The so-called BSTAR model, which here is fitted to the growth rate of the Italian Index
of Industrial Production time series, is a generalization of the two regime LSTR2 model, see
Teräsvirta (1998). In contrast to the LSTR2 model, which features the symmetric transition
function, the BSTAR model is characterized by the asymmetric transition function which im-
plies different local dynamics in the neighborhood of the respective location parameters. In the
case when symmetry restriction is imposed, the BSTAR model acts as a close substitute for
the LSTR2 model.
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Granger, C. W. J. and T. Teräsvirta (1993). Modeling Nonlinear Economic Relationships.
Advanced Texts in Econometrics. Oxford University Press.

Hendry, D. F. and J. A. Doornik (2001). GiveWin: An Interface to Empirical Modelling (3rd
ed.). London: Timberlake Consultants Press.

Huizinga, F. and F. Schiantarelli (1992). Dynamics and asymmetric adjustment in insider-
outsider models. The Economic Journal 102, 1451–1466.

Jackman, R. and J. Sutton (1982). Imperfect capital markets and the monetarist black box:
Liquidity constraints, inflation and the asymmetric effects of interest rate policy. The Eco-
nomic Journal 92, 108–128.
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