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Abstract

A bootstrap bias−correction method is applied to statistical inference in the regression model
with autocorrelated errors. It is found that this method substantially reduces small−sample
size distortions relative to alternative methods proposed in the literature.
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1. Introduction 

 
This paper is concerned with statistical inference for the coefficients of regression 
model when the error term is autocorrelated. Past studies have reported size distortion 
where the conventional t-test based on a standard feasible GLS (FGLS) technique 
over-rejects the true null hypothesis in small samples. This size distortion is 
particularly severe, when the data is trended and autocorrelation (AR) of error term is 
high (see Park and Mitchell, 1980; King and Giles, 1984; Veall, 1986; Kwok and 
Veall, 1988; Rayner 1991; and Rilstone, 1993). A brief review of this literature also 
appears in Li and Maddala (1996, Section 3.3). Past studies noted that the problem is 
caused mainly by downward bias in the estimation of the AR coefficient. In response 
to this, Kwok and Veall (1988) used bias-corrected estimators for the AR(1) 
coefficient based on the jackknife and bootstrap methods.  Rayner (1991) conducted a 
bootstrap test procedure where the jackknife is used to estimate the AR(1) coefficient, 
while Rilstone (1993) considered iterated bootstrap confidence intervals. Although 
these authors reported some improvements, serious size distortions still remain 
especially when the error term is highly autocorrelated. 
 
This paper proposes an improved bootstrap procedure when statistical inference is 
conducted for the regression model with AR(1) errors. It is distinct from the past 
studies on the following points. First, bias-correction is conducted in two stages of the 
bootstrap. That is, following Kilian (1998), pseudo-data sets of the bootstrap are 
generated using a bias-corrected estimator for the AR(1) coefficient, and then bias-
correction is again given to the AR(1) coefficient estimate obtained from the pseudo-
data sets. For this purpose, the bias-corrected estimators based on the bootstrap and 
jackknife methods are used. Secondly, the FGSL estimates for regression coefficients 
are re-calculated using the bias-corrected estimate for the AR(1) coefficient, again in 
two stages of the bootstrap. As a result, bias-correction is implemented to estimation 
of the regression coefficients as well as to the AR(1) coefficient. The third point is 
related to the way in which bootstrap inference is carried out. In view of the result 
obtained by van Giersbergen and Kiviet (2002), attention is paid to what they referred 
to as the test statistic approach as opposed to the confidence interval approach. With 
the former, resampling is conducted using the restricted parameter estimators and 
residuals under the null hypothesis. Other hybrid approaches, such as the one adopted 
by Rayner (1991), can show undesirable small sample properties, according to van 
Giersbergen and Kiviet (2002).  
 
Monte Carlo simulations are conducted to compare size and coverage probabilities of 
alternative bias-corrected bootstrap inference based on the test statistic and confidence 
interval approaches. It is found that the bias-corrected bootstrap test based on the test 
statistic approach substantially improves size properties, regardless of whether bias-
correction is conducted using the jackknife or bootstrap. It provides empirical size 
values fairly close to the nominal one for nearly all cases considered. This 
improvement is particularly strong when the data is trended and the error term is 
highly autocorrelated. The next section presents the methods of parameter estimation 
and bias-correction. Section 3 provides the details of the bias-corrected bootstrap 
inference. Section 4 presents Monte Carlo results, and Section 5 concludes the paper.  
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2. Parameter Estimation and Bias-Correction 
 

The simple regression model with an AR(1) error term is considered, which can be 
written as  
 yt = β0 + β1xt + ut,                      t = 1, 2, 3,… n,                                            (1) 
 ut = ρ ut-1 + et,                              |ρ| < 1,                                                        (2) 
where et ~ iid N(0,1) and xt is non-random. For FGLS estimation of equation (1), the 
Cochrane-Orcutt iterative procedure is used with the first observations adjusted based 
on the Prais-Winsten transformation. The FGLS estimators for β0, β1, and ρ are 
denoted as 0β̂ , 1β̂  and ρ̂ , while tê ’s indicate the associated centred residuals from (2).  
 
To correct for the downward bias associated with ρ̂ , the bias-corrected estimators 
based on the bootstrap and jackknife methods are used. The former can be calculated 
in three stages: 
 
(i) Let 5.0**

1 )ˆ1/( ρ−= eu  where e* is a random draw from { }tê . Generate 
**

1
* ˆ ttt euu += −ρ , where et

* is a random draw from { }tê  with replacement. 

(ii) Generate pseudo-data as *
10

* ˆˆ
ttt uxy ++= ββ . Using n

ttt xy 1
* },{ = , calculate the 

bootstrap FGLS estimator *ρ̂  for ρ.  
(iii) Repeat Stages (i) and (ii) B1 times to obtain the bootstrap distribution 

{ } 1

1
* )(ˆ B

ii =ρ .  
 
If | ρ̂ | < 1, the bootstrap bias-corrected estimator for ρ is calculated as  

)ˆ(ˆˆ ρρρ Biasc
B −= ,                                                                                           (3) 

where Bias( ρ̂ ) = *ρ - ρ̂  and *ρ is the sample mean of { } 1

1
* )(ˆ B

ii =ρ . When | c
Bρ̂ |> 1, c

Bρ̂  
is set to 0.99 or –0.99 following the stationarity correction proposed by Kilian (1998).  
It has been found to be highly effective for the bias-corrected bootstrap of AR time 
series (see, for example, Berkowitz and Kilian, 2000). The impact of this adjustment 
is asymptotically negligible, because it effectively shrinks the bias estimate Bias( ρ̂ ).  
No bias-correction is given to ρ̂  when | ρ̂ | ≥ 1, also following Kilian (1998).  
 
As an alternative to bootstrap bias-correction, the half-sample jackknife of Quenoulle 
(1949) is used. It takes the following form: 

2/)ˆˆ(ˆ2ˆ 21 ρρρρ +−=c
J ,                                                                                  (4) 

where 1ρ̂ and 2ρ̂  are the estimators for ρ on each half of the sample. If | c
Jρ̂ | > 1, 

Fisher’s transformation F(ρ) = 0.5 log[(1+ρ)/(1-ρ)] is used so that c
Jρ̂  is appropriately 

bounded, following Kwok and Veall (1988). That is, F( c
Jρ̂ ) can be jackknifed to 

obtain 1 1
ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) 0.5[ ( ) ( )]F F F Fρ ρ ρ ρ= − + , and the bounded estimate c

Jρ̂  can be 

obtained by taking the inverse of ˆ ˆ( )F ρ .  
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Let cρ̂ ∈ { c
Bρ̂ , c

Jρ̂ }. The regression coefficients are re-calculated using cρ̂ , in order 

to obtain the bias-corrected FGLS estimators c
0β̂  and c

1β̂  for β0 and β1. Let se( c
1β̂ ) 

denote the standard error estimator for c
1β̂ , and { }c

tê  the centred residuals calculated 

from (2) using cρ̂ . Based on these, we can obtain Tc = ( c
1β̂ -β)/se( c

1β̂ ), which is a 
bias-corrected version of the conventional t-statistic T = ( 1β̂ -β)/se( 1β̂ ). 
 
 

3. Bias-Corrected Bootstrap 
 
The bias-corrected bootstrap is used to test for H0: β1=β against H1: β1≠β. First, the 
resampling scheme based on the confidence region approach (see van Giersbergen 
and Kiviet; 2002) is presented in three stages: 
 
(i) Let 5.0**

1 )ˆ1/( ceu ρ−=  where e* is a random draw from { }c
tê . Generate 

**
1

* ˆ tt
c

t euu += −ρ , where et
* is a random draw from { }c

tê  with replacement. 

(ii) Generate pseudo-data as *
10

* ˆˆ
tt

cc
t uxy ++= ββ . Using n

ttt xy 1
* },{ = , calculate the 

bootstrap FGLS estimators *
0β̂ , *

1β̂ , and *ρ̂  for β0, β1, and ρ. The bias-corrected 
version of *ρ̂  is obtained using either (3) or (4), and denoted as c*ρ̂ . For bootstrap 
bias-correction, Bias( ρ̂ ) is used as an approximation to Bias( *ρ̂ ) following 
Kilian (1998). Using c*ρ̂ , the bootstrap FGLS estimators for β0 and β1 are re-
calculated and denoted as c*

0β̂  and c*
1β̂ . Let se( c*

1β̂ ) denote the bootstrap 

counterpart of se( c
1β̂ ). 

(iii) Repeat Stages (i) and (ii) B2 times to obtain the bootstrap distribution 
{ } 2

1
*
11

*
1 ),ˆ(/)ˆ)(ˆ(

B

i
ccc

i iseiz =−= βββ .  
 
From the above bootstrap distribution, 100(1-2α)% bias-corrected bootstrap 
confidence interval based on the percentile-t method  (see Efron and Tibshirani, 1993) 
can be constructed as CI = [ )ˆ(ˆ),ˆ(ˆ

11111
cccc sezsez ββββ αα −− − ], where zτ is the τth 

percentiles of { } 2
1

B
iiz = . The decision rule is to reject H0 at the 2α level of significance if 

β ∉ CI.  
 
The resampling scheme based on the test statistic approach (van Giersbergen and 
Kiviet; 2002) is similar, but somewhat different from the confidence region approach. 
In addition to the unrestricted estimation and bias-correction given in Section 2, the 
restricted estimation under H0 and the associated bias-correction should be conducted. 
Let r

0β̂ , ββ =r
1

ˆ  and rρ̂ denote the restricted FGLS estimators for β0, β1, and ρ under 

H0. Their bias-corrected versions are denoted as rc
0β̂ , ββ =rc

1̂ , and rcρ̂ , while { }rc
tê  is 

the restricted version of { }c
tê . Note that these bootstrap or jackknife bias-corrections 

are conducted following (3) or (4), but based on the restricted regression. In Stage (i), 
u*’s are generated using rcρ̂  and { }rc

tê  instead of cρ̂ and { }c
tê . In Stage (ii), the pseudo 

data set is generated as *
0

* ˆ
tt

rc
t uxy ++= ββ . Again, in the case of bootstrap bias-
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correction, Bias( ρ̂ ) is used as an approximation to Bias( *ρ̂ ). In Stage (iii), the 

bootstrap distribution of interest is{ } 2

1
*
1

*
1 ),ˆ(/))(ˆ(

B

i
cc

i iseim =−= βββ . The decision rule 
is to reject H0 at the 2α level of significance, if Tc ∉ [mα, m1-α] where mτ is the τth 
percentiles of { } 2

1
B
iim = . 

 
4. Monte Carlo Results 

 
Monte Carlo simulations are conducted to compare size properties associated with 
CIB, CIJ, TcB, TcJ and T. CIB and CIJ are CI’s calculated using c

Bρ̂  and c
Jρ̂  

respectively; while TcB and TcJ are the tests based on Tc using c
Bρ̂  and c

Jρ̂ . The 
experimental design loosely follows that of Rayner (1991). The sample sizes n 
simulated are 20, 60 and 100, with ρ∈{0, 0.3, 0.6, 0.9, 0.95} and β0 =β1 =β =1. The 
number of Monte Carlo trials is set to 1000; and the numbers of bootstrap replications 
B1 and B2 are set to 500 and 2000 respectively. Note that xt is fixed over Monte Carlo 
trials. The levels of significance 2α considered are 0.05 and 0.10. However, only the 
results associated with the former are reported, because those associated with the 
latter are found to be qualitatively similar.  
 
The simulation results are presented in Table 1. We first consider two xt designs 
simulated by Rayner (1991), which are time trend t and GNP data of Maddala and 
Rao (1973). As seen in previous studies, the conventional test T fails dramatically, 
showing grossly inflated size values as the value of ρ increases. This is evident for 
both xt designs. CIB and CIJ show much better size properties than T, but they suffer 
from serious size distortions when the value of ρ is high and the sample size is small. 
TcB shows desirable size properties except when n = 20 and ρ is high. On the other 
hand, TcJ performs well when n = 20 for nearly all ρ values. But its size values tend to 
be lower than 5% when the sample size is larger.  
 
Two additional xt designs, labelled DGP1 and DGP2, are simulated, whose details are 
given at the bottom of Table 1. The DGP1 is a stationary AR(1) time series with no 
linear trend, and the DGP2 is an AR(1) time series with linear trend. For DGP1, as 
might be expected, all CI’s and T’s show desirable size properties for all n and ρ, 
except for the conventional test T when n = 20. For DGP2, CIB and CIJ show inflated 
size values when the value of ρ is high and the sample size is small. In contrast, both 
TcB and TcJ show highly desirable size properties. Note that TcB tends to over-estimate 
5% slightly, especially when the sample size is small and the value of ρ is high; while 
TcJ tends to under-estimate 5% slightly. As expected, the conventional test T shows 
grossly inflated size values for the DGP2. 
 
As a final note, the Hildreth-Lu grid search method was considered as an alternative 
method of FGLS estimation to the Cochrane-Orcutt. However, the size properties of 
alternative bias-corrected bootstrap tests are found to be insensitive to the choice of 
estimation method, and the details are not reported here.  
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5. Concluding Remarks 
 
This paper finds that the bias-corrected bootstrap substantially improves size 
distortions of the statistical test in the regression model with autocorrelated errors. 
The bias-corrected bootstrap based on the test statistic approach is found to provide 
superior size properties to that based on the confidence region approach, especially 
when the sample size is small. With the test statistic approach, the bias-corrected 
bootstrap provides empirical size values fairly close to the nominal one even when the 
value of the AR coefficient is high. The extent of improvement is much higher than 
those reported by past studies such as Rayner (1991) and Rilstone (1993). Both the 
bootstrap and jackknife are found to be effective for bias-correction, but the results 
suggest that the bootstrap be preferred as a means of bias-correction when the sample 
size is more than moderately large.  
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Table 1. Percentage of rejection of the null hypothesis (The level of significance 2α = 0.05) 
xt ρ n=20 n=60 n=100 

  CIJ CIB TcB TcJ T CIJ CIB TcB TcJ T CIJ CIB TcB TcJ T 
t 0 7.2 4.9 5.7 6.3 11.3 3.6 5.2 4.2 3.3 5.2 5.8 3.3 5.3 5.7 6.5 
 0.3 7.5 6.1 6.0 4.7 14.7 3.9 5.2 5.0 3.4 6.3 5.5 3.6 5.4 5.4 7.2 
 0.6 8.4 7.9 7.0 2.0 20.8 4.3 4.8 5.1 3.1 9.3 5.2 3.9 5.0 4.7 8.6 
 0.9 11.7 14.1 7.1 4.2 38.2 6.9 6.7 5.6 2.1 25.9 6.5 5.9 6.1 3.0 17.2 
 0.95 12.4 15.1 9.3 4.4 44.8 9.6 9.2 6.9 3.1 35.7 7.7 8.0 6.3 3.0 25.5 

GNP 0 6.0 5.0 5.6 5.1 11.3 3.7 5.1 4.5 3.6 5.4 ⎯ ⎯ ⎯ ⎯ ⎯ 
 0.3 6.2 5.6 5.5 4.4 15.1 3.9 4.7 5.3 3.5 7.0 ⎯ ⎯ ⎯ ⎯ ⎯ 
 0.6 7.6 8.5 6.5 3.6 21.4 4.7 4.7 5.8 3.8 10.3 ⎯ ⎯ ⎯ ⎯ ⎯ 
 0.9 9.1 12.5 8.6 4.4 33.9 5.8 6.1 6.2 2.8 23.2 ⎯ ⎯ ⎯ ⎯ ⎯ 
 0.95 12.0 13.3 10.0 4.8 39.4 9.1 7.3 5.7 3.7 29.1 ⎯ ⎯ ⎯ ⎯ ⎯ 

DGP1 0 5.8 5.7 5.6 6.4 10.5 4.7 5.4 5.2 4.4 6.9 6.0 4.9 4.8 5.5 6.3 
 0.3 6.8 6.5 6.4 6.0 13.6 5.1 4.8 5.1 4.2 6.2 5.4 5.1 4.6 4.8 7.1 
 0.6 5.6 6.9 5.4 4.8 17.5 4.5 5.7 5.1 4.3 6.6 5.3 4.9 4.7 5.5 6.6 
 0.9 4.2 5.5 5.2 3.7 13.6 4.5 4.5 5.2 5.3 5.4 5.2 5.2 4.5 5.9 6.2 
 0.95 4.7 4.6 5.2 3.2 13.2 4.6 4.4 5.2 4.9 5.2 5.4 5.0 4.6 5.9 6.0 

DGP2 0 6.6 4.2 5.1 5.1 11.6 3.7 4.9 4.3 4.2 5.3 5.3 3.7 5.0 6.4 6.0 
 0.3 7.2 5.4 6.1 3.6 15.4 3.9 4.8 4.4 3.6 6.4 5.3 3.6 5.0 5.6 7.2 
 0.6 7.9 7.1 7.5 3.3 21.5 4.2 4.9 5.2 3.7 10.6 4.9 3.7 4.8 4.9 8.0 
 0.9 12.7 12.4 7.9 5.6 31.3 6.5 6.1 6.7 4.5 26.1 5.3 5.4 5.3 3.1 16.7 
 0.95 14.5 13.6 7.9 5.4 31.9 9.6 6.9 5.9 4.9 33.1 6.9 6.2 5.9 3.9 21.9 

CIJ : bootstrap confidence interval, bias-correction based on the jackknife; CIB : bootstrap confidence interval, bias-correction based on the 
bootstrap; TcB: test based on the bias-corrected bootstrap, bootstrap bias-correction; TcJ: test based on the bias-corrected bootstrap, bias-correction 
based on the jackknife; T: test based on FGLS estimation; DGP1: xt = 1 + 0.5 xt-1 + vt, vt ~iidN(0,1), DGP2: xt = 1 +0.02t + 0.95 xt-1 + vt, vt 
~iidN(0,1). 
No results are reported for GNP when n = 100, because the sample size of the GNP series given in Maddala and Rao (1973) is less than 100.  
 


