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Abstract

Using simulations, the paper shows that there is a trade−off in using CLS and 2SLS on the
one hand and ML on the other when estimating the parameters of a bivariate threshold vector
equilibrium correction model with regime−specific cointegration vectors.
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1 Introduction

Consider a bivariate I(1) time series Y t = (Y1,t, Y2,t)′ with a 2 × 1 cointegration vector β.
Further, let Zt = β′Y t be a stationary, or I(0), time series. Then a two-regime threshold vector
equilibrium correction model (TVECM) of order p can be written as

∆Y t =
2∑

j=1

{
a

(j)
0 + α(j)β′Y t−1 +

p−1∑

i=1

Φ(j)
i ∆Y t−i + u

(j)
t

}
I(Zt−d ∈ Rj), (1)

where ∆ = 1 − L with L the lag operator, I(·) is the indicator function, Rj = (r(j−1), r(j)]
with −∞ = r(0) < r(1) < r(2) = ∞. Zt−d is the transition variable with, fixed known, delay
d ∈ {1, 2, . . .}; r(j) are the thresholds; a

(j)
0 = (a(j)

1,0, a
(j)
2,0)

′ and α(j) = (α(j)
1 , α

(j)
2 )′ are 2 × 1

vectors; Φ(j)
i are matrices of coefficients. The sequences {u(j)

t = (u(j)
1,t , u

(j)
2,t )

′} (j = 1, 2) are
bivariate iid random sequences with mean 0 and covariance matrices Σ(j) that are independent
across different regimes.

Model (1) assumes that there is one common cointegrating vector β in all regimes. This
assumption is often unnecessarily restrictive. De Gooijer and Vidiella-i-Anguera (2004) proposed
an alternative representation that allows the equilibrium error correction process to be different
in each regime, i.e. β in (1) is replaced by a 2×1 vector γ(j) j = 1, 2). The resulting two-regime
model is called level TVECM (LTVECM). Parameter estimation in (L)TVECMs can be done by
using recursive conditional least squares (OLS), by conditional two-stage least squares (2SLS),
or by maximum likelihood (ML). The objective of the paper is to address the question how best
to proceed in estimating the cointegration parameters of (L)TVECMs through one of the three
estimation methods mentioned above. As such the present study extends Gonzalo’s (1994) work
for linear VECMs to the case of vector threshold specifications.

2 Estimation

Consider an LTVECM with d known. Assume for identification purpose that one element in both
γ(j) and β are set at unity. Then, given T observations, the parameters (β,γ(1), γ(2),Σ(1),Σ(2), r)
can be estimated in two steps. First, for given r(1) ≡ r and β, model (1) reduces to two separate
linear regressions from which the OLS estimates of γ(j) and Σ(j) are readily available. The
estimates are

γ̂(j)(r,β) =
(
Ŷ
′
2,jŶ 2,j

)−1
Ŷ
′
2,jŶ 1,j , (2)

Σ̂
(j)

(r,β) = (Ŷ 1,j − Ŷ 2,jγ̂
(j)(r,β))(Ŷ 1,j − Ŷ 2,jγ̂

(j)(r,β))′/(Tj − k) (j = 1, 2), (3)

where Ŷ i,1 corresponds to Y i,t−1I(β′Y t−1 6 r) and Ŷ i,2 corresponds to Y i,t−1I(β′Y t−1 > r)
(i = 1, 2), respectively, Tj is the number of observations in regime j, and k is the dimension of
Ŷ 2,j , satisfying k < Tj , for j = 1, 2. Denote the sum of squares of residuals by

S(r,β) = S1(r,β) + S2(r,β)

where Sj(r,β) denotes the trace of (Tj − k)Σ̂
(j)

(r,β). Next, in step 2, form a grid search over
(r,β). Find (rOLS, βOLS) as the estimates of (r,β) on the grid which yield the lowest value of
S(r,β), that is

(rOLS, βOLS) = arg min
r,β

S(r,β).
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The resulting least squares estimates for the parameters are

γ
(j)
OLS = γ̂(j)(rOLS, βOLS) and Σ(j)

OLS = Σ̂
(j)

(rOLS, βOLS).

To reduce the bias conditional 2SLS may be useful. Similar as above, the estimation of the
parameters (β,γ(1), γ(2),Σ(1),Σ(2), r) follows two steps. First, for fixed values of r and β, γ(j)

is estimated as

γ̃(j)(r,β) =
(
Ŷ
′
2,jP̂−1Ŷ 2,j

)−1
Ŷ
′
2,jP̂−1Ŷ 1,j , (j = 1, 2), (4)

where P̂−1 = Ŷ −1,j

(
Ŷ
′
−1,jŶ −1,j

)−1
Ŷ
′
−1,j with Ŷ −1,1 corresponding to Y 2,t−2I(β′Y t−1 6

r) and Ŷ −1,2 corresponding Y 2,t−2I(β′Y t−1 > r), respectively. Let Σ̃
(j)

(r,β) denote the
estimate of Σ(j). Next, through a grid search over (r,β), the conditional 2SLS estimates
(r2SLS, β2SLS) are found as the minimizers of the sum of squares of residuals, following a similar
approach as in the OLS case. The resulting 2SLS estimates for the parameters are

γ
(j)
2SLS = γ̃(j)(r2SLS, β2SLS) and Σ(j)

2SLS = Σ̃
(j)

(r2SLS, β2SLS).

Note that γ̃(j)(r,β) is obtained from replacing first Ŷ 2,j by Ỹ 2,j = P̂−1Ŷ 2,j and then
regressing Ŷ 1,j on Ỹ 2,j (j = 1, 2). In this way γ̃(j)(r,β) is estimated without the simultaneous
equation bias that characterizes the OLS estimator γ̂(j)(r,β). Unfortunately, there is still left
a bias related to the presence of the unit root term. Thus, (4) is expected to improve (2) only
marginally.

For ML estimation a modified version of Hansen and Seo’s (2002) ML procedure can be used.
In particular, first a grid search over β that maximizes the concentrated likelihood function is
applied. Once β is fixed, the γ(j)’s are estimated. For β the grid search region is first calibrated
using a consistent estimate of β̂. The mid-point of the region is set at β̂ and the width of the
region is taken as the standard deviation of β̂ times a scaling factor. For near nonstationary
systems, we noticed that the standard deviation of β̂ obtained by either OLS or 2SLS estimation
can be very small. One possible solution is to compute numerically the true standard deviation
using formula in Tanaka (1996, Chapter 11). As an alternative, we used a scaling factor big
enough to result in a sufficiently large region. Next, given a consistent estimate of β, the
empirical support of r is computed from which the empirical range of r is obtained.

3 Monte Carlo design

Results will be reported for the following LTVECM with p = 1 and d = 1:

∆Y t =
2∑

j=1

{(
α

(j)
1,0

0

)
(1, −γ(j))Y t−1 + Σ1/2

j at

}
I((1, −β)Y t−1 ∈ Rj) (5)

where at ∼ NID(0, I2), and Σj is symmetric and positive definite. Model(5) is often used in
empirical applications; see, e.g., Clements and Galvão (2004).

Within each simulation all three estimation procedures used the same standard normal dis-
tributed random numbers, given a particular set of parameter values. The choice of the true
parameter values for the DGPs is such that each regime has approximately an equal number of
observations (50%). The true parameter values are: β = 1.5, γ(1) = 2, γ(2) = 1, and r = 0. For

T = 400, results are presented in terms of: i) the parameter θ, in Σj =
(

1 θσ
θσ σ2

)
; ii) the
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loading parameter α ≡ α
(1)
1,0 = α

(2)
1,0; and iii) the ratio signal-noise σ that measures how big the

random walk component of the variables is. The grid sizes for estimating β and r were set at
100 and 400, respectively. To ensure that there are enough observations in each regime, we used
a trimming percentage of 10%.

4 Results
4.1 Restricted model

Table 1 shows estimation results for β, γ(1) and γ(2) when r is known to be equal zero. The bias
in median in estimating these parameters is about the same for all three estimators. Similar
results were obtained when β is known. When both r and β are known, estimators of γ(1), and
γ(2) are more accurate than when less information is used in the estimation of these parameters.
The largest improvement in median bias occurs with the ML estimator. In terms of sample
dispersion, as measured by the 50% interquartile range (IQR), the difference in performance
between estimating regime-specific threshold parameters γ(1) and γ(2) by OLS and 2SLS on the
one hand and ML on the other is somewhat mixed. In particular, if σ = 2 and irrespective of
the parameter values θ and α, OLS and 2SLS have considerably less dispersion than ML. Thus,
for high signal-noise ratios the ML does not perform so well.

For fixed α and σ, different values of θ do not have a big impact on the estimation results.
This is consistent with Hansen and Phillips (1990) who observed, in linear models, that σ appears
to be a more relevant factor than the degree of long-run endogeneity. Given fixed values of θ
and σ, the bias in median of all three estimators of β, γ(1) and γ(2) depends on the value of α.
In particular this is the case for OLS and 2SLS. Similar results on the influence of α in linear
models are found by Banerjee, Dolado, Hendry and Smith (1986). The bias of the ML estimator
seems to be less sensitive to different values of α. Finally, we noticed that all three estimators
of r perform the same.

4.2 Unrestricted model

Table 2 shows estimation results for the unrestricted LTVECM. For fixed values of θ and σ OLS
performs very similarly to 2SLS when estimating γ(1) and γ(2) with high bias in median. With
respect to sample dispersion, we see from the IQR values that for β 2SLS values are often smaller
than those reported for ML. In particular in the case σ = 2, 2SLS is doing well. IQR values for
OLS are also smaller in the case σ = 2 than in the case σ = 0.25 but to a lesser degree than the
decrease in IQR values for 2SLS. For both γ(1) and γ(2) the IQR values reported for OLS and
2SLS are much smaller than those for ML in almost all cases. As the signal-noise ratio increases
the sample dispersion of these two estimators decreases. On the other hand, the IQR values of
the ML estimator of γ(1) and γ(2) are much larger than those reported for OLS and 2SLS. Thus,
the favourable bias in median results for the ML estimator do not show up so clearly in terms of
IQR. Again, the IQR values of r do not seem to support one single best estimation method. In
most cases all three estimators perform the same. Only when α = 0.8, OLS is doing better than
2SLS and ML. Finally, for β the 2SLS values of Prob(|β̂−β| < 0.05) are often much higher than
those reported for ML and OLS. For γ(1) and γ(2) ML is better than the other two estimators,
though still very poor. Note, that for r all estimators behave poorly.

As compared with the results in Subsection 4.1, it is obvious that the performance of the
three estimators for estimating β, γ(1) and γ(2) is less good than for the restricted LTVECM.
For the unrestricted LTVECM, the ML results are rather mixed. ML has the smallest bias in
median. On the other hand, OLS and 2SLS have much smaller sample dispersion than ML, as
measured by IQR. Thus, given a choice for one of these two accuracy measures, there seems to
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be a trade-off between the ML and OLS or 2SLS method for estimating threshold cointegrated
parameters. Similar results were observed for T = 250. More extensive tables are available upon
request.

5 Conclusions

The objective of the paper was compare the finite sample performance of three estimators in
estimating threshold cointegrated parameters in LTVECMs. We find that ML is to be preferred
over OLS and 2SLS if prior knowledge about the threshold parameter r and/or the threshold
cointegration parameter β is available. However, when no parameter restrictions can be imposed
on the LTVECM, we showed that both OLS and 2SLS estimators remain good alternatives
to ML. Future work needs to be directed toward developing better methods for estimating
the threshold parameter r. In addition, research needs to be devoted toward developing a
distribution theory for all parameters of LTVECMs.
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Table 1: Characteristics of the empirical distribution of OLS, 2SLS and ML estimators for (5)

with the true value r = 0 known; T = 400, 2000 replications.

β γ(1) γ(2)

θ α σ OLS 2SLS ML OLS 2SLS ML OLS 2SLS ML

Bias in median

-0.5 0.2 0.25 0.01 -0.02 0.01 -0.55 -0.54 -0.16 0.50 0.51 0.12
-0.5 0.2 2 0.00 -0.00 0.00 -0.46 -0.45 -0.23 0.44 0.45 0.03

0 0.2 0.25 -0.00 -0.00 -0.00 -0.53 -0.52 -0.16 0.52 0.52 0.15
0 0.2 2 0.00 0.00 0.00 -0.45 -0.45 -0.11 0.45 0.45 0.10

-0.5 0.8 0.25 0.02 0.00 0.02 -0.20 -0.16 -0.08 0.16 0.17 0.07
-0.5 0.8 2 -0.13 0.00 -0.01 -0.17 -0.16 -0.00 0.16 0.17 0.01

0 0.8 0.25 -0.00 0.00 -0.00 -0.18 -0.16 -0.07 0.18 0.17 0.08
0 0.8 2 -0.01 0.00 -0.00 -0.17 -0.16 -0.01 0.17 0.17 0.01

IQR(50)

-0.5 0.2 0.25 0.12 0.10 0.13 0.30 0.40 0.31 0.52 0.55 0.33
-0.5 0.2 2 0.01 0.01 0.01 0.02 0.01 0.30 0.01 0.02 0.18

0 0.2 0.25 0.13 0.07 0.14 0.36 0.43 0.34 0.35 0.40 0.35
0 0.2 2 0.02 0.01 0.02 0.01 0.01 0.34 0.01 0.02 0.34

-0.5 0.8 0.25 0.13 0.04 0.12 0.06 0.11 0.15 0.07 0.06 0.16
-0.5 0.8 2 0.09 0.01 0.02 0.00 0.02 0.08 0.00 0.01 0.08

0 0.8 0.25 0.14 0.04 0.13 0.06 0.09 0.16 0.06 0.06 0.17
0 0.8 2 0.29 0.01 0.04 0.00 0.02 0.08 0.00 0.01 0.08

Prob(|est. par.-true par.| < 0.05)

-0.5 0.2 0.25 0.45 0.55 0.45 0.03 0.06 0.13 0.05 0.06 0.14
-0.5 0.2 2 0.96 0.98 0.96 0.00 0.00 0.12 0.00 0.00 0.30

0 0.2 0.25 0.43 0.58 0.43 0.04 0.06 0.10 0.04 0.06 0.11
0 0.2 2 0.96 0.97 0.95 0.00 0.00 0.19 0.00 0.00 0.19

-0.5 0.8 0.25 0.40 0.74 0.43 0.06 0.14 0.28 0.09 0.10 0.31
-0.5 0.8 2 0.07 0.98 0.82 0.00 0.01 0.59 0.00 0.00 0.58

0 0.8 0.25 0.33 0.75 0.37 0.07 0.15 0.29 0.07 0.11 0.27
0 0.8 2 0.04 0.98 0.81 0.00 0.01 0.57 0.00 0.00 0.58
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Table 2: Characteristics of the empirical distribution of OLS, 2SLS and ML estimators for the

DGP (5); T = 400, 2000 replications.

β r γ(1) γ(2)

θ α σ OLS 2SLS ML OLS 2SLS ML OLS 2SLS ML OLS 2SLS ML

Bias in median

-0.5 0.2 0.25 0.00 -0.02 0.01 0.26 0.44 0.21 -0.56 -0.54 -0.34 0.50 0.51 0.27
-0.5 0.2 2 0.01 -0.00 0.01 -0.47 0.11 -0.41 -0.46 -0.46 -0.18 0.45 0.46 0.12

0 0.2 0.25 -0.00 -0.00 -0.00 0.09 -0.07 0.09 -0.54 -0.53 -0.34 0.53 0.53 0.31
0 0.2 2 0.00 0.00 0.00 0.02 0.01 0.03 -0.46 -0.46 -0.17 0.46 0.46 0.16

-0.5 0.8 0.25 0.00 0.00 0.01 0.31 0.56 0.43 -0.24 -0.26 -0.18 0.19 0.23 0.08
-0.5 0.8 2 -0.14 0.00 -0.01 0.48 0.93 0.33 -0.17 -0.17 -0.11 0.17 0.17 0.09

0 0.8 0.25 -0.01 0.00 -0.00 -0.04 0.27 0.02 -0.20 -0.23 -0.14 0.21 0.24 0.12
0 0.8 2 -0.00 0.00 -0.00 -0.07 0.35 -0.03 -0.17 -0.17 -0.10 0.17 0.17 0.09

IQR(50)

-0.5 0.2 0.25 0.10 0.10 0.01 2.69 2.71 2.66 0.30 0.32 0.47 0.57 0.53 0.52
-0.5 0.2 2 0.02 0.01 0.02 1.37 3.00 1.48 0.03 0.04 0.36 0.04 0.05 0.36

0 0.2 0.25 0.12 0.07 0.12 2.73 2.71 2.70 0.36 0.39 0.50 0.43 0.41 0.52
0 0.2 2 0.02 0.01 0.02 2.52 2.91 2.26 0.04 0.04 0.44 0.04 0.05 0.43

-0.5 0.8 0.25 0.09 0.04 0.09 1.99 2.46 2.02 0.23 0.22 0.43 0.17 0.21 0.36
-0.5 0.8 2 0.16 0.01 0.03 2.30 6.47 7.00 0.01 0.03 0.50 0.01 0.02 0.37

0 0.8 0.25 0.11 0.04 0.10 1.96 2.53 2.03 0.21 0.23 0.44 0.19 0.21 0.40
0 0.8 2 0.28 0.01 0.03 2.21 7.58 7.66 0.01 0.03 0.48 0.01 0.03 0.48

Prob(|est. par.-true par.| < 0.05)

-0.5 0.2 0.25 0.49 0.55 0.48 0.01 0.01 0.02 0.03 0.03 0.07 0.05 0.04 0.09
-0.5 0.2 2 0.96 0.98 0.93 0.03 0.06 0.03 0.00 0.00 0.13 0.01 0.01 0.18

0 0.2 0.25 0.47 0.58 0.46 0.01 0.01 0.02 0.03 0.03 0.06 0.04 0.03 0.07
0 0.2 2 0.96 0.97 0.94 0.04 0.08 0.04 0.00 0.00 0.15 0.00 0.01 0.15

-0.5 0.8 0.25 0.51 0.74 0.54 0.02 0.01 0.02 0.08 0.07 0.18 0.13 0.08 0.25
-0.5 0.8 2 0.21 0.98 0.84 0.03 0.98 0.01 0.00 0.00 0.30 0.00 0.00 0.30

0 0.8 0.25 0.31 0.75 0.50 0.35 0.01 0.02 0.07 0.08 0.20 0.07 0.09 0.19
0 0.8 2 0.27 0.98 0.83 0.02 0.01 0.01 0.00 0.00 0.31 0.00 0.00 0.29
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