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Abstract

This paper investigates the performances of GMM estimates using kernel methods with and
without prewhitening and the VARHAC method in a representative agent exchange
economy. A Monte Carlo study is conducted to evaluate the issues of estimating the spectral
density functions, e.g., parametric vs. nonparametric, data−based bandwidth selection, and
prewhitening procedures. The Monte Carlo results show that kernel methods with
prewhitening procedure outperform others in terms of statistical inferences. The deviations
from true parameter values, however, are larger for kernel methods with prewhitening
procedure. Therefore, there exists efficiency/bias trade−off when choosing HAC covariance
estimation method.
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1. Introduction 
In a representative agent exchange economy, a certain type of asset pricing model is 

proposed by Lucas (1978) with a set of Euler equations of per capital consumption in the 
equilibrium. Empirical works on the set of Euler equations and the budget-constraint (or 
market-clearing) conditions raise problems on how to calibrate the economy in a reasonable 
set of parameter values (e.g., Mehra and Prescot 1985, Hall 1988, Tauchen 1986, and 
Kocherlakota 1990). Fundamentally, there are two approaches to find the estimates of 
parameters. The first approach is to estimate the reduced-form model with restrictions using 
the maximum likelihood estimation (MLE), and the second approach is to estimate the model 
using the generalized method of moments (GMM). The former approach needs researchers to 
assume or plug in a specific distribution and economic dynamics, while the latter approach 
does not need to do so. Ever since the seminal paper of Hansen (1982), the GMM estimation 
method has been commonly used in many applied research works. The merit of the GMM is 
that it requires certain specific moment conditions instead of assumed distributions. Thus, the 
linear and non-linear models are easier to be taken care of within the GMM framework. 
Given the GMM estimation, the non-linearity of a model is captured through the weighting 
matrix (i.e., variance-covariance matrix of orthogonality conditions). Consequently, an 
optimal weighting matrix results in efficient GMM estimates in terms of statistical inferences 
and model specification.  

The generalized method of moments is widely used in the asset pricing models (e.g., 
Hansen and Singleton 1982, Kocherlakota 1990, Epstein and Zin 1991, MacKinlay and 
Richardson 1991, Hodrick 1992, and Cochrane 2001). The essence of the estimation of the 
weighting matrix in the GMM is the estimation of the spectral density function (at the 
frequency zero). The issue is important, because the performance of the GMM estimators or 
test statistics (e.g., test for over-identification) can be sensitive to the quality of the spectral 
density estimates. It is known in the literature (e.g., Ferson and Foerster 1994, Hansen, 
Heaton, and Yaron 1996, and Kan and Zhou 1999) that the GMM may perform poorly if one 
uses a poor spectral density function to estimate the weighting matrix. Cochrane (2000, 2001), 
in fact, points out that the only important comparison is not between the MLE and GMM, but 
between methods for estimating spectral density functions (at the frequency zero).  

The purpose of this paper is to examine the performances of parameter estimates of the 
asset pricing model under different spectral density functions using the GMM procedure. At 
the same time, the issue of how to choose a consistent heteroskedasticity and autocorrelation 
covariance (HAC) matrix in the asset pricing model is considered herein. Andrews (1991) 
considers the kernel estimator of the HAC with an automatic optimal data-dependent 
bandwidth selection in an asymptotic truncated mean squared error criterion. Newey and 
West (1994) suggest an alternative way to search for the optimal bandwidth automatically. In 
addition, Andrews and Monahan (1992) consider the pre-whitening kernel-based HAC 
estimator which can reduce the bias of the kernel HAC estimator, as the pre-whitening 
procedure may flatten the uneven part of the spectral density function and obtain an unbiased 
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kernel estimator. Therefore, this paper also investigates the effects of pre-whitening on the 
kernel-based HAC estimators. 

In contrast to the usual HAC estimators that focus on kernel methods, Den Haan and 
Levin (1998) propose a method, called VARHAC, to construct a HAC estimator using the 
vector autoregressive spectral estimation. The basic idea behind the VARHAC method is to 
filter errors using VAR models first so as to obtain pre-whitened errors and then calculate the 
HAC covariance matrix through the covariance matrix of those pre-whitened errors. Their 
simulation results show that the VARHAC covariance estimator outperforms kernel-based 
HAC estimators given a high-order autoregressive error structure. Therefore, the VARHAC 
method is of interest in this paper to serve as a comparison with the kernel methods. The 
study starts with simulated economic data under different experimental settings in a 
Lucas-typed asset pricing model. The GMM procedure is then applied to the simulated data. 
For each experiment, 1000 replicates are performed randomly for sample sizes of 50 and 100, 
respectively, in order to provide reliable inferences. 

The remainder of this paper is organized as follows:  Section 2 describes the HAC 
estimation methods. Section 3 discusses the model economy and the experimental design. 
Section 4 compares the performances among distinct HAC estimators through different 
aspects. Finally, section 5 concludes. 

 
2. The GMM Procedure and Estimation of Variance-Covariance Matrix 

The GMM estimates the unknown parameter, e.g., θ = [ ], 'β γ , by minimizing a 

quadratic norm of the orthogonality condition, )(θTg , i.e., a weighted sum of squared 
pricing errors: 

)(minargˆ θθ θ TQ=  
)()()( θθθ TTTT gWgQ ′= , 

(1)

with a weighting matrix, TW , and ∑
=

=
T

t
tT g

T
g

1
)(1)( θθ  which is the sample mean of the 

pricing errors. The orthogonality condition for the asset pricing model can also be derived 

from the pricing errors, ( )θte , using the vector of instrumental variables, tz . Constructing 

orthogonality conditions using instrumental variables is the same as adding the returns of 

managed portfolios to the model and hoping to capture all of the model’s predictions 

(Cochrane 2001, p. 198). We then write the orthogonality conditions as: 
0)]([])([ ==⊗ θθ ttt gEzeE , (2)

where ⊗  is the Kronecker product. 
The instrumental variables employed in the paper consist of a conforming vector of ones 

and lag one values of consumption growth, tw , and asset returns, tR . That is, the vector of 

instrumental variables, tz , is defined as [ ]1 11, , 't tw R− − . Hansen’s J-statistic is used as a 

specification test to examine whether the model fits well for the data. The J-statistic 
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represents whether the pricing errors are too big or not if the model is true, i.e.: 
* *( ) ( )t T tJ Tg W gθ θ′=  (3)

The J-statistic converges to a 2χ distribution with degrees of freedom equal to the difference 
between the number of moments and the number of parameters. 

The optimal weighting matrix can be shown (e.g., Hansen 1982) to be ,1−S where 

∑
∞

−∞=
− ′=

j
jtt ggS )()( θθ  is the spectral density matrix at the frequency zero for )(θtg . Given 

the parameter estimates, θ̂ = )ˆ,ˆ( γβ , and { }ˆ( )t t
g θ

∞

=−∞
, one could estimate the optimal weighting 

matrix by (e.g., Tauchen, 1986) TW~ = 1~ −
TS , where 
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serially uncorrelated. However, in practice, { }ˆ( )t t
g θ

∞

=−∞
 are usually serially correlated and 

then the weighting matrix is misleading and inconsistent. Therefore, as in Tauchen (1986), we 

assume that consumption growth and dividend growth are negatively auto-correlated in our 

Monte Carlo experiments below.  

Andrews (1991) considers a consistent HAC estimator of the spectral density function at 

the frequency zero using kernel methods with an automatic bandwidth selection. The HAC 

estimator in Andrews (1991) is calculated as follows: 
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(4)

where TS~  is the estimated variance-covariance matrix, tV  is the interested vector or the 
error vector which equals ( )tg θ  as of equation (2) in the GMM estimation in this paper, k is 
a kernel function, and m~  is the bandwidth. The optimal bandwidth is shown to be:  
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where K is a commutation matrix transforming vec(A) to )( ′Avec , and ω  is a weight matrix. 
The term qc  is a constant depending on the chosen kernel function. For the quadratic 
spectral (QS) kernel, qc  is equal to 1.3221. 

On the other hand, Newey and West (1994) propose an alternative HAC estimator for 
estimating the optimal bandwidth from truncated sample autocovariances:  

)12/(1* ˆ)( += qTqm τ  (6)
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where n is the lag selection parameter depending on the kernel function. Their Monte Carlo 
simulation results suggest that their procedure performs well although there is size distortion 
and the selection of bandwidth may be more important than the choice of kernel functions. 
Andrews and Monahan (1992) conversely show that the pre-whitening procedure is able to 
effectively reduce the bias of the kernel estimator and improve the confidence interval’s 
coverage probabilities. 

The estimate of HAC with the pre-whitening procedure can be calculated as follows: 
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where ˆ
pA  is usually obtained using the ordinary least squares estimation by assuming that 

all elements in tV  have the same number of AR lags. Moreover, Den Haan and Levin (1998) 
offer a VAR (Vector Autoregressive) procedure to calculate the HAC covariance matrix, 
called VARHAC. Their procedure pre-whitens error vectors (or interested vectors) by first 
using the VAR filter and then calculating the desired variance-covariance matrix through the 
HAC covariance estimate of pre-whitened errors. 

In the first step, a VAR model is adopted to filter an error series using either AIC or BIC 
criterion: 

∑∑
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−
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p

j
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p

j
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ˆˆˆ , 
(8)

where tê  is a filtered error vector, ˆ
jA  is the coefficient matrix with 0Â  equal to the 

identity matrix, and p  is the maximum lag order. The coefficient ˆ
jA  is obtained using the 

ordinary least squares estimation by allowing that each element in tV  may have a different 

number of AR lags in its own past and the other elements. That is, equation (8) can be a 

restricted VAR representation. Given equation (8), the covariance of the filtered errors is 

estimated as: 1
ˆ ˆ

ˆ
T
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e e
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∑ . The VARHAC spectral estimator of a weighting matrix is thus 

calculated as: 
1 1

0 0
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The major difference between the VARHAC and the pre-whitening kernel-based HAC is 
that the VARHAC obtains the covariance of filtered errors using the standard sample variance 
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method, while the pre-whitening kernel-based HAC obtains the covariance of pre-whitened 
residuals using the kernel-based procedure. It is noted that the objective of using the 
pre-whitening procedure in the pre-whitening kernel-based HAC is to flatten the relevant 
portion of the spectral density function, but not to actually pre-whiten the original series, 
while the VAR filter in the VARHAC is employed to obtain whitened original series. 
 

3. The Simulation Economy 
Following suit with Lucas (1978), Breeden (1979), and Tauchen (1986), a representative 

agent has a time and state separable utility function of the constant relative risk aversion 
family: 
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where β  is the discount rate, c is the consumption, and γ  is the coefficient of relative risk 
aversion (CRRA). Therefore, under a complete and frictionless market, the asset returns can 
be expressed as follows in terms of the price-dividend ratio: 
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where itv  is the price-dividend ratio for asset i at time t and itx  is the dividend growth 
variable for asset i at time t. Given the price-dividend ratio, the consumption growth, and the 
dividend growth, the equilibrium in the economy is found to be ])1[( 111 +

−
+++= ittitit xwvEv γβ . 

The pricing error function can now be defined as 1)( 11 −= −
++
γβθ ttt wRe . 

The experiments conducted here follow the setup of Tauchen (1986) in which the 
stochastic processes of consumption growth and dividend growth are assumed to be the 
following autoregressive processes of order 1, respectively. That is: 

tttt
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(11)

where t1ε  and t2ε  are random variables of the jointly normally-distributed white noises. 
We approximate this system using the N-state Markov chain for Ν=16 as in 

Kocherlakota (1990), since Kocherlakota shows that a 16-state Markov chain is good enough 
to capture the real economic system. Table 1 illustrates the parameter values employed in 
each experiment. The experiments 1, 2, 3, and 4 follow the same fashion as experiments 9, 10, 
11, and 12 in Tauchen (1986), but we adopt the parameter values in Kocherlakota (1990). 
There are 1,000 replications generated for each experiment with sample sizes of 50 and 100. 
The initial state is also drawn from the stationary distribution of the Markov chain. 

 
4. Monte Carlo Results 

Table 2 reports the mean values and standard deviations of estimated discount rates and 
CRRA in panels A and B, respectively. The point estimates of the discount rate are biased 
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downward for Models 1–4. In general, the standard errors of estimates using the kernel 
methods with pre-whitening are uniformly larger than using the kernel methods without 
pre-whitening and the VARHAC. This indicates that estimators generated using kernel 
methods with pre-whitening are spread wider than other methods. At the same time, the 
standard errors become larger when the parameter values are bigger. Furthermore, the 
standard errors of estimates are reduced when the sample size increases from 50 to 100. 

Table 3 shows that the mean biases of the estimated discount rate and CRRA are biased 
downward for most of the experiments. The mean biases of the estimated CRRA, however, 
are biased upward in experiment 4 of size 50 and experiments 2 and 3 for the kernel methods 
without pre-whitening and the VARHAC. On the other hand, the estimates of kernel methods 
with pre-whitening diverge more than the other methods. The root mean squared errors 
(RMSE) of the discount rate and CRRA estimates are larger for kernel methods with 
pre-whitening than for kernel methods without pre-whitening and the VARHAC. In addition, 
the results of the mean absolute deviations of estimated betas indicate that kernel methods 
with pre-whitening produce a larger deviation from the true value than kernel methods 
without pre-whitening and the VARHAC. Consequently, the kernel methods with 
pre-whitening produce more biases and tend to generate downward estimates. 

Table 4 reports the coverage rates of estimated discount rates and CRRA at a 95% 
confidence interval. In general, kernel methods with pre-whitening have larger coverage rates 
than kernel methods without pre-whitening. Within pre-whitening methods, NW (Newey and 
West 1994) with pre-whitening and AM (Andrews and Monahan 1992) perform better than 
the VARHAC in all cases, especially in experiments 2, 3, and 4 of the actual economic 
parameter settings. For example, in experiment 4 which does not allow AR(1) 
inter-dependence between consumption and dividend growths, the differences in coverage 
rates between kernel methods with pre-whitening and the VARHAC method are much larger, 
while the magnitude of differences is not so much in experiment 3 which allows 
inter-dependence between consumption and dividend growths. This indicates that the 
VARHAC method works better when data are actually dependent in the true data generating 
process, but the method turns worse when data turn out to be less correlated. The coverage 
rates also rise when the sample size increases from 50 to 100, which upholds the belief that 
the larger sample size introduces more confidence in statistical inferences. For the rejection 
rates of the J-statistic, it is found that kernel methods with pre-whitening generally have 
values under 5% while the kernel methods without pre-whitening and the VARHAC have 
values larger than 5% in some experiments. Consequently, using pre-whitening HAC 
estimators in GMM models can deduce much more reliable model specification inferences. 

As for the bandwidth estimates, Table 5 presents the mean values of them. In general, 
the Andrews method without pre-whitening has much smaller bandwidth estimates than the 
rest of the kernel methods. Within the pre-whitening kernel methods, the NW (Newey and 
West 1994) method tends to need larger bandwidth than the AM (Andrews and Monahan 
1992) method. For the VARHAC, the AIC lag selection rule generates larger lag orders than 
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the BIC lag selection rule. This corresponds with conclusions from Shibata (1976) and Den 
Haan and Levin (2000) that AIC tends to exaggerate the lag order penalty function and 
suggests more lags than BIC. 

 
5. Conclusion 

Based on simulated economic data in the asset pricing model of a representative agent 
exchange economy, we examine GMM performances of different HAC estimators by 
employing kernel methods with an automatic bandwidth selection and the VARHAC method. 
The findings indicate that kernel methods with a pre-whitening procedure (Newey and West 
1994, and Andrews and Monahan 1992) possess larger coverage rates of parameter estimates 
than kernel methods without pre-whitening (Newey and West 1994, and Andrews 1991) and 
the VARHAC (Den Haan and Levin 1998) method. This suggests that there are efficiency 
gains if the research objective focuses on the statistical inferences when using kernel methods 
with pre-whitening. On the other hand, kernel methods without pre-whitening and the 
VARHAC method produce parameter estimates with smaller biases than kernel methods with 
pre-whitening. Therefore, there exists an efficiency/bias trade-off on the choice of the HAC 
estimation methods. 
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Table I.  Parameter Settings of the Model Economy 
Experiment Gamma Beta AR Coefficient Error Covariance Intercepts 

      
1 13.7 1.139 0.117  0.414 

0.017  -0.161 
0.0140  0.00177 
0.00177  0.0012 

0.004 
0.021 

2 13.7 1.139 0.117  0.000 
0.000  -0.161 

0.0140  0.000 
0.000  0.0012 

0.000 
0.000 

3 13.7 1.139 0.117  0.414 
0.000  -0.161 

0.01  0.000 
0.000  0.0012 

0.000 
0.000 

4 13.7 1.139 0.117  0.000 
0.000  -0.161 

0.0140  0.00177 
0.00177  0.0012 

0.000 
0.000 

 
Table II.  Means and Standard Deviations of Estimated Discount Rate and CRRA 

Panel A: Estimated Discount Rate 
Exp Size Pre Non-Pre VARHAC 

  NW AM NW AW AIC BIC 
50 0.9616 

（0.2357） 
0.9587 

（0.2338）
1.0958 
（0.1401）

1.1023 
（0.1204）

1.0993 
（0.1421） 

1.1023 
（0.1333）

1 

100 0.9744 
（0.2327） 

0.9847 
（0.2226）

1.1229 
（0.1120）

1.1204 
（0.1028）

1.1196 
（0.1134） 

1.1208 
（0.1197）

50 1.0787 
（0.2248） 

1.0663 
（0.2419）

1.1836 
（0.1416）

1.1902 
（0.1296）

1.1802 
（0.1461） 

1.1905 
（0.1289）

2 

100 1.0152 
（0.2589） 

1.0163 
（0.2719）

1.1813 
（0.1143）

1.1816 
(0.1285) 

1.1750 
（0.1331） 

1.1772 
（0.1279）

50 1.0866 
（0.2072） 

1.0924 
（0.2662）

1.1643 
（0.1211）

1.1716 
（0.1038）

1.1711 
（0.1062） 

1.1699 
（0.0982）

3 

100 1.0757 
（0.1602） 

1.0406 
（0.2077）

1.1542 
（0.1011）

1.1535 
（0.1054）

1.1525 
（0.1061） 

1.1535 
（0.1046）

50 1.0693 
（0.2175） 

1.0481 
（0.2495）

1.1673 
（0.1180）

1.1724 
（0.1336）

1.1683 
（0.0957） 

1.1683 
（0.1103）

4 

100 1.0660 
（0.1757） 

1.0694 
（0.1702）

1.1367 
（0.1262）

1.1379 
（0.1206）

1.1373 
（0.1214） 

1.1374 
（0.1187）

Panel B: Estimated CRRA 
Exp Size Pre Non-Pre VARHAC 

  NW AM NW AW AIC BIC 
50 6.0280 

(15.1617) 
6.1897 

(14.4256)
7.7029 

(8.2181) 
7.9241 

(6.3561) 
7.7366 

(7.5817) 
7.9935 

(7.3308) 
1 

100 12.5932 
(15.3203) 

12.2000 
(17.0371)

11.5109 
(7.4408) 

11.5675 
(7.4863) 

11.4571 
(7.1542) 

11.5654 
(8.7056) 

50 6.9848 
(15.9604) 

6.1252 
(17.1033)

6.3331 
(13.0325)

6.7982 
(9.0847) 

6.0862 
(11.5336) 

7.0293 
(10.5145) 

2 

100 9.1315 
(26.8841) 

7.8248 
(21.5592)

9.8012 
(8.0135) 

9.3075 
(9.9573) 

9.4207 
(9.6626) 

9.1509 
(10.4579) 

50 9.9657 
(15.5605) 

9.5628 
(14.3256)

8.8985 
(7.5987) 

8.5461 
(7.1862) 

8.7504 
(7.2657) 

8.7436 
(7.2468) 

3 

100 12.6391 
(11.7498) 

12.9132 
(14.1702)

10.7341 
(6.3768) 

10.5088 
(7.0025) 

10.7899 
(6.7981) 

10.5214 
(7.0744) 

50 9.7700 
(16.0398) 

9.9158 
(17.9521)

9.1084 
(8.1897) 

8.8252 
(9.8152) 

8.8943 
(8.0316) 

9.0863 
(7.6322) 

4 

100 13.8050 
(11.8562) 

14.8495 
(10.5753)

12.0165 
(7.5059) 

11.8530 
(7.5698) 

11.9508 
(7.7927) 

11.7607 
(7.6819) 

Based on 1000 replications. Standard deviation is in the parenthesis. Exp: experiment; Size: sample size; CRRA: Constant Relative Risk 
Aversion; Pre: estimators with pre-whitening; Non-Pre: estimators without pre-whitening; NW: Newey and West (1994); AM: Andrews and 
Monahan (1992); AW: Andrews (1991); VARHAC: vector autoregressive HAC, Den Haan and Levin (1998). 
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Table III.  Mean Biases, RMSE, and Mean Absolute Biases of Estimated Discount Rate and CRRA 
Panel A: Estimated Discount Rate 

Exp Size Pre Non-Pre VARHAC 
  NW AM NW AW AIC BIC 

50 -0.1774 
（0.2096） 

[0.2950] 

-0.1803 
（0.2114）

[0.2952] 

-0.0432 
（0.0945）

[0.1466] 

-0.0367 
（0.0879）

[0.1259] 

-0.0397 
（0.0947） 

[0.1474] 

-0.0367 
（0.0945） 

[0.1382] 

1 

100 -0.1646 
（0.1909） 

[0.2850] 

-0.1542 
（0.1852）

[0.2708] 

-0.0161 
（0.0768）

[0.1131] 

-0.0185 
（0.0742）

[0.1044] 

-0.0194 
（0.0769） 

[0.1150] 

-0.0182 
（0.0758） 

[0.1210] 
50 -0.0603 

（0.1447） 
[0.2326] 

-0.0726 
（0.1569）

[0.2525] 

0.0445 
（0.1056）

[0.1483] 

0.0512 
（0.1019）

[0.1393] 

0.0412 
（0.1042） 

[0.1517] 

0.0515 
（0.1011） 

[0.1388] 

2 

100 -0.1238 
（0.1808） 

[0.2868] 

-0.1226 
（0.1923）

[0.2982] 

0.0423 
（0.0881）

[0.1218] 

0.0425 
（0.0917）

[0.1353] 

0.0360 
（0.0924） 

[0.1378] 

0.0382 
（0.0894） 

[0.1334] 
50 -0.0524 

（0.1231） 
[0.2137] 

-0.0465 
（0.1261）

[0.2701] 

0.0253 
（0.0886）

[0.1237] 

0.0326 
（0.0840）

[0.1088] 

0.0321 
（0.0858） 

[0.1109] 

0.0309 
（0.0807） 

[0.1029] 

3 

100 -0.0633 
（0.0966） 

[0.1721] 

-0.0984 
（0.1260）

[0.2298] 

0.0152 
（0.0724）

[0.1021] 

0.0145 
（0.0734）

[0.1064] 

0.0135 
（0.0729） 

[0.1069] 

0.0145 
（0.0728） 

[0.1056] 
50 -0.0697 

（0.1176） 
[0.2283] 

-0.0908 
（0.1348）

[0.2654] 

0.0283 
（0.0770）

[0.1213] 

0.0334 
（0.0799）

[0.1377] 

0.0293 
（0.0755） 

[0.1000 

0.0293 
（0.0761） 

[0.1141] 

4 

100 -0.0730 
（0.1024） 

[0.1902] 

-0.0696 
（0.0954）

[0.1838] 

-0.0023 
（0.0794）

[0.1262] 

-0.0011 
（0.0780）

[0.1205] 

-0.0017 
（0.0792） 

[0.1213 

-0.0016 
（0.0769） 

[0.1186] 
Panel B: Estimated CRRA 

Exp Size Pre Non-Pre VARHAC 
  NW AM NW AW AIC BIC 

50 -7.6719 
(13.2754) 
[16.9855] 

-7.5102 
(13.1848) 
[16.2571] 

-5.9970 
(7.3391) 

[10.1703] 

-5.7758 
(6.8350) 
[8.5860] 

-5.9633 
(7.3001) 
[9.6430] 

-5.7064 
(7.1951) 
[9.2871] 

1 

100 -1.1067 
(11.5828) 
[15.3526] 

-1.4999 
(11.5954) 
[17.0945] 

-2.1890 
(5.1911) 
[7.7526] 

-2.1324 
(5.2300) 
[7.7805] 

-2.2428 
(5.2859) 
[7.4941] 

-2.1345 
(5.2645) 
[8.9592] 

50 -6.7151 
(13.1392) 
[17.3082] 

-7.5747 
(13.9108) 
[18.6978] 

-7.3668 
(8.7764) 

[14.9649] 

-6.9017 
(8.3194) 
[11.4055] 

-7.6137 
(9.3816) 

[13.8152] 

-6.6706 
(8.6586) 

[12.4476] 

2 

100 -4.5684 
(14.9938) 
[27.2563] 

-5.8751 
(15.7678) 
[22.3350] 

-3.8987 
(6.6757) 
[8.9080] 

-4.3924 
(7.2254) 

[10.8785] 

-4.2792 
(7.3935) 

[10.5633] 

-4.5490 
(7.3644) 
[11.3996] 

50 -3.7342 
(9.6922) 

[15.9947] 

-4.1371 
(9.5605) 

[14.9041] 

-4.8014 
(7.1836) 
[8.9853] 

-5.1538 
(7.2060) 
[8.8404] 

-4.9495 
(7.0519) 
[8.7884] 

-4.9563 
(7.0325) 
[8.7766] 

3 

100 -1.0608 
(7.1729) 
[11.7917] 

-0.7867 
(8.5677) 

[14.1850] 

-2.9658 
(5.1119) 
[7.0298] 

-3.1911 
(5.3136) 
[7.6921] 

-2.9100 
(5.2176) 
[7.3916] 

-3.1785 
(5.3322) 
[7.7524] 

50 -3.9299 
(10.3305) 
[16.5065] 

-3.7841 
(11.3237) 
[18.3378] 

-4.5915 
(6.8080) 
[9.3854] 

-4.8747 
(7.1047) 

[10.9547] 

-4.8056 
(6.8644) 
[9.3560] 

-4.6136 
(6.7505) 
[8.9150] 

4 

100 0.1050 
(7.0337) 
[11.8507] 

1.1495 
(6.4101) 

[10.6323] 

-1.6834 
(5.1994) 
[7.6887] 

-1.8469 
(5.1487) 
[7.7882] 

-1.7491 
(5.2399) 
[7.9828] 

-1.9392 
(5.1776) 
[7.9191] 

Based on 1000 replications. RMSE is in the parenthesis. Mean Absolute Deviation is in the bracket. Deviation = (estimate - true value); Exp: 
experiment; Size: sample size; CRRA: Constant Relative Risk Aversion; Pre: estimators with pre-whitening; Non-Pre: estimators without 
pre-whitening; NW: Newey and West (1994); AM: Andrews and Monahan (1992); AW: Andrews (1991); VARHAC: vector autoregressive 
HAC, Den Haan and Levin (1998). 
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Table IV.  Coverage Rates and Rejection Rates of Estimated Discount Rate and CRRA  
Panel A: Estimated Discount Rate 

Exp Size Pre Non-Pre VARHAC 
  NW AM NW AW AIC BIC 

50 0.7400 
（0.0000） 

0.7880 
（0.0020）

0.6770 
（0.0990）

0.7380 
（0.1650）

0.7420 
（0.2310） 

0.7290 
（0.3080） 

1 

100 0.8700 
（0.0060） 

0.7650 
（0.0020）

0.9070 
（0.1200）

0.9060 
（0.1130）

0.8880 
（0.1900） 

0.8870 
（0.1840） 

50 0.7490 
（0.0000） 

0.8190 
（0.0000）

0.4510 
（0.0410）

0.5020 
（0.1170）

0.5270 
（0.2290） 

0.5090 
（0.3030） 

2 

100 0.8500 
（0.0040） 

0.6610 
（0.0040）

0.5840 
（0.1620）

0.5610 
（0.2170）

0.5700 
（0.3620） 

0.5610 
（0.3840） 

50 0.8190 
（0.0000） 

0.9110 
（0.0000）

0.5340 
（0.0300）

0.5930 
（0.0550）

0.5930 
（0.1570） 

0.5990 
（0.2030） 

3 

100 0.9560 
（0.0000） 

0.8900 
（0.0000）

0.6130 
（0.0540）

0.6250 
（0.0670）

0.6280 
（0.1270） 

0.6280 
（0.1300） 

50 0.9000 
（0.0000） 

0.9300 
（0.0000）

0.5710 
（0.0400）

0.5870 
（0.0770）

0.6010 
（0.1760） 

0.5980 
（0.2490） 

4 

100 0.9760 
（0.0000） 

0.9280 
（0.0010）

0.6040 
（0.0470）

0.6080 
（0.0710）

0.6100 
（0.1630） 

0.6080 
（0.1670） 

Panel B: Estimated CRRA 
Exp Size Pre Non-Pre VARHAC 

  NW AM NW AW AIC BIC 

50 0.5460 
(0.0000) 

0.5970 
(0.0020) 

0.4480 
(0.0990) 

0.4700 
(0.1650) 

0.4840 
(0.2310) 

0.4820 
(0.3080) 

1 

100 0.7270 
(0.0060) 

0.7650 
(0.0020) 

0.6970 
(0.1200) 

0.7080 
(0.1130) 

0.6940 
(0.1900) 

0.7080 
(0.1840) 

50 0.6430 
(0.0000) 

0.7000 
(0.0000) 

0.4610 
(0.0410) 

0.4520 
(0.1170) 

0.4590 
(0.2290) 

0.4490 
(0.3030) 

2 

100 0.6970 
(0.0040) 

0.6610 
(0.0040) 

0.5440 
(0.1620) 

0.5390 
(0.2170) 

0.5470 
(0.3620) 

0.5370 
(0.3840) 

50 0.7080 
(0.0000) 

0.7570 
(0.0000) 

0.4450 
(0.0300) 

0.4580 
(0.0550) 

0.4720 
(0.1570) 

0.4800 
(0.2030) 

3 

100 0.8740 
(0.0000) 

0.8900 
(0.0000) 

0.6040 
(0.0540) 

0.6170 
(0.0670) 

0.6190 
(0.1270) 

0.6100 
(0.1300) 

50 0.7530 
(0.0000) 

0.7700 
(0.0000) 

0.5000 
(0.0400) 

0.5100 
(0.0770) 

0.5270 
(0.1760) 

0.5250 
(0.2490) 

4 

100 0.8970 
(0.0000) 

0.9280 
(0.0010) 

0.6610 
(0.0470) 

0.6750 
(0.0710) 

0.6610 
(0.1630) 

0.6740 
(0.1670) 

Based on 1000 replications. Coverage Rate is of a 95% confidence interval. Rejection rate at the 5% level is in the Parenthesis. Exp: 
experiment; Size: sample size; CRRA: Constant Relative Risk Aversion; Pre: estimators with pre-whitening; Non-Pre: estimators without 
pre-whitening; NW: Newey and West (1994); AM: Andrews and Monahan (1992); AW: Andrews (1991); VARHAC: vector autoregressive 
HAC, Den Haan and Levin (1998). 
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Table V.  Mean Values of Bandwidths and Lag Orders in VAR Filters 
Exp Size Pre Non-Pre VARHAC 

  NW AM NW AW AIC BIC 

50 4.4885 3.9665 4.2796 1.7312 0.5720 0.0210 1 
100 4.5012 4.9627 3.8980 1.5087 0.6000 0.0100 
50 6.6134 3.9711 5.1715 1.4726 0.4680 0.0080 2 

100 6.3871 5.1266 4.5786 1.5393 0.2650 0.0000 
50 4.0218 4.4788 4.1235 1.4304 0.5060 0.0050 3 

100 4.3711 5.102 3.9146 1.2582 0.4080 0.0100 
50 4.3950 4.4247 4.5540 1.4081 0.6380 0.0070 4 

100 4.1787 5.0351 4.0700 1.3276 0.5720 0.0030 
Exp: experiment; Size: sample size; Pre: estimators with pre-whitening; Non-Pre: estimators without pre-whitening; NW: Newey and West 
(1994); AM: Andrews and Monahan (1992); AW: Andrews (1991); VARHAC: vector autoregressive HAC, Den Haan and Levin (1998). Lag 
orders of the first instrumental variable in the AIC and the BIC are reported.  

 


