
Continuity of the payoff function revisited 

Michael Zarichnyi
Lviv National University

Abstract

The payoff function is defined on the product of the spaces of mixed strategies that are the
spaces of probability measures on compact Hausdorff spaces. The continuity of the payoff
function is recently proved by Glycopantis and Muir. Here we give an alternative proof that
is essentially based on existence of Milyutin maps.
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1. Introduction

For a compact Hausdorff space X, by P (X) we denote the space of probability measures
on X endowed with the weak topology. Let C(X) denote the space of continuous real-
valued functions on X. For any fixed compact Hausdorff spaces, K1 and K2, and any
f ∈ C(K1×K2), let E = Ef : P (K1)×P (K2) → R be the function defined by the formula

E(µ, ν) =

∫

K1×K2

fd(µ⊗ ν)

(here µ⊗ ν denotes, as usual, the tensor product of µ ∈ P (K1) and ν ∈ P (K2)).
The spaces P (K1) and P (K2) are interpreted as the sets of mixed strategies and the

function E as the payoff function (the expected utility function).
The continuity of the function Ef is one of its essential properties. Glycopantis and

Muir (2000) provided a proof of continuity, based on the Stone-Weierstrass theorem. In
this note we give an alternative proof based on the existence of the so-called Milyutin
maps (see the definition below). As Glycopantis and Muir (2000) do, for the sake of
simplicity, we restrict ourselves with the case of two factors.

2. Preliminaries

Note that the construction of the space of probability measures is functorial onto the
category of compact Hausdorff spaces: given a continuous map f : X → Y in this category,
the map Pf : P (X) → P (Y ) is defined by the condition

∫

Y

ϕdPf(µ) =

∫

X

(ϕ ◦ f)dµ, ϕ ∈ C(Y ).

It is well known that the map Pf is continuous with respect to the weak topology.
The following property of the tensor products is also well known; we provide the proof

for the sake of completeness.

Lemma 2.1. Let fi : X i → Y i be continuous maps of compact Hausdorff spaces, µi ∈
P (X i), i = 1, 2. Then P (f 1 × f 2)(µ1 ⊗ µ2) = Pf 1(µ1)⊗ Pf 2(µ2).

Proof. If Ai is a Borel subset of Y i, i = 1, 2, then

P (f 1 × f 2)(µ1 ⊗ µ2)(A
1 × A2) = (µ1 ⊗ µ2)((f

1 × f 2)−1(A1 × A2))

=(µ1 ⊗ µ2)((f
1)−1(A1)× (f 2)−1(A2))) = µ1((f

1)−1(A1))µ2((f
2)−1(A2))

=Pf 1(µ1)(A
1)Pf 2(µ2)(A

2) = (Pf 1(µ1)⊗ Pf 2(µ2))(A
1 × A2)

and the required equality follows from the definition of the tensor product. ¤

The following lemma can be regarded as the property of naturality of the payoff func-
tion.

Lemma 2.2. Let fi : X i → Y i be continuous maps of compact Hausdorff spaces. Given
g ∈ C(X1×X2), h ∈ C(Y 1×Y 2), denote by Eg : P (X1×X2) → R, E ′h : P (Y 1×Y 2) → R
the corresponding payoff functions. Then Eh◦(f1×f2) = E ′h ◦ (Pf1 × Pf2).
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Proof. Let µi ∈ P (X i), i = 1, 2. Then

Eh◦(f1×f2)(µ1, µ2) =

∫

X1×X2

h ◦ (f1 × f2)d(µ1 ⊗ µ2)

=

∫

Y 1×Y 2

hdP (f1 × f2)(µ1 ⊗ µ2)

(by Lemma 2.1) =

∫

Y 1×Y 2

hd(Pf1(µ1)⊗ Pf2(µ2))

= E ′h ◦ (Pf1 × Pf2)(µ1, µ2).

¤
There are different equivalent definitions of the Milyutin maps.

Definition 2.1. A continuous map f : X → Y of compact Hausdorff spaces is said to be
Milyutin (see PeÃlczyński (1968)) if there exists a continuous map ϕ : P (Y ) → P (X) such
that Pf ◦ ϕ is the identity on P (Y ).

Recall that a space is zero-dimensional if it possesses a base consisting of sets that
are simultaneously open and closed. It is known (see, e.g., PeÃlczyński (1968)) that for
every compact Hausdorff space Y there exists a Milyutin map f : X → Y , where X is a
zero-dimensional compact Hausdorff space.

3. Result

Theorem 3.1. The expected utility function Ef : P (K1)× P (K2) → R is continuous.

Proof. We consequently consider three cases.
1. K1, K2 are finite. The space P (Ki) is naturally identified with (|K i|−1)-dimensional

symplex,
|Ki|∑
j=1

αjδxi
j
7→ (α1, . . . , α|Ki|), i = 1, 2.

The map Ef is in that case a polynomial map,

((α1, . . . , α|K1|), (β1, . . . , β|K2|)) 7→
|K1|∑
j=1

|K2|∑

l=1

αjβlf(x1
j , x

2
l ),

and, therefore, continuous.
2. K1, K2 are zero-dimensional. Because of compactness and zero-dimensionality of

Ki, for every ε > 0 there exist finite disjoint open covers (i.e., partitions), V i
ε, of Ki such

that the oscillation of f on every set V 1 × V 2, where V i ∈ V i
ε, i = 1, 2, is less than ε.

Let Li
ε be the quotient space of Ki with respect to the partition V i

ε and gi
ε : Ki → Li

ε

the quotient map. Define a function fε : L1
ε × L2

ε → R by putting fε(x, y) = f(x′, y′),
where g1

ε(x
′) = x, g2

ε(y
′) = y. Then, obviously, ‖f − fε ◦ (g1

ε × g2
ε)‖ < ε.

Denote by E ′fε
: P (L1

ε)×P (L2
ε) → R the expected utility map on P (L1

ε)×P (L2
ε) for the

utility function fε. Then, by Lemma 2.2,

Efε◦(g1
ε×g2

ε)(µ, ν) = E ′fε
(Pg1

ε(µ), Pg2
ε(ν)),

and therefore, as a consequence of (established above) continuity of E ′fε
and continuity of

the maps Pgi
ε, we obtain the continuity of Efε◦(g1

ε×g2
ε) on P (K1)× P (K2). Since Ef is the

uniform limit of the sequence (Ef1/n◦(g1
1/n

×g2
1/n

)), it follows that Ef is continuous.

3. General case. Let hi : M i → Ki be Milyutin maps, where M i is zero-dimensional,
i = 1, 2. Denote by ϕi : P (K i) → P (M i) a map such that Phi ◦ ϕi is the identity on



P (Ki), i = 1, 2. Denote by E ′′f◦(h1×h2) : P (M1) × P (M2) → R the expected utility map

corresponding to the utility function f ◦ (h1 × h2). Then, arguing similarly as above, we
conclude that

E ′′f◦(h1×h2)(ϕ
1(µ), ϕ2(ν)) = Ef (Ph1ϕ1(µ), Ph2ϕ2(ν)) = Ef (µ, ν)

and the continuity of the function Ef follows from the continuity of E ′′f◦(h1×h2) established

above in 2 and continuity of Phi. ¤

4. Concluding remarks

The continuity of the payoff functions is established by Glycopantis and Muir (2000)
using one of the fundamental (and non-trivial) topological facts, the Stone-Weierstrass
approximation theorem. Our proof is based on another non-trivial fact, the existence of
Milyutin maps of a zero-dimensional compact Hausdorff space onto arbitrary compact
Hausdorff space.

The main result can be generalized for the case of arbitrary set of players, finite or
infinite. The proof in the case of infinite number of players requires technique of inverse
systems (see, e.g., Shchepin (1981)).
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