
Transportation rates, monopsony power and the location
decision of the firm 

Yeung−Nan Shieh Chiou−Nan Yeh
San Jose State University Alabama State University

Abstract

This paper investigates the impact of monopsony power on the location decision of the firm.
It shows that if the transportation rates are a function of distance only and the production
function is homogeneous of degree one, the optimum location is independent of monopsony
power. However, if the transportation rates are a function of quantity shipped and distance
traveled, a homogeneous production of degree one does not ensure independence between the
optimum location and monopsony power. This result is significantly different from the
well−known Mai−Suwanakul−Yeh proposition in the constant transportation case.
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1. Introduction 
 
    In recent years a large number of studies have attempted to integrate location theory 
with neoclassical production theory.  Most of these studies, following the pioneering 
work of Moses (1958), assume that the input markets are perfectly competitive and show 
that the optimum location of the firm is independent of the demand function if the 
production function is homogenous of degree one (see Martinich and Hurter 1990).  Little 
attention was devoted to the monopsony case.  Recently Mai, Suwanskul and Yeh (1993) 
(henceforth MSY) incorporated the monopsony market structure into the one-output, 
two-input Weber-Moses triangle and attempted to fill this gap.  Assume that (i) the 
production function is homogenous of degree N; (ii) transportation rates are constant; (iii) 
the firm is a price taker in the output market and one input market, but is a monopsonist 
in another input market.  They examined the impact of monopsony power on the location 
decision of the firm and obtained the following interesting and important proposition.  
 
MSY.  The optimum location of the firm is independent of monopsony power if the 
production function is homogeneous of degree one. (MSY 1993, propositions 1 and 2). 
 
This result crucially depends upon the constant transportation rates assumption.  However, 
it is well known that in transportation economics, discounts for quantity shipped and 
distance traveled are prevalent among various modes of transportation (see Fair and 
Williams 1975, Miller and Jensen 1978, Shieh and Mai 1984, Stahl 1987). It would be 
interesting and important to examine the impact of monopsony power on the location 
decision of the firm if transportation rates are a function of quantity shipped and distance 
traveled. 
    The purpose of this paper is to incorporate quantity and distance discounts as key 
variables into the transportation rate functions and to examine the impact of monopsony 
power on the location decision.  It will be shown that the location decision of the firm is 
not independent of the monopsony power if the production function is homogeneous of 
degree one.  This result indicates that MSY's proposition in general fails to apply. 
 

2. The monopsonistic location model 
 
    In order to investigate the connections between transportation rates, monopsony power 
and location decisions, we use a model defined by a number of basic assumptions that 
will characterize much of our analysis. 
 
(A1) A firm employs two transportable inputs (L and K) located at A and B to produce a 

single output (Q) which is sold in the output market C.  The location triangle in 
Figure 1 illustrates the location problem of the firm.  In Figure 1, the distances a 
and b and the angle π/2 > α > 0 are given. 
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 (A2) The homogeneous production function of degree N is specified as: 
 
               Q = f(L, K), fL > 0, fK > 0, fLK = fKL > 0, fLL < 0, fKK < 0         (1) 
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N(N-1)Q.  Note that subscripts are used for partial derivatives throughout the paper. 
(A3) The transportation rate functions for inputs and output are specified as: 
 
              n = n(s, L),  m = m(z, K),  t = t(h, Q)                                          (2) 
 
         where n, m and t are transportation rates of L, K, and Q; s, z and h are distances 

from the plant to the sources A, B and the output market C.  ns < 0, mz < 0, th < 0, 
nL < 0, mK < 0, and  tQ < 0.  By the law of cosines, we can express s and z as: 

 
              s = (a
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 + h

2
 - 2ahcosθ)

1/2
,  z = [b

2
 + h
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            (3) 

 
(A4) The prices of inputs and output are evaluated at the firm's location E.  The costs of 

purchasing inputs (L and K) at the plant are the prices of inputs at sources (w and r) 
plus the full freight costs (ns and mz), i.e., w + ns and r + mz. The price of output at 
the plant is the market price (p) minus the freight cost (th), i.e., p - th. 

(A5) The firm is a price taker in the output market and the input K market, but has 
monopsony power in the input L market (see Yeh, Mai and Shieh 1996).  It faces 
an upward sloping input supply curve w(L) with wL > 0.  According to Lerner 
(1934), Bronfenbrenner (1971), the degree of monopsony power can be measured 
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by the elasticity of input supply, e ≡ (dL/dw)(w/L) = (1/wL)(w/L) with 0 < e < ∞.  If 
e → ∞, the input L market is perfectly competitive and monopsony does not exit.  It 
may be noted that the lower is the value of e, the higher is the monopsony power. 

(A6) The objective of the firm is to choose the optimum location within the triangle that 
maximizes the profit. 

It should be noted that the inclusion of (A3) constitutes a major departure from MSY.  
That is, instead of assuming constant transportation rates, we now permit these rates to 
vary with quantity shipped and distance traveled. 
    With this set of assumptions, the profit-maximizing location problem can be 
formulated as: 
 
         Max π = (p-th)f(L,K) - [w(L) + ns]L - (r + mz)K                            (4) 
 
where L, K, θ and h are choice variables.  The first-order conditions are  
 
        (∂π/∂L) = (p-thu)fL - {w[1+(1/e)] + nsuL} = 0                                  (5) 
        (∂π/∂K) = (p-thu)fK - (r + mzuK) = 0                                                 (6) 
        (∂π/∂θ) = -nsθvLL - mzθvKK = 0                                                        (7) 
        (∂π/∂h) = -tvQ - nshvLL - mzhvKK = 0                                               (8) 
 
where u ≡ 1 + c, uL≡ 1 + cL, uK ≡ 1 + cK, v ≡ 1 + d, vL ≡ 1 + dL, vK ≡ 1 + dK, c ≡ tQ(Q/t) < 
0, cL≡ nL(L/n) < 0 and cK≡ mK(K/m) < 0 are the elasticity of transportation rates with 
respect to output and inputs; d ≡ th(h/t) < 0, dL ≡ ns(s/n) < 0 and dK ≡ mz (z/m) < 0 are the 
elasticity of transportation rates with respect distances h, s and z.  Following Miller and 
Jensen (1978), we assume that the elasticity of transportation rates, c, cL, cK, d, dL, and dK 
are constant, and u, uL, uK, v, vL, are vK are positive throughout the paper.  Assume also 
that e is a parameter. 
    We can solve (5) - (8) for L, K, θ, and h in terms of e, r, p, a, b and α if the second-
order conditions are satisfied.  This completes the monopsonistic location model that 
comprises the basic analytical framework. 
 

3. The impact of monopsony power on location 
 
    We are now in a position to examine the effects of a change in monopsony power on 
the production-location decision.  Applying the standard comparative static procedures to 
(5) - (8), we obtain 
 
        ∂θ/∂e = (E/KD)(F + G)                                                                      (9) 
        ∂h/∂e = (E/KD)(H + I)                                                                      (10) 
 
where 
 
        E ≡ (w/e2) > 0                                                                                   (11) 
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        F = (p-thu)(N-1)fK(πθLπhh -πθhπhL) 
                    + tQvuK[N(u/uK)-1](πθLπKh-πKLπθh)                                     (12) 
        G = nvLLuK[(uL/uK)-1][sh(πθLπKh-πKLπθh)+sθ(πKLπhh-πKhπhL)] 
              + [thfKNu(u-1)+mzKuK(uK-1)](πθhπhL-πθLπhh)                           (13) 
        H = (p-thu)(N-1)fK(πθθπhL-πθLπhθ) 
                     + tQvuK[N(u/uK)-1](πKLπθθ-πKθπθL)                                    (14) 
        I = nvLLuK[(uL/uK)-1][sθ(πKθπhL-πKLπhθ)+sh(πKLπθθ-πKθπθL)] 
              + [thfKNu(u-1)+mzKuK(uK-1)](πθLπhθ-πθθπhL)                           (15) 
 
and D > 0 by the second-order conditions.  The expressions of πij and eij (i,j = L, K, θ, h) 
would be: πLL = (p-thu)fLL - wL[1+(1/e)] - eLL, πLK = πKL = (p-thu)fLK - eLK, πLθ = πθL = - 
nsθvLuL, πLh = πhL = - (tfLvu + nshvLuL), πKK = (p-thu)fKK - eKK, πKθ = πθK = - mzθvKuK, 
πKh = πhK = - tfKvu - mzhvKuK, πθθ = - (nsθθvLL + mzθθvKK) - eθθ, πθh = πhθ = - (nsθhvLL + 
mzθhvKK) - eθh, πhh = - (nshhvLL + mzhhvKK) - ehh, eLL ≡ (t/Q)hfL

2
cu + (n/L)scLuL, eLK ≡ 

(t/Q)hfLfKcu, eKK≡ (t/Q)hfK
2
cu + (m/K)zcKuK, eθθ ≡ (n/s)sθ

2
dLvLL + (m/z)zθ

2
dKvKK, eθh ≡ 

(n/s)sθshdLvLL + (m/z)zθzhdKvKK, ehh ≡ (t/h)dvQ + (n/s)sh
2
dLvLL + (m/z)sh

2
dKvKK. Note 

that (i) if the transportation rates are independent of quantity shipped, c = cL = cK = 0, u = 
uL = uK = 1, eLL = eLK = eKK = 0; (ii) if the transportation rates are independent of distance 
traveled, d = dL = dK = 0, v = vL = vK = 1 and eθθ = eθh = ehh = 0.  It is of interest to note 
that, to derive (12)-(15), we use the first-order conditions, - mzθvKK = nsθvLL, - mzhvKK 
= tvQ + nshvLL, and the property of homogeneous function of degree N, fKK + fLL = NQ. 
    It is clear that in (9) and (10) the signs of F, G, H and I can not be determined a priori.  
Thus, we can conclude that the impact of monopsony power on the optimum location is 
ambiguous. 
   Next, we turn to the case in which the production function is homogeneous of degree 
one, i.e., N = 1.  Assuming that the elasticity of transportation rates with respect to 
quantity shipped and distance traveled are constant, we examine three specific situations: 
(1) transportation rates are constant; (2) transportation rates are a function of distance 
traveled; (3) transportation rates are a function of quantity shipped and distance traveled. 
 
3.1. Transportation rates are constant 
 
    In this case, v = vL = vK = u = uL = uK = 1, and then G = I = 0.  Thus, (9) and (10) can 
be rewritten as: 
 
        ∂θ/∂e = (E/KD)(N-1)[(p-th)fK(πθLπhh-πθhπhL) + tQ(πθLπKh-πKLπθh)]    (9a) 
        ∂h/∂e = (E/KD)(N-1)[(p-th)fK(πθθπhL-πθLπhθ) + tQ(πKLπθθ-πθLπKθ)]    (10a) 
 
It is clear that ∂θ/∂e = 0 and ∂h/∂e = 0 if N = 1.  In other words, if the production function 
is homogeneous of degree one, the optimum location of the monopsonistic firm is 
independent of monopsony power.  This is MSY's case. 
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3.2. Transportation rates are a function of distance 
 
    In this case, 1 > v > 0, 1 > vL > 0, 1 > vK > 0, u = uK = uL = 1,  and then G = I = 0.  The 
expressions in (9) and (10) become 
 
        ∂θ/∂e = (E/KD)(N-1)(p-th)fK(πθLπhh-πθhπhL) + tQv(πθLπKh-πθhπKL)       (9b) 
        ∂h/∂e = (E/KD)(N-1)(p-th)fK(πθθπhL-πθLπhθ) + tQv(πKLπθθ-πθLπKθ)       (10b) 
 
It is easy to see that ∂θ/∂e = 0 and ∂h/∂e = 0 if N = 1.  In other words, if the production 
function is homogeneous of degree one and the transportation rates are a function of 
distance only, the optimum location of the monopsonistic firm is independent of 
monopsony power. 
    This result generalizes MSY's proposition since we have not assumed constant 
transportation rates.  It is well known that in the Weberian location theory (see Weber 
1929, p. 78), the optimum location is found by considering the relative strength of three 
forces: the market pull and two material pulls.  Each force is comprised of the quantity 
and marginal transportation cost components.  If N = 1 and the transportation rates are a 
function of distance only, a change in monopsony power will not change the mix of 
output and inputs, and the relative transportation costs.  Therefore, the relative pulls of 
the output and the inputs are unaffected, and the optimum location is independent of 
monopsony power. 
 

           3.3. Transportation rates are a function of quantity and distance 
 
    In this case, 1 > u > 0, 1 > uK > 0, 1 > uL > 0, 1 > v > 0, 1 > vK > 0 and 1 > vL > 0.  If N 
= 1, the expressions in (9) and (10) become 
 
        ∂θ/∂e = (E/DK){tQvuK[N(u/uK)-1](πθLπKh-πKLπθh)+G}                          (9c) 
        ∂h/∂e = (E/DK){tQvuK[N(u/uK)-1](πKLπθθ-πKθπθL)+I}                            (10c) 
 
Since the signs of ∂θ/∂e and ∂h/∂e are not equal to zero, we can conclude that if the 
transportation rates are a function of quantity shipped and distance traveled, a 
homogeneous production function of degree one is not sufficient to ensure that the 
optimum location is independent of monopsony power. 
    This result indicates that MSY's proposition does not hold.  If N = 1 and transportation 
rates are a function of quantity shipped, a change in monopsony power will not change 
the mix of output and input, but will change the relative transportation costs.  Therefore, 
the relative pulls of the market and the input are affected, and the optimum location is not 
independent of monopsony power. 
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                                                         4. Conclusions 
 
    In this paper, we have incorporated quantity and distance discounts as key variables 
into the transportation rate functions and examined the theoretical implications of these 
variables to the effect of monopsony power on the location decision of a monopsonistic 
firm.  MSY's study focuses on the constant transportation rates case.  Our work has 
generalized the study of MSY in the sense that their results are valid only in some special 
cases. 
    Assuming that the production function is homogeneous of degree one, we show that 
the optimum location is independent of monopsony power if the transportation rates are a 
function of distance only.  In this case, MSY's proposition holds.  However, if the 
transportation rates are a function of quantity shipped, then a homogeneous production 
function of degree one does not ensure that the optimum location is independent of 
monopsony power.  This result shows that in general MSY�s proposition fails to apply.  
The upshot of our analysis is that the present of quantity discount in the transportation 
rate functions has an extremely important influence on the monopsonistic firm's location 
decision. 
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