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Abstract

People are generally reluctant to accept risk. In particular, people overvalue sure gains,
relative to outcomes which are merely probable. At the same time, people are also more
willing to accept bets when payoffs involve losses rather than gains. I consider how far
adaptive learning can go in explaining these phenomena. I report simulations in which
adaptive learners of the kind studied in Roth Erev (1995, 1998) and Borgers Sarin (1997,
2000) deal with a problem of repeated choice under risk where alternatives differ by a mean
preserving spread. The simulations show that adaptive learning induces (on average) risk
averse choices. This learning bias is stronger for gains than for losses. Also, risk averse
choices are much more likely when one of the alternatives is a certain prospect. The
implications of a learning interpretation of risk taking are explored.
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1 Introduction

Although the idea of modeling people as stimulus-response mechanisms shaped by learning

forces has a long history in psychology, it has only become popular in economics in the last

ten years or so. Reinforcement learning models have been used recently either to explain

experimental ¯ndings in strategic encounters (as do several references reviewed in Camerer

and Ho (1999)), or to give learning theoretical foundations of population dynamics used

in evolutionary game theory (BÄorgers and Sarin (1997, 2000)). These models consider the

adaptive behavior of goal oriented agents which need not be subjective expected utility

maximizers, or indeed maximizers of any sort. In fact, choices are a (stochastic) function

of earlier payo®s, while these payo®s are again a function of earlier choices. As a result,

one gets a sequence analysis of actions and payo®s in which risk attitudes does not appear

explicitly, but only `between the lines'.

This paper tries to make explicit the reactions to risk induced by reinforcement learning

processes. Then, one is in a position to analyze how far such processes provide su±cient

structure to tie down the set of possible reactions to risk.

The paper reports the result of computer simulations1 in which reinforcement learners

deal with pairwise choices between risky prospects with the same expected value. Any con-

sistent pattern showing more propensity to choose one alternative rather than the other is

interpreted as re°ecting risk preference. The central issue here is the possible connection be-

tween the attitudes toward risk resulting from adaptive learning and some patterns of actual

choices in experiments that have been extensively documented in experimental economics.

In a ¯rst block of simulations, learners choose between a certain prospect and an uncertain

one with equal expected value. I test for risk aversion over positive and negative payo®s.

Experimental and ¯eld data studies have shown greater risk aversion for gains than for losses.

Reinforcement learners show behavior consistent with this re°ection e®ect. The second

block of simulations is designed to induce violations of the independence axiom of expected

utility theory. These involve a test of the certainty e®ect or Allais ratio paradox (Allais

(1953), Kahneman and Tversky (1979)). Simulated learners, too, violate the independence

axiom in the Allais-type direction.

2 Background

Reinforcement models have been developed largely in response to observations by psycholo-

gist about human behavior and animal behavior. All of these models are built upon quan-

1 Computations in the paper were performed by the author in GAUSS. Detailed programs can be obtained
on request.
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ti¯cations of Thorndike's (1898) law of e®ect: choices that lead to good (bad) outcomes

are more (less) likely to be repeated. Implicit in the law of e®ect is that choice behavior is

probabilistic: A reinforcement learner is characterized by an initial probability vector over

alternatives and, subsequently, after each learning trial by a revised probability vector. In

this context, `learning' means updating the probabilities of taking each alternative on the

basis of the outcomes experienced. Namely, if pi(t) is a speci¯c learner's probability of

choosing alternative i on trial t, a learning model is de¯ned as a rule specifying how pi(t) is

transformed to pi(t+ 1):

Applications of reinforcement learning to economic behavior can be organized around

two models: The ¯rst is developed by BÄorgers and Sarin (1997, 2000). It is a version of

the classic Bush and Mosteller (1955) linear adjustment model in which reinforcements can

be either positive or negative, depending on whether the realized payo® is greater or less

than the agent's `aspiration level', which in turn follows a linear adjustment process too.

The second model is proposed by Roth and Erev (1995, 1996, 1998). It is a more highly

parametrized version of a quanti¯cation of the law of e®ect based on average returns proposed

by Herrnstein (1961, 1970), and adds to the BÄorgers and Sarin's model an interesting feature:

learning curves get °atter over time, a fact known as the power law of practice (Blackburn

(1936)). I now present theses models in detail for choices involving only two alternatives.

2.1 The BÄorgers & Sarin (B&S) model

In this model, pi(t) changes as a result of the alternative chosen and the outcome observed

at t ¡ 1. If the outcome exceeds the aspiration level, then the probability associated with
the action increases. If the outcome falls below the aspiration level, then the probability

associated with the alternative chosen decreases. The size of the change in pi(t) is propor-

tional to the size of the di®erence between the outcome and the aspiration level. Formally,

if ½(t) denotes the aspiration level (or reference point) at time t, probabilities of choosing

each alternative evolve in the following way: if payo® at date t is x ¸ ½(t), then the reward
associated with x is R(x; t) = x¡ ½(t) > 0, and for i = 1; 2

pi(t+ 1) =

(
[1¡ ¸R(x; t)]pi(t) + ¸R(x; t) if i was chosen at t,
[1¡ ¸R(x; t)]pi(t) otherwise.

If, however, payo® at t is x < ½(t), the reward R(x; t) is negative, and

pi(t+ 1) =

(
[1 + ¸R(x; t)]pi(t) if i was chosen at t;
[1 + ¸R(x; t)]pi(t)¡ ¸R(x; t) otherwise.

The parameter ¸ controls the e®ect of rewards in pi(t + 1), and can assume any value

guaranteeing that the absolute value of ¸R(x; t) always lies (strictly) between zero and one.

The greater the value of ¸, the faster the adaptation.
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In addition to the probability vector, the aspiration level is also linearly adjusted in the

direction of the outcome experienced. Thus,

½(t+ 1) = (1¡ ¯) ½(t) + ¯x;

where 0 · ¯ < 1. Initial values for ½(1) can be set to any value. Thus, the model is controlled
by the initial probabilities and the three parameters: the aspiration level's parameters (½(1)

and ¯) and the learning parameter ¸.

2.2 The Roth and Erev (R&E) model

In R&E's model, pi(t) changes on the basis of the history of returns that have been obtained

from the two alternatives. This memory of the average return from each alternative is

modi¯ed by the e®ect of reference points, forgetting (or recency), and experimentation,

yielding what R&E call `propensities'. Again, let R(x; t) = x¡½(t) be the reward associated
with x. Thus, if at date t the decision maker receives a payo® of x, then the propensity to

play each alternative is updated by setting

qi(t+ 1) =

(
maxfº; (1¡ Á) qi(t) + (1¡ ")R(x; t)g if i was chosen at t;
maxfº; (1¡ Á) qj(t) + "R(x; t)g otherwise.

Parameter º represents a small \cuto®" value guaranteeing that propensities remain positive.

Parameters Á and " have behavioral meaning: Á (recency) slowly reduces the importance of

past experience, and " (experimentation) prevents the probability of choosing any alternative

from going to zero.

The probability of choosing alternative i in period t is proportional to past average

propensities, i.e. for both i,

pi(t) = qi(t)= [q1(t) + q2(t)] .

Thus, the ratio of the probabilities of choosing each alternative equals the ratio of their

propensities. The task of determining initial propensities is reduced by setting S(1) =

[q1(1) + q2(1)] =X where X is the absolute value of the mean return associated with the

problem given uniformly distributed choice probabilities. According to this, initial propen-

sities follow from the initial choice probabilities and the strength parameter S(1), which

controls for the weight of initial tendencies. Notice that when S(1) is high (i.e. initial

propensities are strong) learning will be lower than when S(1) is low.

Finally, two additional parameters, !¡ and !+, control the adjustment of the reference
point following negative and positive rewards (compared to the reference point), respectively:

½(t+ 1) =

(
(1¡ !¡) ½(t) + (!¡)x if x < ½(t);
(1¡ !+) ½(t) + (!+)x if x ¸ ½(t):
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R&E calibrate their model against experimental data on two-player matrix games with

mixed-strategy equilibria played repeatedly but against di®erent opponents each time (in

order that the one shot character of each game be preserved). The calibration of the general

seven-parameter model appears in Erev and Roth (1996). The exact values taken from Table

3 in their paper are S(1) = 3, Á = 0:001, " = 0:2, ½(1) = 0, !+ = 0:01, !¡ = 0:02, and

º = 0:0001.

3 Testing for the \re°ection e®ect"

A common result in experiments conducted to elicit certainty equivalents for lotteries is that

revealed risk preferences show greater risk aversion when payo®s are positive than when

payo®s are negative, a phenomenon labelled as the \re°ection e®ect". The central issue

here is whether adaptive learning generates risk biases in the direction of showing more risk

aversion for positive payo®s than for negative payo®s, as experiments show. This gives rise

to the following hypothesis.

Hypothesis 1: Adaptive learners exhibit greater risk aversion for gains than for losses.

To examine this question, I simulate the choice situation between two pairs of alternatives.

Each pair consists of one lottery, denoted S for \safer," which pays qx with certainty, and a

mean preserving spread of S, denoted R, for \riskier," which pays x with probability q and

nothing otherwise. Measure for evaluating Hypothesis 1 consists of the comparison of the

ex-post probability of choosing S over R when x is positive (gains) and when x is negative

(losses) starting from a situation in which both choices are equiprobable. Figure 1 shows the

average results involving 1000 simulated learners over the ¯rst 500 trials for the calibrated

R&E model. The simulations assume that q = 0:5, and the ¯gures compare (i) a case of

negative outcomes in which x = ¡1 with (ii) a case of positive outcomes in which x = 1.
The simulations clearly support Hypothesis 1 for the case of the calibrated R&E model.

Although the model ultimately yields equal probabilities of choosing the safer alternative for

gains and for losses, it requires a substantial amount of experience|about 200 trials| to

reach such a result. Risk aversion for gains is weak, and learning ultimately results in risk

neutrality, but in the short run adaptive learning produces risk seeking when the returns lie

in the negative domain.
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Figure 1. Comparing risk preferences for gains and losses, R&E model

Figure 2 shows the results of a simulation of the B&S model when ¸ = 0:3, ½(1) = 0, and

¯ = 0:05. These values have been chosen to approach a similar distribution for gains and for

losses in about 200 choices, the same amount of experience needed in the calibrated R&E

model.2 Again, choosing the less risky alternative is more likely when possible outcomes

lie in the positive domain than when they are negative. However, unlike the case of the

R&E model, learning that conforms to the B&S model produces risk averse behavior both

for losses and for gains, and this behavior persists by the end of the 500 trials.

Figure 2. Comparing risk preferences for gains and losses, B&S model

2 Since the B&S model does not employ intermediate propensities and therefore the speed of learning
quickly exceeds that of the R&E model, this implies that initial learning must be slower than in the calibrated
R&E model.
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It is reasonable to expect that if the di®erence in riskiness associated with the two

alternatives were reduced (by increasing q), so would be the re°ection e®ect. This is indeed

the case for R&E learners. Figure 3 shows the di®erence between gains and losses in the

probability of choosing the safer alternative after 75 trials3 as a decreasing function of q.

For the B&S model, however, this relation is non-monotonic (see ¯gure 4).

Figure 3. Difference between risk preferences for gains and losses in the

R&E model after 75 trials

Figure 4. Difference between risk preferences for gains and losses for

the B&S model after 100 trials

3 This was the amount of experience at which the di®erence between p(t) for gains and for losses in the
calibrated model attained its maximum when q = 0:5. The B&S model with ¸ = 0:3, ½(1) = 0; and ¯ = 0:05
required more experience (about 100 trials) to reach its maximum.

6



Figures 3 and 4 above contain also information regarding the e®ect on risk taking of the

learning rate (i.e. parameters S(1) and ¸) keeping the remaining parameters as in simulations

1 and 2. Low values of S(1) and high values of ¸ are associated with fast learning. As might

be expected, fast learning accentuates the tendency towards risk aversion in the positive

domain, slow learning reduces it|provided the initial probabilities of choosing the various

alternatives are equal.

4 Testing for the \certainty e®ect"

Among the experimental challenges to expected utility theory, perhaps the most systemat-

ically observed violation of the theory refers to the systematic `over-valuation' of outcomes

that are considered certain, relative to outcomes which are merely probable. This anomaly

(from the expected utility theory point of view), appears in a class of systematic violations

of expected utility theory known as the certainty e®ect or Allais ratio paradox (see for in-

stance, Kahneman and Tversky (1979 p. 266)). In this section I test for this e®ect in

adaptive learning.

A simple test of the certainty e®ect involves choices between a prospect S, with r chance

of y, or 1 ¡ r chance of 0, and a prospect R, with qr chance of x, or 1 ¡ qr chance of 0.
Probability q is kept ¯xed, and experiments measure the e®ect of r on choices. The null

hypothesis is that choices are independent of r, as the independence axiom of expected utility

theory predicts. In the classic experiments x and y are positive, and y is chosen to be equal

to (or slightly smaller than) qx. Thus, any risk averse expected utility maximizer would

chose S for all r (or else R for all r if the subject were a risk seeker). The certainty e®ect

occurs when S is chosen in problems with r = 1 and R is chosen in problems with r < 1.

Starting as early as in Allais (1953), researchers have found considerable evidence that this

e®ect is a systematic property of risk attitudes, for a wide range of parameter values. This

provides the basis for the following hypothesis.

Hypothesis 2: When faced with choice problems which mimic experimental tests of the

certainty e®ect, adaptive learners exhibit Allais-type behavior.

I employed the same simulation procedure as in the previous section. Figure 5 illustrates

the certainty e®ect using the calibrated R&E model. It shows the e®ect of r on probability

of choice of the safer alternative, S, over 500 trials, where x = 1, q = 0:5, and y = qx. As

the hypothesis states, certainty accentuates the tendency toward risk aversion, though the

impact on choices probability is low (always below 1%).
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Figure 5. Comparing risk preferences for certain and uncertain outcomes,

R&E model

Figure 6 shows a much stronger certainty e®ect associated with the B&S model where again

¸ = 0:3; ½(1) = 0 and ¯ = 0:05. With these parameters, a decrease in the value of r from

1 to 0:9 leads to a di®erence in the average probability of choosing S which remains above

5% for more than 200 trials. The relation between the ratio r and the di®erence between

the probabilities of choosing S and R for two di®erent values of the learning parameter ¸ is

shown in Figure 7.

Figure 6. Comparing risk preferences for certain and uncertain outcomes,

B&S model
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Figure 7. Effect of r in risk preferences after 100 trials, B&S model

5 Relevance to modelers?

As long as risk taking is interpreted within a framework of preference maximization, our un-

derstanding of risk attitudes is expressed in terms of features of utility functions. According

to this interpretation, a considerable amount of time and e®ort has gone into the quest for

models of preferences that try to accommodate at least the most widely observed behav-

ioral regularities. Nowadays, however, the idea that there is a simple and coherent model of

preferences that accommodates all experimental anomalies (from an expected utility point

of view) is appearing more and more unattainable. See, for instance, Loomes (1998) and

Selten, Sadrieh, and Abbink (1999).

A learning perspective provides a di®erent view of the sources of risk aversion and risk

seeking. Risk preference can be interpreted as a learned trait, rather than a consequence of

prior utilities. Be that as it may, there is a spectrum of experience and expertise, with novices

at one extreme and solid expected utility maximizers at the other, and little, if anything,

was known about how to place a given choice problem along this spectrum. In this paper we

have seen that this question depends, among other things, on whether the choices are about

gains or losses, and payo®s are certain or uncertain. One lesson we draw is that Hypothesis

1 and 2 in the paper are likely to be found even among experienced subjects. Indeed, fast

learning (i.e. in which behavior is modi¯ed rapidly in response to feedback) is especially

likely to produce these biases. This fact may give pause to the traditional argument favoring

the use of expected utility theory (and its special case, risk neutrality) on grounds of an

appeal|often implicit|to learning forces.

A second lesson concerns which aspects of choice theory under risk deserve future re-
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search. An obvious follow-up of this paper is to conduct experimental study on the e®ect of

learning on risk taking. Also, it should be checked if the same learning models used here can

predict other important phenomena, such as branch independence, cumulative independence

or violations of stochastic dominance.
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