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1. Introduction1

A novel growth model is studied in which there are autonomous, endogenous processes2

for both the creation and destruction of technologies. These processes are separate in that3

they are the result of decisions made by different agents, although both are influenced by4

equilibrium market forces. While in much of the existing literature the destructive process5

appears to be a (regrettable) consequence, or secondary effect, of the innovative activity,6

here the destructive process is of equal importance to that of innovation, and if the former7

were to cease, then so would the latter. This model will permit the study of how these8

autonomous decisions interact to produce an equilibrium growth rate and enables the study9

of why each of these decisions may not be made optimally.10

Important contributions to the literature on economic growth have been made by the11

study of models that capture the notion of “Creative Destruction”. However, in many of12

these models the “creative” mechanism is indistinct from the “destructive” mechanism, in13

that they are really the same process. It is apparent that such models do not capture the14

true nature of the “destructive process” in market economies, wherein products or firms are15

purged due to the change in factor or product prices, which ultimately reduce the profitability16

of older firms or technologies.17

As an example, consider the novel growth model of Aghion and Howitt 1992, in which18

there are innovations in the technology for producing an intermediate good. In their bench-19

mark model innovators are given a monopoly, which lasts until some other producer develops20

a lower-cost technology. The incumbent is then displaced from the market. In this sense,21

the creative and destructive channels are really indistinguishable.1 Actual markets rarely22

1There are many other papers that have a similar linkage between the entry and exit of firms or technolo-
gies, such as that of Grossman and Helpman 1991b, or Klette and Kortum 2004. Grossman and Helpman
study a model in which the incumbents are not necessarily driven out of the market completely, but instead
they are forced into making zero profits. Aghion and Howitt also consider this case. In this instance, there
are at most two participants in the market, so it is not quite a monopoly. But again, in these frameworks
the innovative and destructive processes are essentially the indistinguishable. In the paper by Klette and
Kortum, firms can produce a multitude of goods, but if another firm successfully innovates in producing an
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function in this manner, since vibrant sectors typically have many firms that have varying1

technologies. Furthermore, this approach does not capture the notion that these entry and2

exit decisions are generally made by different agents or firms, and that one person’s (or3

firm’s) innovation does not necessarily compel the incumbent to leave. It is important to un-4

derstand and model the exit decision properly because this exodus must inevitably influence5

the innovation decisions, and vice versa.26

In this paper, there will be separate endogenous creation and destruction processes.37

The development of new technologies is influenced by expected future destruction or exit,8

while destruction is influenced by expected future innovation and the change in factor prices.9

However, in equilibrium the development channel makes existing technologies more costly10

to operate, and therefore reduces the incentive to keep them operational. Therefore, the11

number of operational technologies (or firms) will be determined endogenously. In addition,12

the separate destruction or exit decision by an incumbent is characterized as an optimal-13

stopping problem, and is then the result of that firm-owner behaving optimally.14

The uncoupling of the creative (or innovative) and destructive (or exit) decisions is also15

important because it is then possible to build these autonomous decisions into a planning16

problem, and to compare these separate optimization conditions that result from such a17

problem with those that might arise from an equilibrium. It is then possible to assess why18

existing good, then the incumbent automatically loses the right or ability to produce that good. Once again,
the incumbent must exit the market when another firm innovates.

2There are other papers in which incumbent firms exit an industry, while newer firms enter. For example,
Luttmer 2007 presents a model that is used to characterize the size distribution of firms. In his paper, firms
face exogenous variations in productivity, which eventually leads to mandatory exit from the market when
they can no longer cover their fixed costs. However, Luttmer does not study many of the issues addressed
here, such as why the equilibrium exit decision may not be socially optimal manner, or how this decision
affects the incentives for innovation, or how government policies might alter this decision to achieve a better
outcome. There are other models such as firms exit at a random, exogenous rate (Jones and Kim 2018).

3It may be worthwhile before proceeding to establish the terminology that will be employed. In the
context of the present discussion, the term “destruction” refers to the voluntary shutdown of a firm due to
low productivity, or the voluntary withdrawal of a product from production due to low profitability. That is,
the destruction is a result of market forces. What is not meant by this term is the shutdown of a firm or the
termination of production due to government intervention or regulation, or of a competing firm encourage
government authorities to target a firm.
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there might be too much, or too little innovation, as well as whether there is the proper1

degree of destruction of older technologies.2

In much of the existing literature, it seems that the creative or innovation activity is3

viewed as beneficial, while the destructive process is seen as an unfortunate by-product of4

innovation. However, by separating the creative and destructive processes, it is possible to5

show that these activities, though interrelated, have a more complex relationship. It will be6

shown that the Creative forces have both a negative and a positive consequence, while the7

same can be said for the Destructive process. The Creative Process has a natural positive8

impact because it results in more productive technologies. However, it also has a negative9

consequence because it raises the cost of resource inputs to all existing firms which makes10

these existing technologies less profitable. Similarly, the Destructive Process has a negative11

effect because it results in older firms shutting down, and resources moving on to existing12

firms. Nevertheless, this process also has a positive impact because it results in reduced13

growth of resource factor prices, which in turn makes existing firms more profitable. This14

latter effect raises the incentives to innovation, which raises the future growth rate.15

The model studied here has other novel features. First, in contrast with most represen-16

tative agent models that are reticent on such topics as income mobility and inequality, here17

it is possible to characterize a measure of income inequality, as well as the Gini Coefficient.18

The model also highlights the role that inequality can play: it is both necessary for growth19

to occur, but also an outcome of the equilibrium. Secondly, it is possible to derive con-20

ditions under which growth will not occur, and under which there can be a continuum of21

zero-growth equilibria. Third, in the model the degree of firm destruction and as well as the22

expected lifetime of a firm are features that can be characterized as endogenous character-23

istics of the model. Fourth, in contrast to many other extant models, this one does not rely24

on market power (i.e. such as monopolists) to generate innovation or growth. Therefore,25

any distortions in the model will not result from non-competitive forces. Fifth, in many26
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existing models the presence of an intertemporal spillover (or externality) will imply that1

there will be too little innovation or growth. In contrast, the model studied below will have2

an intertemporal spillover, but nevertheless this economy may produce either too high or low3

a level of innovation or growth. Sixth, by severing the direct linkage between the creative4

and destructive decisions, this permits the study of how government policies might influence5

these processes independently. For example, it is possible to study the impact of a policy6

that subsidizes the creation of new technologies, while simultaneously taxing the destruction7

of old technologies. Such a policy would seem impossible to study within the context of most8

extant models.9

While the model studied here has a simple structure, it nevertheless exhibits some key10

features of growth dynamics documented in the work of Decker, Haltiwanger, Jarmin and11

Miranda 2014. In both the model and in the data younger establishments tend to have higher12

productivity than do incumbents. Additionally, entrants tend to have a disproportionately13

large, and prolonged impact on job creation. However, one notable difference between the14

model, and the findings surveyed in Decker et al. is that they find that a non-trivial fraction15

of actual innovation is produced by existing firms, as opposed to new firms. While it would16

seem that this feature could also be incorporated into a version of the model studied here, it17

is a simplifying assumption of the present model that innovation is produced by new entrants18

alone.19

The model presented below also has the benefit of having considerable empirical support20

or justification. For example, the model yields a weak and non-linear relationship between21

the growth rate and tax rates. Stokey and Rebelo (1995) and Jaimovich and Rebelo (2017)22

document the lack of a strong relationship between tax and growth rates, and the non-linear23

relationship between these two. This is very important because in their empirical results,24

Jaimovich and Rebelo report that in some panel regressions, although the capital tax is25

modestly, negatively correlated with the growth rate, the labor tax turns out to be positively26
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related to the growth rate. It is not obvious that many models could explain such a result.1

Typically, the labor tax would reduce employment, lowering the labor/capital ratio, which2

would lower the return to capital, which in turn would lower the growth rate. Fortunately,3

at least for plenty of parameter values, the model presented here can replicate this fact: a4

profit tax can lower growth, while a labor tax would raise growth marginally.5

The model studied below has many features in common with Jaimovich and Rebelo6

2017, even though the two models are quite different, and focus on quite different issues.7

Both models have agents segregate into workers and researchers, both yield a non-linear8

relationship between the growth rate and parameters such as the tax rate, and can produce9

an equilibrium in which the growth rate is relatively unresponsive to changes in the tax10

rate. Also, in both models the median voter may wish to impose a tax on firms that11

marginally reduces the growth rate. One important difference between the two models is12

that Jaimovich and Rebelo assume that individuals are heterogeneous in their entrepreneurial13

ability. In contrast, in the model studied below, there will be a distribution of income14

across a population that is ex-ante homogeneous. This allows the resulting inequality to15

be attributable solely to the economic decisions and outcomes, rather than to any prior16

assumptions about differences in agents talents. And once again, their model does not17

include any notion of a destruction or exit decision by some agents.18

2. Description of the Model19

Time is assumed to be continuous, and there is no aggregate uncertainty. There are a20

continuum of agents and the population size is normalized to unity. In the steady-state there21

will be agents who are workers while (1−) who will be termed firm-owners or managers,22

and these quantities will be determined endogenously, since the agents will choose whether23

they work, or manage a firm. There will be a dynamic evolution of agents from workers to24

business (or firm) owners, and this movement will accompany and be related to the growth25
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rate.4 Workers supply one unit of labor, and the managers will use their unit of time to1

manage the firm. The analysis will initially presume that there in an internal solution for2

the optimum, but later there will be some analysis of equilibria at corner solutions.3

2.1. The (static) problem of the firm4

Each firm-owner has access to a production function  ( ),  ∈ (0 1), for producing the5

generic consumption good, with labor as an input. The variable   0 denotes the technology6

parameter for a particular firm-owner, which is fixed while this firm is in operation. At any7

date , there is a firm with the leading, or best technology, which will be labelled ̄. It will8

be supposed that there is a distribution of technologies, which will be denoted  (), which9

is defined over some interval Λ ≡
£
 

¤
.10

The firm-owner can hire labor in a competitive market at a price of , and this price

will change over time. The owner of a firm maximizes profits, which are written as follows:

 = max

{ ( )− } 

The resulting profit-maximizing condition results in the following demand for labor:  =11

³



´ 1

1−
 The indirect profit function is then written as12

 = ()
1

1− ()


1− ()

−1 (1− )  (1)13

For a particular firm, since the technology parameter  is fixed, the following relationship14

must hold: ̇

= 

−1
¡
̇


¢
 0. It will be seen that if this economy is growing at a constant15

rate, the wage will then exhibit growth at this rate, which in turn implies that the profitability16

of each firm will be falling. The profit will continue to fall until the firm shuts down.17

It must be that the quantity of labor available equals the quantity demanded by all firms.18

Note again that  is the amount of labor available. Let  () denote the distribution of19

4The evolution of agents between operating a firm and entering the labor force is similar to that in
Luttmer 2012.
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technologies in period . Equating the aggregate demand for labor to the supply () then1

results in the following equation which determines the date  wage:2


1

1−
 =

1



Z

Λ

()
1

1−  ()  (2)3

Note that the wage is homogeneous of degree one in all . That is, if all the technologies4

of all firms in the economy were to be scaled up by some factor, then this would also be the5

case for the wage as well. The equilibrium below will be one in which  is proportional to6

, and in this case (̇) =
³ 

̄̄
´
.7

2.2. The Distribution of Technologies8

It will be convenient to put structure on the distribution of the technologies of the firms.9

Henceforth, we will let  ≡
¡
̄

¢
denote the “relative technology” of a particular firm,10

which possesses technology parameter , when the best, or frontier, technology is ̄ at that11

date. Obviously  ranges between =
¡
̄

¢
and unity. On a balanced growth path,12

the distribution of  will be assumed to be time-invariant. It can then be shown, through13

the use of the Kolmogorov forward equation that the density must satisfy  = (1) over14

the interval [ 1].5 This implies that the distribution  () will be a truncated reciprocal15

distribution.616

Since there are 1− firms, and their relative technologies are distributed with density17

 = (1)  over the interval [ 1], it then follows that18

1− =

Z 1



µ
1



¶
 = − ln () . (3)19

5I am indebted to a referee for pointing this out.
6The reciprocal distribution is limit of the Pareto distribution, as the latter’s shape parameter approaches

zero. Fortunately, there is some empirical support for this feature. Luttmer 2011, 2007 finds that the size
distribution of firms can be closely approximated by the Pareto distribution. This has led researchers to
construct growth models which give rise to such a distribution (for example, Acemoglu and Cao 2015, and
Luttmer 2012). Obviously the “truncated” nature of the distribution employed here is a simplification used
to characterize the distribution in a convenient manner. Similarly, estimates of income distribution also
imply a Pareto distribution, at least at the upper tail, which is similar to that produced by the model (see
Cao and Luo 2017, as well as Jones and Kim 2018).
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Since  can range from zero to unity, it follows that  can range from −1 to unity. Because1

a high value of  implies that there are few firms, it seems that  can also be interpreted2

as one possible measure of firm destruction.3

Along a balanced growth path it the frontier technology ̄ will grow at some rate .4

Therefore, for a firm with a fixed technology , it must be that ̇

= −.5

2.3. Workers and Firm-Owners6

All individuals are risk-neutral, and so merely wish to consume their income. Their7

preferences are a function of the discounted stream of consumption (,  ≥ 0) 78

Z ∞

0

−
£
 − 

¡
 ̄

¢¤
 (4)9

where  is the rate of time preference.8 At any date there are two types of individuals. There10

are workers, who supply their unit of labor inelastically and earn the market wage, which is11

the consumed  = .
9 Additionally, there are firm-owners, or managers, who use their time12

to manage their firm. These firms hire labor at the market wage, in order to maximize profit13

(). The firm-owner has proprietary ownership over his technology (), and so owners of14

inferior technologies cannot costlessly upgrade or steal superior technologies.15

Workers are also permitted to use some additional time or effort () to attempt to16

discover a new technology, which may eventually permit them to become a firm-owner, or17

manager. It seems appropriate to identify this as time spent in the pursuit of research or18

innovation. This activity is successful with some probability  (·), but also has disutility19

7There is an alternative interpretation of the model in which each new firm produces a new commodity
that provides more services than previous ones, and so there is creation and destruction of commodities.
This approach is similar to that employed by Grossman and Helpman 1991a.

8The use of linear preferences simplifies the model but the analysis could also be conducted for any of the
CRRA preferences, with a suitable modification of the  (·) function. One advantage of the present approach
is that when making welfare comparisons there is no benefit from redistributing output across agents.

9The reader will realize that there is nothing intrinsic to the model that necessarily means that this factor
must be “labor”. It could alternatively be given any other name. It is merely important that there be some
factor of production, which is in limited supply, that is owned by individuals, which is mobile across firms
or technologies, and that this factor be priced and allocated through a competitive market.
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−
¡
 ̄

¢
.10 This is the basis of the “creative process” in the economy. A worker who is1

successful in inventing a new technology suddenly possesses the frontier technology (̄), but2

this is at the frontier only momentarily. Firm-owners cannot engage in this activity, and3

so for them  = 0 (and  (0 ) = 0). One could interpret this “research sector” as being4

an informal, or non-market, sector within which all innovation conducted.11 The amount5

of effort expended by an agent in discovering a new technology () cannot be observed by6

other agents, and so it is not possible to engage in contracts contingent on the amount of7

effort (), or the outcome from such effort. The cost and benefit of this informal innovative8

process is fully internalized by the individual alone.9

One can imagine a multitude of factors that might influence the function  (·). Clearly it10

should be increasing in the of level of , and so frequently below the shorthand notation of11

 () will be used. However, one could envisage more complicated formulations that capture12

the ability of some economies to obtain newer technologies from more advanced economies.13

It is assumed that firm-owners spend all their effort managing their firm, and cannot14

upgrade their technology parameter (). Firm-owners always have the option of disposing15

of their technology (i.e. shutting down their firm) and becoming a worker at the market16

wage.12 This will be part of the “destruction process” of older technologies. However, only17

10The rationale for having this function depend up on ̄ is that as the leading technology rises, the benefits
of innovation are increased, but so are the costs.
11One interpretation would be that workers work for a wage, and then spend extra time, informally

puttering around, and there is some prospect this activity will be very profitable. This is certainly motivated
by economic history. Many momentous inventions were produced by individuals who were not employed in
research labs, or universities, but instead were people tinkering around in their leisure. For example, the
Wright brothers were merely two capable mechanics who had bicycle shop but who, in their spare time,
loved to play around with things that might fly. This is also (or perhaps especially) true of the electronic
revolution over the past century. Issacson 2015 describes the multitude of inventions that have given rise to
electronic, computer, internet, and IT revolutions. Issacson repeatedly refers to people discovering things in
their garage in their spare time. The word “garage” arises recurrently in this narrative, especially so when
talking about the history of Silicon Valley. Reading this history one gets the impression that most of the
discoveries were made by people, many of whom would never graduate college, working long hours in their
garages, and that the company offices or laboratories were merely places where these inventors congregated
the next day to brief others on the progress of their research effort.
12All workers and firm-owners always have the option of using one of their old technologies to re-start an

old firm. However, for reasons that will become clear, this is an option that they will never utilize.
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workers have the opportunity to develop or invent a new technology. This activity requires1

effort or disutility. When new technologies or firms are developed, this raises the demand for2

labor which increases the equilibrium wage. This increases the costs and reduces the profits3

of existing firms. At some juncture an owner of an older firm will find his profit sufficiently4

eroded that he will elect to shut down the firm, and to become a laborer. At this point he5

can begin to seek to obtain a new technology, which will give rise to a new firm in the future.6

There will then be a churning of workers and firms as this economy grow.7

2.3.1. The Optimization Problem for a Worker8

With a slight abuse of notation, let  and  denote the date- value functions for a9

representative worker and firm-owner, respectively. These functions are implicitly a function10

of the distribution of technologies of operational firms, but given that distribution, the11

leading technology
¡
̄
¢
is a sufficient state variable for these value functions.12

All workers are treated identically, irrespective of their history. Therefore, they will all13

devote the same amount of effort () in obtaining an idea or new technology () which might14

become productive. As mentioned above, the effort that they expend in discovering a new15

technology is not observable by others.16

It is assumed that workers have discoveries that arrive according to a Poisson arrival rate.17

Let  (·) be the probability of such innovations, and this rate  (), is solely a function of .18

At each instant the flow of utility for a worker is the wage () net of research effort19

expended (
¡
 ̄

¢
). In addition to the wage he receives the increased value of the job (̇),20

plus with some probability ( ()) he acquires a new technology so that he switches from21

being a worker, to managing a firm (with value function 
¡
̄
¢
). Each worker takes the wage22

, and the leading technology
¡
̄
¢
as given while expecting to receive a new technology

¡

¢

23

for himself, should his research effort be successful. Therefore, the dynamic programming24
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problem of worker is then written as following Hamilton-Jacobi-Bellman equation:131

 = max


n
 − 

¡
 ̄

¢
+ ̇ +  () ·

£

¡
̄
¢
−

¤o
 (5)2

The optimization condition, for an interior optimum, is written as follows:3

1
¡
 ̄

¢
= 0 ()

£

¡
̄
¢
−

¤
 0 (6)4

This condition determines the equilibrium amount of innovation (). The right side of5

equation (6) is the relative benefit from engaging in research or innovation (), while the left6

side is the marginal cost. Clearly, the greater is the benefit, as expressed by
¡

¡
̄
¢
−

¢
,7

the greater will be the amount innovation. But this reward
¡

¡
̄
¢
−

¢
also reflects8

the amount of inequality in payoffs to the different agents. It follows that the amount of9

innovation is then likely to be linked to the degree of income inequality, and policies instituted10

to reduce this inequality are likely to reduce innovation.11

If it can be shown that equations (5) and (6) imply that if , 
¡
 ̄

¢
, and 

¡
̄
¢
, are12

all homogeneous of degree 1 in all , then so will, and ̇. Therefore, it will be convenient13

to let 
¡
 ̄

¢
=  () ̄, where  (·) is strictly convex and differentiable. This means that14

the utility cost of research becomes greater as ̄ increases.
14 This assumption implies that15

both sides of equation (5) are homogeneous of degree one in all , and this in turn makes16

both sides of equation (6) also homogeneous as well. This feature will be exploited below.17

2.3.2. The Optimization Problem for the Owner of a Firm18

Consider a specific firm-owner who has access to a fixed (i.e. unchanging) technology 19

at date-. This firm generates a flow of profit of . Using some cryptic notation, the value20

function for this firm-owner is then written as  =  + ̇.21

13An alternative, but roughly equivalent formulation, is to assume that the individual gets to consume his
wage, less some fraction () of this wage income that is spent on research. Consumption of the individual is
then (1− ).
14Under the formulation suggested in the prior footnote this latter assumption would not be necessary,

since research effort () would be proportional to the wage, which is homogeneous of degree one in all of the
operational technologies.
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As wages grow, the value function for a worker () will be rising. But since ̇ 1

0, because the technology for a firm is fixed,  will be falling over time. Hence, for an2

operational firm it must be that  () ≥  (), and as soon as this equation holds with3

equality, the individual will shut down the firm and become a worker. Hence the HJB4

equation can then be written as follows:5

 = max
n
 + ̇ 

o
 (7)6

This last equation characterizes the optimal stopping problem faced by a firm-owner,7

who must decide when to shut down his firm. Suppose that this shutdown date is denoted8

 . Then the solution to this equation is given by the following expression:9

 =

Z 



−(−)+ −(−)  (8)10

Here the value () is actually the discounted value of the profit of the firm, plus an American11

put option. The put option entitles the owner of the firm to sell it (i.e. ownership of the12

profits), or really dispose of it, at any date for the value  . This equation satisfies the13

value matching condition ( =  ) that insures that the welfare of a firm-owner is equal14

to that of a worker, when the former decides to become a worker.15

It is shown in the Appendix that this expression also satisfies the smooth-pasting condi-16

tion which would imply that ̇ = ̇ . The optimal shutdown, or exit date ( ) of the firm17

is chosen optimally in equation (8), and this condition is also developed in the Appendix.18

A sample path for the value functions for an individual is illustrated in Figure 1. Here19

the individual begins as a worker, and then at a random date he obtains a new frontier20

technology, and his value function jumps upward, but then falls and converges to the value21

function for a worker, at which time he then switches (shutters his firm) to become a worker22

again. Then the process repeats itself at random times in the future.23
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2.3.3. Characterizing the Steady-State Equilibrium24

It will be convenient to characterize the steady-state behavior of the model, in which1

there is a balanced growth rate. From equation (2) it can be shown after some algebra that2

the wage can be written as  = , where3

 = 

∙
1



Z 1



()
1

1−  () 

¸1−
= 

∙µ
1− 



¶³
1− 

1

1−
´¸1−

 (9)4

Aghion and Howitt term  the “productivity-adjusted wage”. Similarly, for a firm with5

relative technology  =
¡
̄

¢
∈ (0 1], using equations (1) and (2) it is possible to show6

that profit can be written as () = ̄ ()
1

1− , where7

 = (1− )

∙
1



Z 1



()
1

1−  () 

¸−
= (1− )

∙µ
1− 



¶³
1− 

1

1−
´¸−

 (10)8

It seems natural to refer to  as the “productivity-adjusted profit” for a firm at the techno-9

logical frontier (i.e.  = 1). Similarly  ()
1

1− would be the “productivity-adjusted profit”10

for a firm with relative technology .1511

As mentioned above, the value functions, and the distribution of the firm productivities12

are characterized by the leading or frontier technology (̄) at any date. The wage and the13

profit of all firms will be homogeneous of degree one in (̄). In the Appendix it is shown14

that since equation (8) is homogeneous in (̄) it is possible to re-write it as ̄ (), where15

 (·), henceforth referred to as the normalized value function, is given by the following:16

 () = 1 ()
1

1− + 2 ()
−()+1 (11)17

where18

1 =


 +
¡


1−
¢  and 2 =

h
 − 1

h
()(

1

1−)
ii
()(1)(−)  0 (12)19

The first term in equation (11) represents the discounted value of the firm’s profits, if the20

firm is operational forever. Since  is falling over time, this term is also falling. The second21

15The expressions in square brackets in equations (9) and (10) essentially amount to the productivity-
adjusted ratio of the number of firms, to the number of workers. Therefore, it makes sense that equation (9)
is then increasing in this ratio, while equation (10) is decreasing.
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term (involving 2) reflects the fact that at some future date, when  = , it is advantageous22

for the firm-owner to cease operating the firm, and to become a worker. The term 2 is then1

the discounted value of switching at the optimal time. Since the exponent
³
−+


´
 0 , this2

term is rising over time as  falls. Note again that  () = .3

The equation describing the worker’s value function (5) can now be written as4

 =
n
̄ −  (∗) ̄ + ̇ +  (∗)

£
 (1)−

¤o
 (13)5

where ∗ is the optimally-chosen value of research. Note that equation (13) is homogeneous6

of degree one in ̄. Also, the worker knows that in the event of obtaining an innovation,7

it will be right on the technological frontier (̄). As a result of the homogeneity, note that8

̇

= . Henceforth, the value functions for the worker and the firm-owner will be written as9

̄ , and ̄ (), respectively, while and  () will be termed normalized value functions.10

Therefore dividing equation (13) by ̄, allows this to be written as follows:11

 =  −  (∗) + +  (∗) [ (1)− ]  (14)12

where the latter equation has exploited the fact that an agent who discovers a frontier13

technology immediately has technology ̄.14

It is shown in the Appendix that the solution to the optimal stopping (or exit) problem15

faced by a firm with an existing relative technology , is given by1616

 ()
( 1

1−) = ( − ) (15)17

This expression states that a firm manager with technology parameter  = ̄, (or tech-18

nology  relative to the frontier) would be indifferent between being a firm-owner, earning19

profit  ()
( 1

1−) ̄, or being a worker at that instant. Since the frontier technology (̄) is20

continuously increasing, the firm-owner would then switch to being a worker at that point.21

16An equivalent expression can be derived from choosing  optimally in equation (8), or maximizing
equation (11) with respect to , and evaluating the result at  = .
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Prior to this shutdown, or exit date, the profit from owning a firm is greater than the right22

side of equation (15).1

The condition for optimal research is then given by2

0 () = 0 () [ (1)− ]  (16)3

Henceforth, ∗ will denote the solution to this last equation. Equation (14) then yields the4

following expression for the normalized value function for a worker5

 =
 −  (∗) +  (∗) (1)

[ −  +  (∗)]
 (17)6

It should be clear that the value functions of the two types of agents are interdependent.7

Factors that influence one of these programming problems will then influence the other.8

For example, a change in, say, the tax on wages, would then undoubtedly affect both value9

functions, and then also impinge on both optimization conditions, which are influenced by10

the size of these value functions.11

Lastly, the growth rate is a function of the number of people engaged in research (i.e.12

workers) and the rate at which they acquire the capability to become firm-owners. Therefore,13

it is consistent with the feature that the technologies are distributed as truncated reciprocal,14

that the growth rate will then be characterized in the following functional form:15

 =

·

̄
̄
=  ()  (18)16

This equation is important in that the growth rate is a function not just of the amount of17

research effort expended by each worker, but also by the size of the population engaged in18

this activity. Therefore, in response to some change in the environment, it is possible for19

research effort () to fall, but for the growth rate to rise, if  also rises. Note also that from20

equation (3), the values of  and  are closely linked, and the latter is the measure of firm21

destruction. Therefore, equation (18) shows that it is a salient feature of the model that the22

growth rate is the product of the rates of creation or innovation ( ()) and a measure of23
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destruction (), and so both are equally important in contributing to the growth rate. The24

job and firm creation rate is positively related to the growth rate, which seems consistent1

with what we observe about these rates.17 Also, the simple nature of equation (18) is a result2

of the fact that all innovation is conducted by new entrants, rather then by existing firms.183

2.3.4. Summary of the Equilibrium Conditions4

A competitive equilibrium on a balanced growth path for this economy consists of time-5

invariant values for the eight variables (   (1)  ,  ) which satisfy the fol-6

lowing equations (3), (9), (10), (11), (14), (15), (16), and (18). Equation (9) is the market7

clearing condition for labor while equation (3) equates the number of firm-owners to the8

number of operational firms. The general equilibrium structure of the model means that9

the growth rate (), the level of innovation (), and the rate of destruction ( or ), are10

determined jointly with the wages for workers and the profit for firms. All firms and workers11

behave competitively, and maximize utility or profit while treating market prices paramet-12

rically.13

At this point it is possible to clearly identify the salient features of the equilibrium.14

First, the exit or destruction of firms is just as integral to the realization of growth as is15

the innovation activity, and if the exit were to cease, then so would growth. Next, at any16

moment in time, the separate entry and exit decisions, given by equations (16) and (15)17

17While the firm dynamics of the model are certainly not identical to what we observe in all respects,
they are model are broadly consistent with the documented behavior of firms. For example, in the model
younger firms have unusually high innovation intensity, higher total factor productivity, and high employment
growth. Decker, Haltiwanger, Jarmin and Miranda 2014 document that this is certainly what is observed
in the US economy. They describe how young establishments tend to have substantially higher productivity
than existing establishments. In addition, startups have a disproportionately large impact on net and gross
job creation, which is certainly true in this model as well. One point of departure is that in the data,
existing firms do continue to innovate. In order to preserve the simplicity of the model, this feature was not
incorporated. It seems possible to build this feature into the model with some added complications. The
model adopts an extreme view of the observation, documented by the Acemoglu and Cao 2015, that new
entrants appear to engage in more radical innovation than do incumbents. Lastly, the model also predicts
that any slowdown in innovation can be traced to new innovators or firms, which is one interpretation of
what has taken place in recent years.
18This feature greatly simplifies the analysis of the model. This contrasts with models, such as Acemoglu

and Cao 2015, where innovation is undertaken by both incumbents and entrants.
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respectively, are made by different decision-makers. Additionally, it is possible to see that18

increased innovation (i.e. through a change in “”) has a positive impact on growth, through1

equation (18), which can raise welfare. However, greater innovation raises the future cost of2

labor, and lowers the future profit for existing firms (lowering 1 in equation (12)).
19 Next,3

consider the destruction decision, as measured by either  or . A higher value for this4

would reduce wages (, in equation (9)), raise profit (, in equation (10)), shorten the5

lifetime of firms, and raise the growth rate (in equation (18)). Together these changes have6

an ambiguous effect on welfare. In summary, both the creation and destruction decisions7

both have their separate positive and negative consequences.8

Before proceeding it seems appropriate to note what the role that the reciprocal distribu-9

tion for the technologies () is purchasing. This feature simplifies the formulae in equations10

(9) and (10). This provides a convenient association, through equation (3), between the11

number of people operating firms, and the rate of firm destruction. Lastly, it simplifies12

equation (14) because the value function ( (·)) for a person who discovers a new frontier13

technology is then proportional to the leading technology at that moment.14

3. Analysis of the Model15

Despite the simplicity of the model, because the general equilibrium, or feedback effects16

are so Byzantine, it is difficult to use analytical methods to establish how various parameter17

or policy changes influence such endogenous features, such as the growth rate. Nevertheless,18

it is possible to establish some important properties that will hold in such an equilibrium.19

Proposition 1 The function  (), from equation (11), consists of two terms, one of which20

is increasing in  while the other is decreasing. This function has the property that  ()


 0,21

for   1, and  ()


→ 0, as  → 1.22

19Also, see Proposition (2) below.
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This means the normalized value function must be falling over time, even though there23

is the beneficial prospect that future wages are rising. The case in which  → 1 means that24

firms have an infinitesimal lifetime, and so the value of such a firm cannot decline excessively.1

Proposition 2 From equation (11) it is possible to establish the following:

 (1)

1

1


 0 and
 (1)


 0

The first expression is the effect that destruction has on existing firm owners. The higher2

is the growth rate, the quicker the profit will deteriorate for these firm owners which makes3

them worse off. The second effect shows that increased growth can be better for firm owners4

for several reasons. First, the higher will be welfare of these agents when they subsequently5

terminate operations of their firm, and become a worker. Secondly, the higher is growth, the6

sooner the existing firms reach the shutdown threshold, and then choose to cease operating7

(holding the shutdown threshold () constant). Third, higher growth will lower the shutdown8

threshold (), and therefore, the sooner the firm will reach it. It warrants repeating that9

while a marginal increase in the growth rate benefits workers, it can reduce the welfare of10

existing firm owners.11

A separate characterization of the value functions  and  (1) is problematic because12

these two functions are interrelated. However, the following is a useful and intuitive result.13

Proposition 3 Equations (11) and (17) imply that

 ( (1)− )


 0

 ( (1)− )


≤ 0

with the latter derivative holding strictly when   1.14

On the surface this seems obvious: raising the reward to firm-owners (workers) relative15

to workers (firm-owners) increases (decreases) the relative difference in the value function.16
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But this also implies that a policy such as using a profit tax to fund lump-sum transfers will17

lower the size of ( (1)− ). This will lower the reward to research, which is given on the18

right side of equation (16). This in turn will influence the growth rate.1

Additionally this result suggests that the growth rate can be decreasing in the profit2

tax but increasing in the labor tax. Jaimovich and Rebelo 2017 document that these exact3

effects can be found in some panel regressions.4

The following are results regarding inequality, or relative incomes, in the model.5

Proposition 4 The ratio of incomes () is increasing in  (or equivalently ). Ad-6

ditionally, along a balanced growth path,  ()
( 1

1−)  .7

The first statement says that the ratio of the highest income to the lowest income is8

positively related to a measure of the rate of firm destruction. This is a constructive result9

because it turns out that this measure of inequality is highly correlated with other measures,10

such as the Gini coefficient. The second statement asserts that at the time at which the firm11

shuts down, the firm’s profit will exceed the market wage.12

In an equilibrium, if the cost of innovation is sufficiently low then there should be some13

positive growth, as is shown in the following result:14

Proposition 5 If  (0) = 0 (0) = 0, and 0 (0)  0, then on a balanced growth path   0.15

It is interesting is to investigate how this economy might display zero growth. One16

method of characterizing this situation is now described.17

Proposition 6 If 0 (0)   (0) = 0, or if  (0) = 0, then there may exist an equilibrium in18

which  = 0.19

In this case the marginal cost of engaging in research () can be greater than the benefit,20

and hence no research takes place ( = 0), even if  (1)−  0, and so  = 0. In this case21

the system has 6 equations and unknowns .22
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This is a useful and important result. This shows that in economies where the relative23

costs to innovation or research are sufficiently high, there will be no growth. Any possible24

reduction in this cost, or an increase the returns (e.g. raise 0 (0)) can facilitate the promotion1

of growth. Another important point that arises here is that, although equation (16) suggests2

that inequality, as reflected in  (1) −  0, is necessary for economic growth, it is not3

sufficient. In this case the firm owners will never shut down their firm, and therefore there4

will be neither creation nor destruction of new technologies. This shows that in economies5

in which the relative costs to innovation or research are not sufficiently high, there will be6

no growth.7

Furthermore, this result illustrates why one might observe similar economies contempo-8

raneously exhibiting different growth rates, even if they have the same interest rate. It can9

be that they have different values for the functions  () or  (). That is, they have different10

cost or reward functions for the process of acquiring new technologies.11

Corollary 7 If, in addition to the conditions of this no-growth equilibrium, it is the case12

that  ()
( 1

1−)   , then there are a continuum of equilibria with  =  = 0.13

In this case the “marginal” firm, or owner of the firm with the worst technology, is14

receiving profit that is higher strictly greater than the equilibrium wage. The continuum15

results from the fact that it is possible to shift a few agents from being firm-owners to16

workers, and although this would marginally affect the equilibrium wages and profit (17

and ), it would not change them sufficiently to initiate any growth.18

The following establishes how to characterize the lifespan of a typical firm, a measure of19

the rate of firm destruction, as well as the degree of income mobility.20

Proposition 8 The length of time that a firm is operational is calculated as follows: ̂ =21

− ln()


= 1−


 The average time it takes the worker to cycle through from initially becoming22
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a worker, to becoming a firm-owner, and finally shutting it down, is  = 1

2023

There is one final “non-result” that is of note. The characterization of the factors that24

influence the growth rate is not straightforward, despite the simplicity of equation (18).1

A beneficial alteration in the environment, such as an increase in the probability of an2

innovation  () does not necessarily result in a higher growth rate. The reason is that3

although this would appear to increase the equilibrium amount of research (), from equation4

(16), and likely raise welfare ( ), from equation (17), equation (15) also suggests that this5

could also raise the value of (), which means that  also rises. This effect would then lower6

the growth rate in equation (18). This is where the (endogenous) level of firm destruction,7

which is inherent in the level of () or  , will influence the growth rate.8

4. Further Characterization of an Equilibrium9

To obtain further insights into the behavior of the model it is necessary to put more10

structure on to it, and then study specific examples. To this end, the following form will be11

used for the  (·) function12

 () = 
1+

1 + 
(19)13

where    0. Much of the analysis below is only used to illustrate some features of the14

model, and is not intended to mimic any specific economy. Unless stated otherwise, the15

following parameter values will be used for the benchmark economy:  = 07  = 6516

 = 1  = 038  = 10. These values produce a resulting equilibrium growth rate of17

3%. Some of these parameters (e.g.  ) have usual justifications. For others, it is not clear18

how to arrive at an appropriate value. For example, normally the value of (1) might be19

thought of as related to the labor elasticity, but some reflection would reveal that this is20

not the case here for several reasons. First, there is no intensive margin of employment.21

20Using equation (18) it is possible to see that  () = (1−) ̂ , which equates the flow of new firms
created to the flow of firms that cease production.
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Secondly, the choice of  is not an employment decision, and in fact it is the opposite: The22

choice of  reflects the agent’s desire to exit the labor force, and to manage a firm.2123

In general it is problematic to employ such an explicit model to attempt to mimic an1

actual economy because models with linear preferences frequently give implausible results.2

In particular, these preferences imply an infinite intertemporal elasticity of substitution of3

consumption, and this in turn can imply an implausibly large change in the growth rate in4

response to a change in the after tax return.5

4.1. Inequality and Taxation6

It has been a long-standing research issue to investigate the relationship between the7

level of income inequality and the corresponding growth rate (see, for example, Greenwood8

and Jovanovic 1990, or Jones and Kim 2018). In many models, inequality is the result from9

growth, but here the inequality is both the cause and the result of growth. It is shown in10

Huffman 2018 that this model has a Gini coefficient that is straightforward to characterize,11

and this is useful for studying how various policies might have an impact on this measure12

of inequality. In particular, the levels of creation and destruction certainly influence how13

income is allocated across the population.14

In general, it is the case that the Gini coefficients tend to be decreasing in the profit15

tax. However, the relationship between inequality and labor taxation is more complicated.16

An example of this is shown in Figure 2, for the benchmark model. In this case, the Gini17

coefficient is shown as a function of the tax rate, for both the labor and profit, and revenue is18

given back to individuals as a lump-sum transfer. As can be seen, it appears that inequality19

is decreasing in both taxes for this economy, but this effect is more pronounced for the profit20

tax. Raising the profit tax reduces inequality because this amounts to redistributing income21

21Additionally, it is natural to suppose that the parameter  represents “labor’s share” of income. However,
as mentioned above (see footnote 9), a literal interpretation of this as labor may not be appropriate, and
instead it may represent any finite resources that are mobile across alternative technologies. To the extent
that resources are not mobile across various firms or industries, the parameter  may have to take on a much
lower value.
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from richer to poorer agents.22

The effect of the labor tax on inequality may seem puzzling: How can a policy, that taxes23

relatively poor workers and transfers some revenue to richer firm-owners, reduce inequality?1

The general equilibrium effects dictate that the labor tax will cause  to fall, which implies2

business destruction falls. Essentially, an increase in the labor tax increases the incentive3

for workers to engage in research, and makes firm-owners want to keep their firms operating4

for longer. This implies there will be fewer workers and more firms in equilibrium, which5

results in marginally lower income inequality. This experiment illustrates the complicated6

factors that influence the determination inequality within such a model. Also, since both7

taxes lower inequality, but they have the opposite impact on growth, this illustrates the8

complicated relationship between growth and inequality.9

As indicated earlier, some degree of inequality, as reflected in the size of ( − ), is10

vital for growth to motivate individuals to engage in the research activity (). There are11

other models in which greater inequality may accompany higher growth (see, for example,12

Greenwood and Jovanovic 1990). This is true here, but additionally some degree of inequality13

is requisite for growth. This effect is partially attenuated since it can be shown that  ln()


14

 ln()


, and so a small change in the growth rate can also reduce inequality of welfare.2215

4.2. Growth and Taxation16

It has been recognized that in the US there seems to be very little relationship between17

the growth rate, and various measures of income taxation (e.g., see Jaimovich and Rebelo18

2017, Stokey and Rebelo 1995).23 It is then somewhat of a test of any model to see if it can19

replicate this (non) relationship. Therefore, consider the benchmark model without taxes,20

22Again, it is not the case that the welfare of all firm-owners is elevated by a marginal increase in the
growth rate.
23There is mounting evidence for this result. Mendoza, Milesi-Ferretti and Asea (1997) also find that

growth rates are invariant to labor, consumption, or capital tax rates for the OECD countries. Piketty,
Saez and Stantcheva (2014) study this issue for many of the OECD countries, but they do not look at these
individual taxes. Instead they study income tax rates, and specifically the rates for the top 1% of earners.
But again, they find no relationship between these taxes and growth.
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in which the growth rate is 3.0%. If an income tax (i.e. on both labor and profit) of 30% is21

introduced, with the resulting revenue distributed in a lump-sum manner, the growth rate22

is only reduced to 246%. This is a reduction that is sufficiently small that it is unlikely1

to be detected in the data.24 Raising the value of the parameter  reduces the impact on2

growth even further, as (1) seems to act like an elasticity of the growth with respect to3

the tax rate. In fact, for sufficiently large values of , raising the profit tax can result in a4

very modest increase in the growth rate. This effect will be further illustrated below.5

As mentioned above, the model would seem to imply that while a profit tax would lower6

growth, a labor tax would raise it. This is true for the benchmark economy. This is not7

a result that typically arises in growth models since a labor tax usually results in a lower8

labor-capital ratio, which lowers the return to capital, and thereby reduces the growth rate.9

Fortunately there is some empirical support for this. Jaimovich and Rebelo 2017 find that in10

some panel regressions, which include time and fixed effects, that the growth rate is positively11

related to the labor income tax rate, while negatively related to the capital tax rate, and12

these results are significant.2513

Also, for the case in which research is paid out of worker’s post-tax income, so that14

consumption equals  (1− ) (see footnote 13) it can be shown analytically that equal15

labor and profit taxes of any magnitude will not affect the growth rate if the revenue is not16

transferred back to individuals.17

24These reductions in the growth rate are of a similar magnitude, whether the government revenue is
destroyed, or given back to individuals in a lump-sum manner.
25This result suggests yet another reason why it could be difficult to uncover any empirical relationship

between tax rates and growth rates. Suppose that various economies employed different levels of the income
tax but relied on taxing labor and capital to the same degree. Further, suppose that, like the model, the
growth rate was increasing in the labor tax rate but decreasing in the capital tax. Then studies, like that
of Piketty, Saez, and Stantcheva (2014), which focus on the relationship between income taxes and growth
would be unlikely to find much of a connection.
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4.3. Factors Influencing Firm Destruction18

An innovative feature of this model is that gives rise to an endogenous level of firm exit,19

or destruction. It is then instructive to investigate how various factors influence this exit1

rate. First, it is essential to determine how to measure this feature. One approach is to let2

“” denote an ordinal measure of destruction, since this is inversely related to the number3

of firms. An alternative measure of destruction is the inverse of the average time a new firm4

will spend being operational. This time-span is given by the variable ̂ = 1−

.5

Next, it is necessary to vary some feature of the model to study how this influences the6

level of destruction. Varying the tax rates seems like a natural candidate. Figure 3a shows7

how both  and
³
1̂

´
vary, as the labor tax rate changes, for the benchmark economy, and8

the resulting revenue is distributed in a lump-sum manner.26 Increases in the tax rate lead9

to lower levels of  , and higher levels of ̂ , both of which indicate a lower level of business10

exit. Increased labor taxation results in more operational firms, and these firms produce for11

a longer period of time.12

Next, Figure 3b shows how both  and ̂ vary in the steady-state, as the tax rate on13

profit changes, for the benchmark economy. This example shows that these measures of14

business destruction do not always move in the same direction. In this instance, raising the15

profit tax results a higher level of both  and ̂ . This results in fewer firms, but also a lower16

growth rate. Since the latter effect overwhelms the former, the value of ̂ rises.17

This result is important for another reason. It seems to be an interesting but open18

question as to whether there is a “cleansing effect” of recessions, in that a recession may19

have a beneficial effect of reducing the economy of low-productivity firms. To the extent20

that comparative dynamics exercises should be taken seriously, an increase in the tax rate21

on profit will reduce the growth rate, and so could have a similar observed effect to that22

of a recession, since the growth rate falls. Suppose one were to take the level of ‘ ’ as the23

26In this figure the values of both  and (1̂ ) are normalized to unity when the tax rate is zero.
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measure of business destruction, since as rises the number of firms falls. Figure 3b suggests24

that the rate of business destruction could then increase, as the low-productivity firms that25

were operating under the benchmark economy now would shut down earlier. However, it is1

not clear that this should be interpreted as a cleansing effect.2

In contrast, in Figure 3a, by raising the labor tax, which causes the growth rate to rise,3

this lowers the rate of destruction. Through this channel there would seem to be a negative4

relationship between the rate of growth and the rate of business destruction.5

5. Optimal and Equilibrium Levels of Creation and Destruction6

It is possible to construct a measure of welfare that weighs the welfare (i.e. value func-7

tions) of each of the agents in the economy, and then to use this as a measure of welfare when8

making comparisons across different decision rules, or government policies. This measure can9

also be used to construct a social planning problem for this economy. In Huffman 2018 such10

a planning problem for this economy is studied in order to investigate all of the channels11

through which the creation and destruction decisions influence welfare, and to scrutinize12

why the equilibrium decisions might not be socially optimal. This analysis shows that these13

creation and destruction decisions have a multitude of effects on the growth rate, factor14

prices, equilibrium conditions, as well as on each other. However, it seems that whether the15

equilibrium levels of creation or destruction are too high or low, relative to some optimum,16

would seem to rather case-sensitive.2717

Therefore, the remainder of this analysis will focus on how a system of taxes might18

influence welfare, as well as the growth rate.19

27In Huffman 2018 it is also shown that the Lorenz curve and Gini coefficients can be studied, and more
inequality-related experiments are presented. In addition, the model is also capable of explaining the Great
Gatsby curve. It is also shown that the price-earnings ratios of younger firms is greater than that of older
firms, even though the equilibrium rate of return in the economy is fixed at . This feature seems to
conform with what is observed about these ratios. Lastly, it is shown that the tax rates can influence these
price-earnings ratios in an interesting manner.
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6. The Model with Linear Taxation and Lump-Sum Transfers20

It is important to study the effect of simple linear government taxes with lump-sum21

transfers. It is a convenient property that the welfare functions always seem to exhibit1

single-peakedness, and frequently have an “inverted-U” shape over various tax rates.2

Panels (a) and (b) of Figure 4 present the results from a varying the labor tax rate, while3

the profit tax is zero, for the benchmark economy. The welfare function here is the value4

function of a worker ( ), who would be the median voter. As the figure shows, welfare is5

maximized by having a labor tax of 28%. This policy of transferring revenue from workers6

to firm-owners raises the growth rate, and the number of firms. Raising the labor tax above7

zero also lowers inequality, in spite of the fact that the transfer is going from the poorer8

workers to the richer firm-owners. Lastly, for this economy the growth rate is non-montonic9

in the labor tax: for modest labor taxes, further increases will raise the growth rate, while at10

higher levels, an increase will lower the growth rate. For this economy, even workers prefer11

a negative profit tax because this results in higher growth.12

Panels (c) and (d) of Figure 4 show how worker-welfare and inequality change for different13

tax rates, where  = 035,  = 0143, and  = 10. These parameter values also produce14

a steady-state growth rate of 3% when taxes are zero. In this case (worker’s) welfare is15

maximized by having a tax rate on profit of 154%.28 In the prior example workers benefit16

from growth so much that they would never wish to tax profit, but in this second example17

they are willing to do so. The reason welfare is increasing in the tax rate is not because18

growth is not important - it is as critical as ever to workers. Instead a higher value of 19

implies that research () is relatively unresponsive to an increase in the tax rate. However,20

as the tax rate rises the number of workers () rises because owning a firm is less attractive,21

and this results in a modest increase in the growth rate, through equation (18).22

28This is another feature in common with Jaimovich and Rebelo (2017): in both models the median voter
(i.e. a worker) may wish to impose a tax on firms that reduces growth somewhat, but just enough to
maximize their welfare.
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7. Welfare Improvements Through Productivity-Dependent Government Tax-23

ation and Transfers24

As indicated earlier, in Huffman 2018 a planning problem is constructed for this model1

in order to establish whether the equilibrium decision rules and welfare are optimal. Within2

this setup it is possible to see that a system of non-linear, or state-dependent taxes and3

transfers, that may raise welfare welfare. This will be illustrated below through the use of4

several examples.29 Here a system of labor taxes (), and tax rates that depend on firm5

productivity ( ()) are derived in order to maximize the welfare function, which is defined6

to be the equally-weighted function of all of the value functions:  +
R
 ()  () .7

Since the government budget constraint is continuously balanced, some of these taxes must8

necessarily be negative.9

Example 9 Consider the parameterization of the benchmark economy described in Section10

4. Figure 5 shows the tax and subsidy policy, of the sort described above, that results in11

a higher level of welfare for this economy. In this case welfare can be increased by having12

the government tax labor at a rate of 12%, and then use this revenue to subsidize firms13

according to the schedule in Figure 5. This policy implies that the high-productivity firms14

should be subsidized at rate of 55%, while the low-productivity firms are taxed at a rate of15

11.2%. Such a policy shifts resources from the workers, and owners of low-productivity firms16

(who will soon become workers), to the owners of high-productivity firms. The benchmark17

model had a growth rate of 3%, while under this alternative policy the growth rate is 3.27%.18

To understand why this policy improves welfare, note that relative to the equilibrium19

level, research effort and employment both need to be increased in order to raise welfare.20

This can certainly be done by shifting resources from the workers, and agents who will soon21

become workers, to the firm-owners, with a larger subsidy given to the high-productivity22

29The parameter values used henceforth will be the same as in the benchmark with the exception that the
growth equation (18) will now by determined as  = ()14, where  is chosen so as to imply a value for
 equal to the benchmark value of 010.
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firms. As the firms age and relative productivity falls, this subsidy is curtailed until it23

eventually becomes a tax. Since the reward to being a new firm-owner is so high, this raises24

the level of research (). But taxing owners of low productivity firms will raise the level of1

destruction, as measured by either  or
³
1̂

´
.2

It is of interest to assess the welfare improvement from such a policy. Relative to the3

benchmark, the increase in utility from the tax/subsidy policy is a welfare increase of 1.6%.4

Since utility is linear in consumption, it seems appropriate to view this as equivalent to5

an increase of 1.6% in initial consumption for all agents. Note that because this welfare6

improvement derives from taxing relatively poor workers and firm owners, and transferring7

subsidies to richer owners of young firms, this results in a substantial increase in inequality.8

Example 10 Now consider the same parameterization as in the previous example, but now9

let  = 05. In this case, with no taxation the equilibrium growth rate is 1.36%̇. The10

solution to the problem of maximizing welfare with the system of non-linear taxes, described11

above, results in a growth rate of 1.30%, so the equilibrium growth rate is too high. In12

this equilibrium there is too much of research, and also too much employment (or firm13

destruction) in equilibrium.14

Figure 6 shows the implied tax and subsidy policies that result from this constrained15

planning problem. In this case welfare can be raised by having the government impose a16

labor subsidy, or negative tax, of 4.6%. The tax on firms, as shown in the figure, ranges17

from -3.3% on the owners of the low productivity firms, to a tax of 17% on the owners of the18

high productivity firms. As can be seen in the figure, this tax scheme is not linear, and has a19

slightly concave feature. Such a tax scheme certainly reduces the amount of research effort,20

since the benefit of being a firm-owner is reduced. Similarly, the subsidy to low-productivity21

firms helps raise the overall number of firms, and hence lowers the level of firm destruction22

( or
³
1̂

´
).23

The welfare increase resulting from this system of taxes and subsidies, relative to the equi-24
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librium is 0.25%. Because this welfare improvement derives from subsidizing relatively poor25

workers and firm owners, and taxing richer owners of young firms, this reduces inequality.26

These examples are instructive for several reasons. First, suppose the welfare-enhancing1

tax policies resulting from this last example were imposed on such an economy. An inde-2

pendent observer of this economy would see that the government is certainly imposing a3

distortional tax/transfer policy between firms that certainly looks like the government is4

“picking winners and losers”.30 Not only that, but this policy would reduce the growth rate.5

All of this is true, but it results from the government trying to maximize welfare. The reason6

this policy improves welfare is that the planner recognizes that the level of research, as well7

as the rate of firm exit (or destruction) are decisions that need to be altered.8

Additionally, this last example illustrates other novel features. In most models with9

intertemporal spillovers for research, the optimal policy is to subsidize research to take10

advantage of this externality. However, in this last example there is such a spillover, but11

nevertheless it is welfare-enhancing to reduce research. What is missing from other models in12

the existing literature is that they do not have an autonomous and endogenous destruction13

(or firm-exit) decision. In this last example the planner is using this feature, but reducing the14

amount of destruction, and to some extent this offsets the reduction in research, and changes15

the incentive to engage in research. This example shows that by ignoring the endogenous16

exit behavior of firms, or omitting the destruction feature, much of the existing literature is17

ignoring an important feature that contributes to the incentives for innovation and growth.18

Another noteworthy feature of these examples is that the welfare improvements are not19

linked only to the growth rate, in spite of the fact that preferences are linear in consumption.20

In the first example, the non-linear taxes raise the growth rate from 3% to 327%, and this21

results in a welfare benefit of 1.6%. In the second example, the non-linear taxes lower the22

growth from 1.36% to 1.3%, and this raises welfare by .25%̇. We are accustomed to assuming23

30But since such a government policy is known in advance, it no more constitutes “picking winners and
losers” than does a progressive or regressive tax code.
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that there are substantial welfare benefits from raising the growth rate. These examples show24

that these benefits may be much different than previously thought.25

Another interesting question that one might wish to pursue would be to study the effect1

of introducing a tax or fixed cost of dissolving the firm, and laying off the resulting labor.2

This issue is studied in Huffman (2019) which is a two-country version of a related model3

used to study offshoring. In this setting, introducing such cost or tax results in lower growth4

and welfare because it lowers the return to innovation. That is, raising the cost of ceasing5

operations is an indirect tax on initiating operations as well. Also, firm-owners will delay6

shutting down operations to delay paying the cost, and as a result the overall quality of pro-7

ductivity will be reduced. Although this can raise wages, the effect on growth can offset the8

impact on wages and certainly reduce welfare. While these results seem quite intuitive, they9

also have a policy implication that may surprising: in order to raise the growth rate it may10

be appropriate for the government to encourage low-productivity firms to cease operating11

by paying them to do so.12

These examples highlight another feature that is potentially very important, which is13

largely absent from many growth models. Despite the fact that there may be many firms14

engaged in production, these examples suggest that they should not be treated the same —15

some should be subsidized/taxed at different rates. It is then an interesting question as to16

what other ways in which these firms or agents should be treated differently. Decker et el.17

2014 identify a number of interesting facts that would seem to be important to incorporate18

into a growth model. For example, they say that existing establishments account for roughly19

60% of industry-level productivity growth, with entry and exit accounting for some of the20

residual. They also state that while existing firms typically continue to innovate, younger21

firms have a higher innovation intensity. It would take a richer model than the one studied22

here to explain these facts, but it would seem that this is a fruitful avenue for future research.23
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8. Final Remarks24

It is an accepted fact that a growing economy is organic in nature, and exhibits a continual25

birth and mortality of products and technologies. Yet most studies of economic growth fail1

to model the separate decisions that give rise to these distinctive phenomena, and therefore2

cannot assess whether these decisions are made optimally, and how these decisions interact3

to influence the growth rate.4

Integral to the study of optimal growth is the determination of the appropriate incentives5

for agents to seek innovations of new technologies. Some of these incentives reflect the ability6

for innovators to capture some of the market share, or resources of older incumbents. This7

frequently means that the innovation process leads to the eventual termination of older8

technologies. It can then be a mistaken step of logic to conclude that the destruction of9

older technologies is an unfortunate by-product of innovation. The analysis presented here10

uses a simple model to show why this is not the case, and instead both the creation and the11

destruction effects have mutually beneficial and detrimental effects. The study of optimal12

growth, and the development of the optimal incentives to obtain this growth rate, must13

weigh the different impacts of these autonomous decisions.14

Much of the existing literature focuses on developing the proper incentives for optimal15

innovation alone, in determining the optimal growth rate. What this literature ignores is16

that it is equally important to provide the proper incentives for the optimal retirement or exit17

of older firms or technologies, since the exit and innovation decisions are interrelated. This18

analysis also suggests that the ideal government policy in this model may be quite different19

from that is most existing growth models. There may be good reasons for imposing tax20

or subsidies that depend on the productivity (or profit) of the firm, in order to provide the21

correct incentives for both innovation or exit. Also, the presence of an intertemporal spillover22

need not necessarily imply that there is too little innovation (and growth) in equilibrium.23
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