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Abstract
We assess systematic risk in the U.S. banking system before and after the Panic of 1873 using a combination of linear

programming and computational optimization to estimate the interbank network based upon total gross and net

positions of national banks a week before the crisis. We impose various liquidity shocks resembling those of 1873, and

find the network can capture the distribution of interbank deposits a year later. The network may be used to predict

banks likely to panic (i.e., change reserve agent) in the crisis. The identified banks see their balance sheets weaken in

the year after the crisis more than other banks. The results shed light on the nature and regional pattern of withdrawals

that may have occurred in a classic 19th century U.S. financial crisis.
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1 Introduction

Understanding the susceptibility of financial systems to systemic risk, and particularly the

contribution of interbank credit relationships to that risk, has taken on renewed urgency

in the wake of the 2008 global financial crisis. With a few notable exceptions, however,

empirically analyzing actual interbank relationships presents a challenge given that total

gross and net positions of banks can typically be observed from balance sheets but detailed

information about particular correspondents is usually confidential.1 Moreover, the rise

of complex financial assets and increases in off-balance-sheet activities make it nearly

impossible to assess risk based on financial statements alone. This was less the case for

the United States in the early 1870s when the vast majority of banks were organized

under national charters. This “National Banking System” experienced a panic and crisis

in 1873 that shares key features with 2008, including credit shortages and system-wide

stress driven by speculation in assets that turned out to be overvalued. At the same

time, the simpler portfolios held by U.S. banks in this period render their balance sheets,

which survive from the early fall of each year as recorded in the Annual Reports of the

Comptroller of the Currency , more informative of their condition than their modern-day

counterparts. Less developed systems for the transfer of information and goods also made

physical distance more important then for choosing interbank partners than it is now –

while the internet and electronic market places now make it easy for banks to interact

with any counterparty in the world, this was not the case in 1873.

We use these analytical advantages together with the regulatory constraints of the

time to assess systemic risk in the U.S. banking system before, during, and after the

Panic of 1873. We do this through a unique combination of linear programming and

computational optimization, implemented on a high performance computer cluster, that

allows us to estimate the interbank network and the parameters of a given utility function

for banks simultaneously using balance sheet data reported a week before the start of the

1See Mistrulli (2011) for an example using the types of more detailed information that is often restricted
to regulators, e.g., Basel Committee on Banking Supervision (2015). There is also an active theoretical
literature addressing the effects of financial contagion on networks, for example Acemoglu et al. (2015).
See Glasserman and Young (2016) for a review of both aspects.
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crisis.2 Using this network, we show that, consistent with historical observation, direct

counter-party risk was small, i.e., an unrealistically large shock would be required for a

significant number of banks to fail. Indeed, losses from the few banks that failed during the

crisis played a minor role compared to the liquidity shortages in New York and elsewhere

caused by spontaneous deposit withdrawals, temporary suspensions of convertibility of

bank notes into specie, and their eventual effects on the distribution of interbank deposits

across banks. Comparisons of our network for 1873, after imposing various liquidity

shocks, with actual post-crisis balance sheets from the fall of 1874 show that our network

predicts which banks became subject to panics with striking accuracy. The results increase

our understanding of a major historical crisis by demonstrating the robustness of the

National Banking System, despite its apparent deficiencies, and point to the usefulness of

network analysis in separating counterparty risk from other systemic components when

investigating disturbances in modern banking systems.

Our approach is deliberately broad. Other recent studies (Calomiris and Carlson, 2016;

Paddrick et al., 2016) using rich data on actual interbank balances from national bank

examiners’ reports stored in the U.S. National Archives offer insights on aspects of the

network, but the archives are incomplete and the data insufficiently broad in geographic

coverage or synchronized in timing to permit comprehensive analysis of a single nationwide

event. Paddrick et al. (2016), for example, shed light on how interbank relationships and

the associated balances changed between banks in New York and a set of correspondents

in Philadelphia and Pittsburgh between 1862 and 1868, and in turn with those country

banks that used these Pennsylvania banks as redeeming agents. Our approach, in contrast,

while not using specific pairwise interbank positions, analyzes the entire banking system of

the time. We do this using the structure of reserve requirements and the gross interbank

positions of all national banks between the fall of 1873 and 1874 to build a system of

interbank linkages that, given the 1873 shock, accurately lines up with observed changes

in aggregate interbank balances.

2The final results presented in this paper require approximately 130,000 hours of computation time
to calculate.
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The crisis of 1873 was among the more severe under the National Banking System,

which was in effect from 1863 until the founding of the Federal Reserve in 1913. The Na-

tional Banking Laws of 1863 and 1864 created the new system to finance the Union effort

during the Civil War by requiring bank notes be secured with federal bonds rather than

the varied collections of assets that individual state banking authorities had previously

accepted as collateral. Federal control of the collateral required to issue bank notes was

an improvement over the earlier system in which banks were granted charters by state

legislatures and often based on political considerations, or under state free banking laws

where weaker collateral was often accepted. The National Banking Laws also imposed

a 10 percent tax on note issues of existing state-chartered banks, which led nearly all

to either exit or convert to national charters by 1866, and created a Federal agency, the

Office of the Comptroller of the Currency, to administer and provide oversight for the

system.

The period leading up to the crisis can be characterized as one of general overbuild-

ing in railroads financed by securities for which the risks were insufficiently understood.

The resulting balance sheet vulnerabilities among banks in New York City, which had

made large call money loans to support these projects, eventually led investors through-

out the nation to re-evaluate their portfolios, and the failure of the investment bank Jay

Cooke & Company on 18 September 1873 served as a catalyst for the crisis. Although

Cooke was not a national bank but rather a private trust, its failure was followed by large

withdrawals of individual and interbank deposits from several New York banks which,

according to Sprague (1910, p. 15), had been “directly responsible for the satisfactory

working of the credit machinery of the country.”Interestingly, only 101 banks (1.68 per-

cent) including seven national banks closed throughout the country in direct response to

the panic (Wicker, 2000, pp. 6, 143), yet the consequences of the crisis on the distribution

of interbank deposits throughout the nation turned out to be quite substantial.
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2 Model

The analysis considers the network and distribution of interbank deposits among national

banks before and after the crisis. In carrying out its monitoring role, the Comptroller

required banks to submit reports of their condition at periodic “call dates,” and these

reports provide the raw data for our analysis. In this section we describe the data and

how they are used to estimate the interbank network.

2.1 Data

The networks are based on balance sheets published in theAnnual Report of the Comptroller

of the Currency for the years 1873 and 1874.3 The 1873 report includes data for all 1,976

national banks operating in the United States on 12 September 1873, while the 1874 re-

port includes the 2,001 operating national banks on 2 October 1874. These banks account

for more than 88 percent of bank capital in the United States in 1874.4 The first date

occurs shortly before the failure of Jay Cooke & Company (Sprague, 1910), and offers a

benchmark for the condition of the banking system before the crisis.5 The 2 October 1874

date represents the nearest reporting date a year after the shock. The balance sheet data

were collected using optical reading software and then checked by hand. Latitudes and

longitudes of all banks were obtained using Google maps and measured at the geographic

center of each municipality.

Each balance sheet includes information on a bank’s total interbank deposits. The lia-

3https://fraser.stlouisfed.org/title/?id=56#!19089

4The rise of deposit banking and checking services made note issuance less important as a source of
bank profits as the 19th century progressed, and eventually fueled a resurgence of State banks outside of
the National Banking System after 1885. There had already been some gains by 1874, however, with the
number of State banks reaching 551 (or nearly 22 percent of the total). These state banks are excluded
from our network analysis due to lack of complete and detailed balance sheet data, but were generally
much smaller with an average capital of $108 thousand compared to nearly $250 thousand for national
banks (Annual Report of the Comptroller of the Currency 1877, pp. IV, XCI).

5Trusts were already an important part of the financial system in 1873, especially in New York, and
it is not surprising that a trust company was at the center of the initial shock. Given that there were
only 35 trusts nationwide, however, and all were located in the Northeast and with an average capital of
$625 thousand, they could not have been a key element in the redistribution of national bank deposits
that we examine (Annual Report of the Comptroller of the Currency 1877, p. XCII).
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bilities side shows the value of deposits “due to national banks,” while the assets side lists

deposits “due from other national banks”6 and “due from redeeming agents.” Redeeming

agents were themselves national banks located in designated “reserve cities,” which played

a specific role in the regulatory mechanism.7 Under the National Banking Laws, banks

outside of reserve cities were required to keep 15 percent of their circulating notes and

customer deposits as cash, two thirds of which (i.e., 9 percent) could be kept as deposits

at national banks in the reserve cities. The reserve city banks were themselves required to

keep 25 percent of their circulating notes and deposits as cash but half of this (i.e., 12.5

percent) could be kept in banks in the central reserve city - New York. National banks

in New York City were then required to keep 25 percent of their circulating notes and

deposits as cash. For non-reserve city (i.e., “country”) banks, the “due from redeeming

agents” item contains the total amount the bank had on deposit in national banks in

reserve cities and the central reserve city, whereas for reserve city banks it represented the

amount deposited in New York City.8 These rules, as reflected in the reported interbank

balances, provide the structure for the network model we describe below.

Table 1 summarizes the interbank positions of banks in each reserve city in 1873 and

1874. New York, as the central reserve city, is the largest holder of interbank deposits, with

its total position more than four times that of Boston, the next largest city. The remaining

reserve cities sizes are widely distributed from San Francisco with only two banks and

$220k of interbank deposits to Boston with 51 banks (more than New York) and $16m of

interbank liabilities. The significant impact of the panic on interbank deposits in New York

City is clearly seen, with a reduction of approximately $6m. This reduction was greater

than observed across the banking system as a whole, meaning that a significant amount

was redistributed with Boston and Chicago as the primary beneficiaries. Unfortunately

6The 1874 report replaces this entry with “due from other banks and bankers ” which additionally
includes state banks.

7The reserve cities in both 1873 and 1874 were Albany, Baltimore, Boston, Chicago, Cincinnati,
Cleveland, Detroit, Louisville, Milwaukee, New Orleans, Philadelphia, Pittsburgh, San Francisco, St.
Louis, and Washington, D.C.

8This value is zero by definition for the national banks in New York City.
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Table 1: Summary of the balance sheets of reserve city banks by city in 1873 and 1874

Due from Due from Due to Other
1873 Banks Redeeming Agents Other Banks National Banks
Albany 7 2,891 1,042 2,549
Baltimore 14 2,629 816 2,990
Boston 51 8,905 3,263 16,063
Chicago 19 3,748 1,605 6,114
Cincinnati 5 1,669 602 3,178
Cleveland 6 613 520 357
Detroit 3 526 432 322
Louisville 6 330 189 412
Milwaukee 4 732 152 756
New Orleans 9 798 585 465
New York 48 - 17,818 71,574
Philadelphia 29 5,478 3,818 7,024
Pittsburgh 16 2,265 814 1,546
San Francisco 2 413 192 22
St. Louis 8 1,293 321 1,791
Washington 3 161 33 79
Sum 230 32,450 32,199 115,240

Due from Due from Due to Other
1874 Banks Redeeming Agents Other Banks National Banks
Albany 7 4,415 2,999 2,321
Baltimore 14 2,166 816 1,577
Boston 58 9,770 3,249 20,075
Chicago 19 4,907 2,925 7,247
Cincinnati 5 1,539 783 2,546
Cleveland 6 903 466 265
Detroit 3 743 626 452
Louisville 9 407 707 896
Milwaukee 4 463 234 395
New Orleans 7 209 285 269
New York 48 - 14,604 65,384
Philadelphia 29 5,534 3,326 6,750
Pittsburgh 17 1,579 861 1,335
San Francisco 2 98 404 157
St. Louis 7 835 559 1,718
Washington 4 214 97 103
Sum 239 33,779 32,940 111,489

Note: The table reports the number of banks in each reserve city along with selected balance
sheet quantities, aggregated at a city level, in 000’s of US dollars from the Annual Reports of

the Comptroller of the Currency in 1873 and 1874. New York, as the central reserve city and
ultimate redeeming agent, does not have any redeeming agent balances.
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the data do not allow us to measure the actual quantities of interbank balances transferred

between institutions or cities. Rather, we observe only the aggregate holdings of each

bank, so if a bank were both to gain interbank deposits from some counter-parties and

lose them from others we would know only the net change. We can also identify a lower

bound for actual interbank deposit transfers from the available data by looking at the sum

of absolute changes in the “due to other national banks ”balance sheet entry across all

banks. This figure, divided by two to account for deposits going out of one bank and into

another, puts the minimum level of change at over $25m. It is important to emphasize

that this is a minimum and in reality the change would have been much larger.

2.2 Network Construction

A bank that deposits funds in another creates a connection between the two institutions,

and across the system these linkages form a network in which the nodes are banks and the

edges are interbank deposits. The balance sheets from the Comptroller’s reports include

the total amount of interbank deposits held by and owed to each bank.9 Given that a

comprehensive set of individual linkages in 1873 is not available, we build a representative

network using the bank-level aggregates, regulatory structure, and a set of plausible bank

9For a network constructed from our data to be valid technically, the total interbank deposits held
by a given bank must equal the “Due to national banks” entry on the liability side of the balance sheet.
Similarly the amount a bank keeps in reserve city banks and other banks must equal the sum of the
amounts “Due from redeeming agents” and “Due from other national banks” on the assets side. By
definition the total amount “Due to” across the system should therefore equal the total of the “Due
from” values as every deposit appears as an asset for one bank and a liability for another. The data,
however, do not quite conform to this standard, with the total asset position larger than the liability
position by about 2 percent. This likely reflects deposits in transit between banks. When funds are
transported from a creditor to a debtor via non-instantaneous means they appear on the asset side of
the creditor when they depart and on the liability side of the debtor only when they later arrive. If the
money travels in the opposite direction it is removed from the debtors liabilities on departure and added
to the creditors assets upon arrival. We resolve this by scaling each bank’s interbank liabilities as follows:

Lj = Lj
∗

∑M
i=1(A

i
R +Ai

B)
∑M

i=1 L
i
∗

, (1)

where M is the number of banks, Li
∗
is the recorded value of interbank liabilities of bank i, and Ai

R and
Ai

B are the interbank assets due from redeeming agents and other banks respectively. The result is that
total interbank liabilities are set equal to total interbank assets while preserving the relative sizes of these
positions across banks. We then construct valid interbank networks with the scaled data.
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utility functions for choosing correspondents and interbank deposit amounts.10

The Comptroller’s reports include the gross interbank positions of each bank but do

not include the individual banks in which the interbank deposits are placed. The network

we construct can be viewed as estimating this missing information using a matrix where

rows and columns are banks and entries correspond to specific interbank deposits. In

this setting, the “Due to national banks,” “Due from redeeming agents,” and “Due from

other national banks” entries provide three constraints on the matrix entries for each bank.

With diagonal entries set to zero by definition, a system withM banks has 4M constraints

to estimate M2 variables, leaving the problem under-constrained for any network with

M > 4 and therefore allowing an infinite number of valid networks. Not all of these

networks, however, are realistic. For example, a network could be constructed where

each bank places deposits in the most distant banks, yet the costs of transporting funds

and gathering information would make such a network extremely unlikely in practice.

To assess the likelihood of various networks, we therefore model banks’ preferences for

given deposit holding institutions through a common utility function, F (i, j). Indeed, the

consideration of bank preferences is the key difference between our method of building

the network and a maximum entropy approach. We then identify networks that maximize

utility across the system:

10The practice of building networks from limited data has received much interest in the literature on
systemic risk analysis. The most common technique is the maximum entropy approach, which makes a
minimal set of assumptions about the unknown network. This approach, however, has its challenges (see,
for example, Mistrulli 2011), and has led to attempts to find alternative approaches (see Basel Committee
on Banking Supervision 2015 for a comparison of various methods). Given the structural information
about the National Banking System that is available to us, we are not limited to a maximum entropy
approach and can potentially achieve superior estimates of the underlying network. In this sense our
approach has similarities with that of Elsinger et al. (2006) who use sectoral information among banks
to inform their estimates of the Austrian interbank market.
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max

M
∑

i=1

M
∑

j=1

F (i, j)xij (2)

subject to
M
∑

i=1

xij = Lj ∀j = 1, ...,M (3)

M
∑

j=1

xijR(i, j) = Ai
R ∀i = 1, ...,M (4)

M
∑

j=1

xij(1−R(i, j)) = Ai
B ∀i = 1, ...,M (5)

xii = 0 ∀i = 1, ...,M (6)

where xij is the size of deposit placed in bank j by bank i and R(i, j) is an indicator

function equal to unity if bank j could be a reserve agent of bank i and zero otherwise.11

The optimal network clearly depends on F (i, j), i.e., the utility of bank i placing deposits

in bank j. Below we describe a set of preferences over potential deposit locations that

generate plausible networks.

The first factor governing preferences is distance. While wire transfers by telegraph

began with Western Union’s service in 1871, they were little used in 1873 and 1874, and

net settlements typically required money to move physically by foot, horse, wagon, rail or

canal, each of which entailed a cost. Distance also meant that banks had less timely and

complete information about distant counter-parties than for those nearby. These factors

led banks to favor more proximate interbank partners.12

We measure the distance between banks based on the available transport routes. Maps

of canals, navigable rivers and rail networks present in 1870 are from Atack (2013). We also

add sea routes between locations along coastal waters in a similar manner to Donaldson

11For country banks the set of possible redeeming agents includes all banks in reserve cities and in the
central reserve city of New York. For reserve city banks the set includes only New York banks, and for
New York banks the value is always zero.

12Such proximity effects persist in today’s banking systems, for example, Degryse and Ongena (2005)
relate transportation costs to price discrimination in modern loan markets.
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and Hornbeck (2016).13 We assume the existence of straight line roads traversable by

horses, and while this is not completely realistic, the relative costs of land transport were

so prohibitive that it was generally used for only short distances where the costs of a

linear route would not differ much from the actual cost. Travel times for each transport

type relative to horses are based on speeds estimated in (Boyd and Walton, 1972, pp.

246) and Kaukiainen (2001).14 We identify the shortest travel time between each pair of

banks in the system using combinations of road, rail, canal, river and sea.15

The second component governing a bank’s preferences is the soundness of the receiving

bank. Since placing deposits in another bank presents a credit risk, banks may prefer to

place deposits in counter-parties with strong balance sheets. There are numerous potential

measures of financial soundness including capital, liquidity and various financial ratios.

We analyze a wide set of these measures to identify the best representation of how banks

behave in choosing correspondents and placing deposits with them.16

Let F (i, j) be the utility of bank i placing a single dollar of deposits in bank j:

F (i, j) =
S(j)

D(i, j)
(7)

where S(j) is a function of the quality of bank j as measured by some balance sheet

13This is done by densely populating the coastal regions with possible start and finish points for sea
routes and then connecting all pairs via the shortest possible sea route. Without detailed information for
all actual sea routes in existence in 1873, this may overestimate the possible connections. Given, however,
the generally convex area of the United States in which banks were located and the relative speed of sea
versus other forms of transportation, the effects of measuring sea routes in this manner are minor.

14Boyd and Walton state the average speed of a train was 20 miles per hour in 1860 and 40 miles per
hour in 1890, so we take 30 miles per hour as an average speed for 1873. Similarly they use an average
water speed for canals and rivers of 4 miles per hour (although Kaukiainen suggests this could be as high
as 10 miles per hour). Stage coach travel was faster than water travel but slower than rail and estimated
at 6 miles per hour by Boyd and Walton.

15For numerical tractability we break rail, road and canal routes into 10 kilometer intervals at which
routes may join, depart or continue along the same medium. We focus on speed and take the view that
a single individual is traveling the route, therefore assuming changes in the mode of transportation to
be costless. This decomposition generates more than 16,000 nodes in the transport network - approxi-
mately 2,000 correspond to banks and 14,000 to intermediate points. Using Dijkstra’s algorithm we then
efficiently calculate the approximately 250 million possible quickest routes in the transport network to
identify the shortest distances between all pairs of banks.

16Section A in the appendix considers extensions to this function which may have affected banks’
choices. This includes payments of interest by New York City banks on some of their correspondents’
balances.
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quantity or ratio, and D(i, j) is a function of the distance in kilometers between bank i

and bank j. As such, bank i’s utility from making an interbank deposit increases in the

quality and proximity of the recipient. Both S(j) and D(i, j) are of the form:

S(j) = (log(sj + 2))ν (8)

D(i, j) = (log(di,j + 2))δ (9)

where sj is the balance sheet quality of bank j and di,j is the measured distance between

banks i and j. The ν and δ parameters control the shape of the utility function. The +2

in the utility functions avoid instances where S(j) or D(j) would otherwise be undefined

or less than or equal to zero.17

If the actual interbank network were known, the values of ν and δ could be estimated

to fit the data most closely, but we do not observe the network directly and therefore

use the available interbank aggregates to identify the most likely bank decision function

and the optimal deposit network simultaneously. To estimate the network, we focus on

those deposits mandated by regulation (i.e., the allocation of country banks’ deposits to

redeeming agents). Although country banks were required to hold deposits in reserve

cities, there were no restrictions on which reserve city or reserve city banks (including

those in New York) they could choose. We therefore evaluate the network based on the fit

of interbank connections across redeeming agents based on their soundness and distance.

In contrast, deposits among local country banks could be based more on idiosyncratic

choices or short-term liquidity needs.

To assess a given utility function we exploit the freedom of banks to choose their reserve

agent. We compare two allocations–with and without constraints. In the unconstrained

allocation, each country bank places deposits in the reserve city bank that yields the

highest utility, i.e., the reserve agent for which S(j)
D(i,j)

is maximized. When calculated for

all banks, this delivers an optimal distribution of deposits across redeeming agents for the

given utility function and set of parameter values. Importantly, this distribution does not

17More complex functional forms were considered, for example ν1S(j)2+ν2S(j)+ν3

δ1D(i,j)2+δ2D(i,j)+δ3
, but had little effect

on the results.
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take into account the constraints imposed by the balance sheets themselves–in particular

that the sum of deposits placed in a given bank must equal the value of its “Due to

national banks” entry (Constraints 4 and 5 defined above).

In the constrained allocation, we include these “adding-up” restrictions when comput-

ing the network that maximizes total utility. If banks’ optimal choices of redeeming agents

and allocation amounts in the constrained network differ from those in the unconstrained,

this indicates that the utility function is not fully capturing bank behavior, i.e., a given

bank would prefer to place its deposits in a different redeeming agent but is unable to do

so in the constrained case because that agent’s “capacity” is absorbed by other banks.

Since U.S. banks at the time were free to choose any redeeming agent, the two allocations

would be identical only if the utility function perfectly captures bank behavior.

2.3 Implementation

We use a minimum distance approach in fitting the model to the observed data. The

distance is defined as the sum of the squared differences between the amount each bank

would place in its preferred reserve city when unconstrained and the amount placed when

constrained. We use numerical optimization with a grid search of the feasible parameter

space to find the optimal ν and δ that minimize this distance. A simple optimization

reveals a highly uncorrelated parameter space (i.e., good solutions are not close together),

which indicates sensitivity of the utility function to parameter choices. This is not due

to the utility function itself, but rather to the highly non-linear nature of networks and

their creation processes. Slightly different parameters can affect a bank’s choice of where

to place deposits, and as a consequence of the adding-up constraints, the optimal choices

made by many others. In other words, even though the utility function retains its func-

tional form, how precisely the various parameters lead it to rank individual pieces of

information may differ slightly. To ameliorate this sensitivity, we take a Monte Carlo

approach, repeating the optimization 100 times, adding each time a small amount of

noise to the ν and δ parameters separately and independently for each bank, and then
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average across the runs.18 This generates a smooth, correlated search space with a single

minimum.

Given a particular utility function and the formulation defined above, the creation of

the optimal network becomes an instance of the linear transportation problem, which has

been well studied in operations research. This problem specifies a set of sources and sinks

with known capacity. The sources and sinks are connected by links associated with a cost

for each unit transported along them. The problem is normally specified as one of cost

minimization, but we convert it to one of utility maximization. Sources are banks which

act as interbank depositors, and their capacities are the amounts of interbank assets on

their balance sheets. Similarly, sinks are receiving banks with capacities equal to their

interbank liabilities. The cost of a link is the utility gained by the source bank for sending

one unit of deposits to the connected sink. The solution to this problem is a network that

maximizes total utility.19

In creating the network, we modify the utility function slightly to account for banks

that are on average closer to other banks. If a network is created to maximize total

system utility, banks situated closer to other banks, such as those in the northeast, would

be favored, while little weight would be placed on the preferences of isolated banks, such

as those in the northwest. This means that a northeastern bank could receive its first

choice correspondent over a second choice with nearly equal utility, even if this results in

a large relative reduction of utility for a northwest bank, so long as total system utility

increases.20 To resolve this, we normalize each bank’s utility for placing deposits in a

18We search the grid in increments of 0.1 for both δ and ν. For each bank, we perturb each parameter
by adding a value drawn independently and at random from N(0, 0.022). We obtain similar results when
all banks are given the same perturbation in each run.

19A bank may be both a depositor and receiver of interbank funds, and to prevent the algorithm from
having a bank place deposits in itself (i.e., the shortest distance), the utility of these self links is set to
zero. Similarly, a bank may have deposits in both reserve city and non-reserve city banks, as shown by
separate listings on the balance sheet. To address this we represent each bank as two sources—one with
capacity equal to the ‘Due from redeeming agents’ entry, which has zero utility for connecting to non-
reserve city banks, and a second with the ‘Due from other national banks’ entry, which has zero utility
for deposits in reserve city banks. For reserve city banks their ‘Due from redeeming agent’ deposits must
be placed in New York banks, therefore the utility of placing these in any other bank is zero. After
identifying the optimal network these sources are then recombined into the individual bank.

20This can occur because distance enters into the denominator of the utility function, i.e., all correspon-
dent choices have relatively low utility for distant banks whereas differences of only a few kilometers can
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given bank by the sum of the possible utilities of depositing in all other M banks, noting

once again that F (i, i) = 0:

F̄ (i, j) =
F (i, j)

∑M

k=1 F (i, k)
. (10)

Normalizing utility in this manner treats each bank’s preferences as equally important in

the allocation, and the F values now correspond to the banks’ relative preferences. The

maximization is therefore maximizing the total relative preferences of banks across the

system.

3 The Pre-Crisis Network

3.1 Specifying the Utility Function

To identify any optimal pre-crisis network it is first necessary to specify the utility func-

tion. In this section we test ten different measures of bank quality (S) to determine the

specification that minimizes the error in forming a plausible network, with each specifi-

cation implicitly testing a different utility model of how banks make decisions. The first

measure we consider is the amount of specie on hand. Specie was the ultimate form of

liquidity at the time and high levels would indicate an ability of the holding bank to repay

deposits. The second and third utility functions explore a preference for large banks as

measured by their total assets or total loans, reflecting the view that larger banks may

be more established and therefore also have stronger reputations. The capital stock (and

capital stock plus surplus fund) capture a similar view but now measure size and repu-

tation by a bank’s ability to absorb losses. The inverse of a bank’s interbank exposures

raises the possibility that banks avoid choosing correspondents that are vulnerable to po-

tential instabilities among their correspondents. The final four measures are ratios: the

ratio of specie to assets reflects the extent of available liquidity relative to balance sheet

size; the ratio of specie to deposits reflects vulnerability to a run on deposits; and the

have large effects on utilities in areas where banks concentrate, such as the northeast. The shorter dis-
tances also mean these banks weigh more heavily in the system utility being maximized, thereby making
the preferences of distant banks less important.
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Table 2: Closeness of fit between the model and observed interbank balances for 10 measures of
bank quality (S).

Optimal Optimal Squ. Err. Std. Err.
Bank quality (S) ν δ ×1012 ×109

Specie 0.9 0.5 0.83 2.94
Loans 0.4 0.1 1.05 8.14
Assets 1.4 0.4 1.06 4.00
Capital stock + surplus fund 1.8 0.5 1.21 3.29
Capital stock 0.6 0.6 1.28 2.72
Specie/assets 2.0 0.2 1.31 6.10
Specie/deposits 1.1 0.1 1.38 10.2
(Capital stock + surplus fund)/loans 1.8 0.1 1.60 3.42
(Capital stock)/loans 2.0 0.1 1.63 3.46
1/(interbank exposure) 0.0 0.5 1.82 4.44

Note: The table reports the average squared errors for optimized utility functions using ten
different measures of bank quality. The squared error is defined as (

∑N
i=1(D

∗ −DModel)
2 where

N is the index over banks, D∗ and DModel are the values of interbank deposits placed in bank i’s
preferred reserve agent in the unconstrained (D∗) and constrained (DModel) cases, respectively.
Standard errors are computed across the squared errors from the 100 Monte Carlo runs. The
bank quality (S) measures include specie, loans, assets, capital stock plus surplus, and capital
stock as defined directly in the balance sheets. Interbank exposures are the sum of the “Due
from redeeming agents” and “Due from other banks” entries. The ratio of specie to assets is
defined as log(2+Specie)

log(2+Assets) , with the remaining functions defined analogously. Deposits are the sum
of individual deposits, U.S. government deposits, interbank deposits and deposits of distributing
officers.

ratios of capital (and capital stock plus surplus) to loans measure the ability of a bank to

absorb adverse shocks requiring loan liquidation.

Using balance sheet data for all national banks on 12 September 1873, we compute

the optimal parameter values and squared error for each of these objective functions

and report the results in Table 2. Measuring bank quality as the amount of specie on

hand generates the smallest error and the optimal parameter values for ν and δ are 0.9

and 0.5 respectively. Figure 1 shows the errors for all combinations of parameters using

this function, and clearly indicates a region in the parameter space where the model

consistently does well (errors are small) and where the optimal parameters fall. The

squared dollar error of the average network for this parametrization across 100 Monte

Carlo runs is 8.3× 1011. Given that the sum of the squared balance sheet entries for the

“Due from redeeming agents” item is 1.54 × 1013, the error is approximately 5% of the
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size of interbank positions placed in reserve cities (excluding banks in New York City).

Figure 1: Squared errors for different combinations of ν and δ.

Note: Each point on the surface depicts the average error across 100 Monte Carlo runs,
with the lowest point corresponding to the minimum. Utility is calculated using specie as the
measure of bank quality.

In all cases the errors associated with alternative objective functions are larger than

those achieved with specie. This suggests that banks placed considerable weight on a

counter-party’s holdings of liquid assets and therefore on its ability to repay deposits

when choosing correspondents. The next best performing functions are those related to

measures of bank size, but even though these measures may produce reasonable networks

the associated squared errors are more than 25 percent larger. While the idea that banks

avoid other banks with large interbank positions also seems plausible, the results, with the

optimal parameter of zero for ν, indicate that banks did not use this information in forming

correspondent relationships. The weak explanatory power of this quality measure is likely

because many of the largest banks, and especially those in New York, remain attractive

as receivers of interbank deposits due to other factors even though they maintain large

deposits in other banks.21 Based on these results, we use the amount of specie as our

21As robustness checks, we also estimate the network using the amounts “Due to national banks”
and liquid assets (the sum of “checks and cash”, “bills of other banks”, “fractional currency”, “specie”,
“legal tender” and “certificates of deposit”) as measures of bank quality. Interbank deposit liabilities
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preferred measure of balance sheet quality in subsequent calculations.

3.2 Choice of Reserve Agents

Using the optimal utility function with specie and the parameter values shown in the

first row of Table 2, Figure 2 shows the primary reserve agent for each bank as computed

by the network algorithm and rules for a single Monte Carlo simulation. The primary

reserve agent is the agent in which a given bank places the most deposits. We present

a single simulation rather than an average over multiple simulations to illustrate the

geographic mix of choices that the network can spawn rather than modal choices, which

tend to overstate the number of banks placing their highest shares of deposits in New

York. To promote readability the figure focuses on three of the reserve cities only, New

York, Chicago and Boston, with banks placing their reserves in other cities falling under

the ‘Other’ grouping. Figure 3 offers a closer view for the mid-Atlantic area, where banks

depositing in Baltimore, Philadelphia, and Washington, DC can be distinguished more

easily. Although Figure 2 and Figure 3 cannot distinguish all banks in the various clusters

due to their density and overlap, the key finding is that banks near a reserve city tend to

use banks in that city as the primary reserve agent, but that the geographic influence of

each reserve city is based on a combination of specie reserves, distance from other reserve

cities, information costs, and the density of banks in the region. The exception is New

York City, which was a popular reserve agent for country banks from all regions, including

banks in locations far from any reserve city.22

Figure 2 also shows that the various reserve cities primarily place deposits in New

York. The clearest cases for observing this are Chicago, New Orleans and San Francisco.

generate inflows of cash which must then, at least in part, be maintained as liquid assets. The model
could, in principle, therefore be identifying those banks which have large interbank deposit positions
on their balance sheets as the most attractive destinations for interbank deposits. These measures,
however, produced significantly higher errors indicating that this is not the case, but rather that the
model specification based on specie is identifying a relationship between the behavior of banks and their
attractiveness as counter-parties.

22This occurs because distance is less important to the optimal choice of reserve agent for an isolated
bank with all possible reserve agents relatively distant. This makes specie on hand, for which the New
York banks generally held the most, the primary determinant of correspondent choice.
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Figure 3: Detailed view of Figure 2 showing the Northeastern United States.

Note: The shade of each marker denotes the reserve city receiving the largest share of a
given bank’s interbank deposits in the model. Results are from a single simulation and are
representative of other simulations.

4 Fit of Model Predictions to 1874 Data

In this section we impose a set of structured withdrawals on the optimal network formed

with the data from 12 September 1873, and compare the results with the observed dis-

tribution of interbank deposits on 2 October 1874, a year after the crisis. Each scenario

tests a different model for how the crisis may have propagated.

4.1 Withdrawal Patterns and Processing Rules

We consider the following nine cases:

1. No withdrawal by any bank, leaving the 1873 distribution of interbank deposits

unchanged. Since this allows for a direct comparison of observed interbank deposits

in 1874 and 1873, it serves as a baseline for quantifying the effects of the various

structured shocks we consider.
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2. All banks reduce their 1873 interbank deposit assets by the same percentage α2.

3. All banks reduce their 1873 interbank deposit assets, but the extent depends on

the distance of their counter-parties from New York City. In other words, a given

bank’s correspondents further from New York see their interbank liabilities reduced

less than those nearer to New York. This could reflect concerns among depositing

banks about the vulnerability of linkages between their own counter-parties and the

New York banks that were the source of the crisis. Interbank positions are reduced

by f(i) where f(i) = α3 + β3(1.0 −
dNY
i

maxjd
NY
j

)), and dNY
i is the economic distance

between a given bank’s receiving correspondent and New York.

4. All banks with deposits in New York City, as indicated by the network, withdraw

a fraction γ4 of their interbank deposit assets. This simulates a more concentrated

shock and withdrawal from the New York banks.

5. The same withdrawal as 4 but with an additional reduction in the interbank deposits

of all non-New York City banks by α5 analogous to 2.

6. The same withdrawal as 4 but with an additional reduction in interbank deposits

by all banks dependent on the receiving bank’s location in a manner analogous to

3 and scaled by variables α6 and β6.

7. All banks with interbank deposits in New York withdraw a fraction γ7(= γ4) of their

funds as described by shock 4 and place them in other reserve city banks with the

reallocation maximizing their respective utilities. This once again simulates a more

concentrated panic.

8. The same withdrawal and reassignment as 7 but with an additional reduction in

interbank deposits by all non-New York City and non-reserve city banks of α8 in a

manner analogous to 2.23

23We restrict this withdrawal to country banks as they were not the primary focus of the withdrawal
from New York or the reassignment to reserve cities.
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9. The same withdrawal and reassignment as 7 but with an additional reduction in the

loans of all banks dependent on the receiving banks’ proximities to New York in a

manner analogous to 3 and scaled by variables α9 and β9.

For each of these cases, we numerically find the applicable α and β parameters which

minimize the mean of the squared errors at the county level between the observed balances

“Due to national banks” in the October 1874 data and the interbank liabilities generated

by the shocked model for 1873. Of the nine cases, the first three use observed balance

sheet values from 1873 to make the comparisons24; the remainder draw the comparisons by

propagating the various shock through the 100 Monte Carlo networks we constructed for

1873. Since many banks under the algorithm make small changes to minimize the county-

wide error and which likely differ from changes that would be observed in practice, the

results are best considered as a probability distribution, i.e., the probability that a bank

will respond in the manner the model predicts.

4.2 Observed Changes in Interbank Deposits, 1873 to 1874

Figure 4, corresponding to Case 1, shows observed changes in interbank deposits by county

between the Comptroller’s reports of 1873 and 1874. Darker shades correspond to counties

with larger increases in interbank liabilities, lighter shades to those losing balances, and

unshaded areas to those without a national bank. The map shows the majority of reduc-

tions occurring in the northeast, and particularly in New York City and nearby counties.

The national banks in New York alone see a reduction of $6 million, which is 8.6 percent

of their interbank holdings in 1873. Reductions are generally smaller and more isolated

in other regions, but some counties see significant reductions, and in particular those in-

cluding the reserve cities of Baltimore ($1.41 mil. or 47.3 percent), Cincinnati ($632,000

or 19.9 percent), Philadelphia ($275,000 or 3.9 percent), and Pittsburgh ($211,000 or

13.6 percent). Many counties also see increases, including the reserve cities of Chicago

($1.13 mil. or 18.5 percent), Detroit ($130,000 or 40.4 percent), Louisville ($485,000 or

24The total deposits in each counterparty are given by the balance sheet whilst the locations are fixed,
the individual bank deposit relationships are therefore not needed to calculate the reductions in these
cases.
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Figure 5: Magnified view of Figure 4 for the Northeastern United States.

117 percent), and San Francisco ($135,000 or 600 percent). Figure 5 provides a closer

view of the northeast and underscores the large reductions experienced by most counties

in the region, particularly those close to New York along with the reserve cities of Albany

($227,000 or 8.9 percent) and Baltimore ($1.41 mil. or 47.3 percent). Boston is an im-

portant exception, however, with interbank deposits rising by more than $4 million (25

percent), which is the largest gain of any county in the United States over the one-year

period.

In the next section we compare the observed changes in interbank deposits by county

to those generated by our network model of the crisis to gain insights about possible paths

through which these changes occurred.

4.3 Comparing Simulated to Observed Interbank Balances in

1874

The mean squared errors, presented in Table 3, provide similarity measures between the

1874 data and the distributions of interbank deposits we obtain by simulating the nine
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Table 3: Closeness of fit between model predictions and observed interbank deposit liabilities in
1874 by county.

Scenario Dollar Squared Error (1013) Standard Error γi αi βi

1 8.57 5.77× 106 - - -
2 3.38 1.41× 106 - 0.09 -
3 3.26 3.86× 106 - 0.00 0.10
4 2.24 1.45× 107 0.08 - -
5 2.24 1.45× 107 0.08 0.00 -
6 2.10 1.46× 107 0.08 0.00 0.45
7 1.68 2.08× 109 0.08 - -
8 1.53 2.08× 109 0.08 0.44 -
9 1.53 2.08× 109 0.08 0.00 0.45

Note: Results are shown for each of the nine cases described in Section 4.1. Errors are based on
differences between predicted values for interbank deposit liabilities in 1874 and the observed
‘Due to national banks’ entries in the 1874 Annual Report of the Comptroller of the Currency for
all counties with one or more national banks. The squared error is defined as (

∑N
i=1(DModel −

D1874)
2 where i is the index over counties, and DModel and D1874 are the model predictions

and observed data summed at the county level, respectively. Standard errors for each case are
calculated from the squared errors across 100 Monte Carlo runs.

cases described above using the data and derived network for 1873. Case 2 represents

the simplest withdrawal pattern: a flat reduction of interbank deposits across all banks,

ignoring the identify of the depositing bank, the receiving bank, and their locations. The

optimal value of α2 is 0.09. Simulating a withdrawal of this magnitude reduces the error

by approximately 61% relative to the baseline case (1) of “no withdrawals,” and thus

provides a more accurate matching between balances generated by the model and the

observed interbank positions. While it significantly reduces the error, a flat reduction of

interbank deposits of 9% across the system clearly cannot account for the increases in

interbank deposits observed for some reserve cities.

Case 3 models a more sophisticated withdrawal. In this setting, banks closer to New

York City are presumed to be at greater risk of failure because of greater exposure to

the potentially risky investment practices of the New York banks. The exposure may be

either direct through actual deposits in New York banks, or indirect, through connections

to exposed banks. This gradient approach, with parameters α3 = 0.00 and β3 = 0.10,

reduces the squared error another 1.4 percent from the flat withdrawal pattern. As such,
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whilst the concentration of deposits in the New York area mean that there is relatively

little difference in terms of fit between this and the flat withdrawal the parameters indicate

potential depositing banks viewed correspondents close to New York as having greater

exposure to crisis conditions.

Case 4 models withdrawals from New York by all banks using it as a reserve city. The

scale of the withdrawals is not set to minimize the squared error, but rather to match

the total withdrawals of 8% from New York observed in the data. Accounting for these

targeted withdrawals generates a 74% reduction in the error from the baseline. Unlike

Case 3 above, however, a further flat withdrawal by all banks from all non New York City

banks does not reduce the error further - the optimal flat withdrawal size is 0 (Case 5).

This is because the model leaves several of the reserve cities with too few deposits after the

New York withdrawal so that further reducing the overall level of deposits in the system

actually worsens the fit. An additional distance based withdrawal, as in Case 6, does

reduce the error by another 2%. This is because this withdrawal predominantly targets

banks in counties close to New York that also saw a reduction in deposit positions during

the crisis but were not included in the initial New York City-only withdrawal.

Case 7 permits non-reserve city banks to reallocate reserves withdrawn from New York

to other reserve cities, but once reallocated they remain in the new reserve cities. These

withdrawal rules reduce the squared error by 81% relative to the baseline, an improvement

of 7 percentage points over Case 4. Even though no reserves are removed from the system,

the reallocation from New York to other reserve cities through the utility function matches

the empirically observed distribution closely.

Figure 6 shows the differences in interbank reserve balances between the model out-

come for Case 7 and the observed county-level totals in 1874. The results closely match

the actual increases observed for Chicago, Boston and Detroit. This, together with the

improvement in fit, indicates that reserves were withdrawn from New York City banks

by their interbank correspondents and placed in other reserve cities with large specie

holdings. Importantly, it was not the behavior of banks in reserve cities that drove this

dynamic as they did not reallocate their funds, but rather the country banks that moved
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funds out of New York and placed them in Chicago, Boston and Detroit. Without the

network, we would be unable to theorize about where banks depositing in New York may

have reallocated their funds. The only region where the model predictions for Case 7

significantly differ from the observed October 1874 balances are for banks in the counties

immediately surrounding New York City, where there were clearly substantial withdrawals

that the model does not pick up. The following two shocks, however, address this issue.

Figure 6: County-level differences in interbank deposit liabilities between the model predictions
under Case 7 and the 1874 data for the Northeastern United States.

Note: Dollar amounts are aggregated from the ‘Due to other national banks’ entries in
the 1874 Annual Report of the Comptroller of the Currency. Positive values indicate counties
where the model overestimates interbank deposit liabilities.

Case 8 models an additional uniform reduction in interbank deposits after Case 7 for

all country (i.e., non reserve city) banks. The utility maximizing additional withdrawal

of 45% from country banks reduces the error by another 2 percentage points from the

baseline. This configuration indicates that while reserves were being moved out of New

York to other reserve cities there were also significant general reductions in interbank

positions among country banks. The mechanism captured by case 7, whereby banks
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Figure 7: County-level differences in interbank deposit liabilities between the model predictions
under Case 9 and the 1874 data for the Northeastern United States.

Note: Dollar amounts are aggregated from the ‘Due to other national banks’ entries in
the 1874 Annual Report of the Comptroller of the Currency. Positive values indicate counties
where the model overestimates interbank deposit liabilities.

move deposits from New York to other reserve cities, leads to deposits in the reserve

cities coming very close to those observed in the actual data. The general withdrawal

modeled by Case 8 additionally captures this effect for other counties. The use of a more

complex gradient-based model of withdrawal, as considered in Case 9 has a negligible

effect on the error. This may be contrasted with Case 3 where the gradient function

led to a significant further reduction in the error. In Case 9 the majority of this effect

has already been included as a result of the network withdrawal and so has a minimal

additional impact. This final aspect of the model, however, significantly improves the fit

as shown in Figure 7, and it can be seen that the large observed reductions from banks in

areas around New York city, including banks along the Connecticut coast, are now more

closely captured.
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5 Predicting Banks that Panic

In this section we identify the set of changes in the reserve agents of individual banks that

best explain the transition from the county-level distribution of deposits in 1873 to those

observed in 1874. We consider a bank that changes reserve agent as one that “panics”

in response to the crisis and reallocates deposits to more desirable counter-parties. Our

1873 network predicts specific banks that would have switched redeeming agent, and a

comparison of how well these line up with actual changes in geographic balance sheet

quantities provides a test of the model and the validity of the network.

5.1 Algorithm

We use the following algorithm to identify those banks most dissatisfied with their existing

reserve partners in 1874 and therefore most likely to make changes.

1. Commence with the pre-crisis 1873 network.

2. Re-scale each bank’s interbank deposits by 1874PositionSize
1873PositionSize

.

3. Calculate for each bank the relative change in utility for transferring its deposits

from its current reserve city to every other reserve city.

4. Sort the potential transfers in decreasing order of utility improvement.

5. Make transfers by moving an amount of deposits K from bank i in reserve city ms

to a bank in reserve city md, where K = max(0,min(Dms
−K ≥ C1874

ms
, Dmd

+K ≤

C1874
md

, dims
)).

6. Stop when for all reserve cities m C1874
m = Dm

The re-scaling in step 2 is done on a deposit basis. Each position that a given bank has

in another bank is multiplied by the factor above determined by the balance sheet data.

This results in the total interbank assets of each bank being equal to the amount specified

on the 1874 balance sheet. This allows us to control for banks’ decisions of whether to

increase or decrease their interbank deposit positions more generally and thereby focus
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on the re-allocation question. This re-scaling also ensures that total interbank deposit

liabilities in the system are approximately equal to those recorded in 1874.25 The next

steps re-assign deposits away from reserve cities with too many interbank deposits (i.e.,

where the total deposits predicted by the network exceed the sum from the 1874 balance

sheets) and to reserve cities with too few so that the model’s city level balances line up

with the 1874 data.

In the above dim denotes the deposits placed in reserve city m by bank j according to

the network after scaling. Dm denotes total deposits placed in reserve city m by banks

according to the network, i.e., Dm =
∑n

i=1 d
i
m. C1874

m is the total interbank deposits in

reserve city m according to the 1874 balance sheets. The funds moved in step 5 are

therefore the maximum amounts such that their movement does not lower total deposits

in the reserve city from which they are moved below the amounts stated on the 1874

balance sheets, exceed the amount of funds on the 1874 balance sheets in the destination

city, or exceed the amount of deposits the individual bank has available to move.

We apply the algorithm to each of the 100 networks generated initially by the Monte

Carlo runs described in Section 3, and then identify those banks most likely to change

reserve agent and the reserve agents to which they move.

5.2 Changes in Reserve Agents

Table 4 indicates how banks changed their primary reserve cities between 1873 and 1874.

It does not include new banks that entered after the 1873 report. The results are broadly

intuitive. We see that reserve cities which both gained and lost interbank deposits tended

to exchange with other nearby reserve cities. Boston is interesting in that it capitalizes on

New York’s losses, but also attracts new interbank depositors from reserve cities further

away than the others.

We can use the set of banks changing primary reserve city to characterize banks

that “panic.” Given that distances remain fixed, changing one’s counter-party indicates a

reduction in utility from remaining with the previous reserve agents, which in the model

25Note as before there is a very small error here due to money in transit.
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can be driven by a weakening of the changing banks’ balance sheets compared to others. A

check of the model can therefore be obtained by comparing changes in actual balance sheet

quantities, including those not used in the model, between 1873 and 1874 for banks where

the model predicts a switch in primary reserve city against those for which the model

does not. For this part of the analysis we exclude all reserve and central reserve city

banks and focus only on country banks since reserve city banks are by definition unable

to change their reserve city away from New York and New York banks have no reserve

agent. Similarly we exclude banks without a reserve agent in 1873 or 1874, either because

they were new, went bankrupt or did not place interbank deposits. A bank “panics”

when its modal choice of reserve city across the 100 Monte Carlo networks changes. As

discussed earlier, the model is best viewed as a probabilistic mapping, and by focusing

on those banks changing their modal choice of reserve agent rather than any banks that

change a reserve agent under any circumstances, we identify the set most likely to have

panicked. We report the findings in Table 4.

The results provide a clear picture - those banks that the model predicts would panic

show signs of panic in their balance sheets. Most significantly, banks that panic dramati-

cally increase their specie holdings compared to those that do not (73% vs. 6%). This is

consistent with our hypothesis that banks use specie holdings as a key determinant of fi-

nancial quality. It should be highlighted that this is the specie present in the country bank

– not the reserve agent – and therefore is not used in the switching algorithm described

above. In other words, banks that our model predicts would change reserve agent do so

because they are dissatisfied with their counter-party’s specie holdings and, in addition

to changing agents, choose to fortify their own specie positions in response. This increase

in safe assets is accompanied by a simultaneous decrease in risky ones. Panicking banks

reduce their interbank positions in reserve agents more than those that do not. Their

increased perception of counter-party risk leads them to move cash from reserve agents

to specie in their own vaults. At the same time panicking banks also show a marked

increase in general aversion to risk, and decrease their lending to non-banks by a greater
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amount.26

Adjusting balance sheets to compensate for changing risk levels has consequences for

the panicking banks. By reducing their risky asset positions and investing more in safe as-

sets such as specie, panicking banks sacrifice profits to achieve greater resilience. Further,

while both types of banks see a decline in interbank liabilities, the improved financial

soundness of non-panicking banks results in smaller decreases than those observed for

banks we predict to have panicked.

The strength of these results in supporting the model and our estimation approach

should be emphasized. We have used interbank balances plus our theory of how interbank

deposit decisions are made to generate a set of banks that the model predicts as prime

targets for changing primary reserve city during the crisis. Examination of the balance

sheets of these banks, and in particular data items not used by the model (e.g. loans,

assets, and specie of the country bank), matches in nearly all cases what we would expect

of banks that panic. In other words, we see a net change in reserve city deposits, use

the model to predict which correspondent banks made these changes, and find that their

actual balance sheets are consistent with these predictions. The predictions could not be

made without the interbank networks we create, and these networks are what allow us to

generate testable predictions that could not have been made or evaluated previously.

6 Stability

We now consider the propensity for bank failures to spread through the interbank deposit

network, focusing on direct losses of banks due to the crisis rather than their actions in

response to it. Our network provides a mechanism through which losses at a bank may

leave it with insufficient funds to redeem interbank liabilities, causing its counter-parties

to incur losses also. We separately consider two shocks - a liquidity shock and an equity

shock. In both cases, since the 1873 crisis originated in New York, we simulate the losses

that occur when the balance sheets of New York City banks are damaged. In the case

26Overall balance sheet sizes change relatively little. Both sets of banks reduce their overall sizes, but
this is less pronounced for the panicking banks, likely reflecting their increases in safe assets.
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of the equity shock, loans made by New York banks are reduced by some percentage

R, reducing the equity of a given bank and potentially forcing it into bankruptcy. For

the liquidity shock, the total liquidity (i.e., specie and cash) available to each New York

bank is reduced by R, potentially rendering it unable to make required payments to other

banks. In both cases we vary R to compare the magnitude of the losses and the incidence

of failure.

For the equity shock we assume that banks are initially solvent, i.e., they would be

able to repay the deposits of creditor banks if their own interbank assets are repaid. In

addition, each bank has capital and possibly undivided profits and a surplus fund to

absorb losses before they fall upon its creditor banks. If these funds are insufficient,

any losses are divided among the interbank creditors in proportion to their deposits with

the troubled bank. Note in this case we deliberately make strong assumptions about

the propagation of crisis: Banks must repay deposits immediately and all losses beyond

equity are constrained to interbank depositors. Similarly we do not model the effects of

clearinghouses within the system, which would also act to reduce losses. Despite these

assumptions, as we will show below, the system is very stable.

The liquidity shock is similar, but rather than tracking bank equity the model measures

a bank’s ability to make payments from liquid assets. We assume that banks must repay

their interbank creditors, and to do this they may withdraw their deposits from other

banks to meet their obligations. If they are unable to make the payments, losses are

divided between creditors in proportion to the size of position. Again our assumptions

are relatively strong in that we assume all banks can potentially withdraw all of their

cash at the same time, but again we will show that relatively few banks fail as a result.

To compute the effects of losses in New York, we employ the default algorithm of

Eisenberg and Noe (2001). This approach identifies a unique and feasible set of inter-

bank payment flows by considering each bank’s payments due to and from other banks

and their access to external resources. The external resources may be thought of as the

bank’s store of equity (liquidity) in the case of the equity (liquidity) shock from which it

may draw to meet shortfalls in its required payments. The Eisenberg and Noe algorithm
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iteratively calculates a clearing vector from the set of payments made between banks until

a fixed point is reached. The problem itself is not trivial due to the potential for cycles

within the interbank market and the requirements that losses are divided proportionately

among creditors and no bank makes payments greater than its available resources. Eisen-

berg and Noe show that, under fairly general assumptions, the algorithm finds a unique

clearing vector. Banks unable to make their required payments from a combination of the

payments they receive and their external resources are classed as insolvent and distribute

their available funds to their creditors in proportion to the size of their debts.27

We set the payments ‘due from’ and ‘due to’ other banks equal to those defined by

the network. Each bank has external resources

(11)
eli = ChecksAndOtherCashItems+BillsOfOtherNationalBanks

+ FractionalCurrency + Specie

+ LegalTenderNotes+ USCertificatesOfDeposit

in the case of the liquidity shock and

(12)eei = Capital + SurplusFund+ Profits+ LoanLossReserve

+DepositsDueToBanks−DepositsDueFromBanks

in the case of the equity shock.

In this latter case the final two terms, as previously noted, ensure that the bank has

sufficient equity to make its payments if the banks own deposits are repaid, and correspond

to the payments the banks will make to and receive from other banks - both redeeming

and non-redeeming. Taken together with the positions directly due from and to other

banks, these values ensure that a given bank’s net position is equal to its equity. Without

this, a bank with a net position due to other banks exceeding its own equity would be

considered bankrupt even though in practice this could be offset by other positions on the

asset side of its balance sheet (e.g. loans).28 The shock to bank equity is equal to Rli for

any New York bank i, where li is the amount of loans on bank i’s balance sheet, and is

27See Appendix B for a full description of the algorithm.

28A similar adjustment is not required for liquidity since the algorithm tracks the movement of physical
currency rather than a bank’s net assets and liabilities and, dependent on the bank’s investment decisions,
there is no requirement for the two to balance.
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zero for any non-New York City bank. In the case of the liquidity shock li is replaced by

eli, the bank’s available liquidity in the above formula, and the reduction is carried out in

the same manner. In both cases the shock may be thought of as reducing (or even making

negative) the banks capacity to make payments and therefore increasing the likelihood of

its inability to do so. For banks with a negative balance of payments to other banks the

reduction may lead them to fail.

Figure 8 shows the number of banks that fail across the financial system for different

magnitudes R of the separate equity and liquidity shocks. For either shock, even when

large, it can be seen that very few banks fail. Liquidity shocks have larger effects for

intermediate shock sizes, indicating a relatively greater sensitivity to a loss of deposits

than of equity. The scope of the failures, however, is restricted in that few banks outside

of New York City fail as a result of the liquidity shock. In other words, most banks outside

of New York are able to recover enough of their deposits to prevent them from becoming

illiquid. A similar effect is observed for equity shocks, which begin to generate significant

failures only for shocks that are much larger than could have been reasonably expected

during the crisis.

Taken together these results show that it is unrealistic to believe that direct losses

from either liquidity or equity shocks were the main force behind the panic of 1873. Even

under the largest shock and with assumptions likely to exacerbate the scale, the maximum

number of failures from either the liquidity or equity shocks is equivalent to approximately

2% of the banks in the system. This contrasts with the results of previous sections which

show that over 10% of eligible banks panicked during the crisis (Section 5) and 9% of

interbank deposits were on average withdrawn (Section 4.3). Therefore, bank losses and

closures must have been driven by the fear of losses and the ensuing bank runs and not

direct failures themselves.
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Figure 8: Average number of banks that fail in the financial system for equity and liquidity
shocks of different sizes.

Note: Liquidity shocks are measured as a fraction of the liquid assets held by each
bank, while equity shocks are a fraction of the loan positions of New York City banks. Shock
sizes are varied between 0 and 1 in steps of 0.1, and the results are averaged over 100 different
interbank networks for each point on the graph.

7 Conclusion

We use a new computational approach to study the interbank deposit network in the

United States around the Panic of 1873. Our approach simultaneously estimates both the

most likely network and the utility functions of banks at the time. We show that specie,

as the ultimate form of liquidity, along with distance between counter-parties were key

to banks’ decision making processes. The networks resulting from this utility function

provides a more accurate model for the withdrawal of funds after the 1873 shock than is

possible using bank balance sheets and locations alone. The fit improves further if the

model is used to reallocate funds across reserve cities after withdrawals are made. We also

use the model to identify individual banks most likely to have panicked during the crisis

from the resulting reallocation of interbank positions. Examination of exogenous data

from those banks predicted to panic is consistent with the model’s predictions. Finally

we examine the resiliency of the financial network to direct contagion and find that only

small numbers of banks fail in response to shocks - similar to that observed historically.
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Our results provide a clear separation between the relatively small direct effects of the

crisis and the much larger informational or panic-based effects. As such the findings

increase our understanding of these two interrelated concepts and opens a potential new

research approach to understanding financial crises both past and future.

A Robustness

In this appendix we consider a number of additional sources of information and frictions

which may further refine the network.

A.1 Interest on Deposits

One reason banks placed deposits in New York City banks as opposed to more local reserve

agents was that the largest banks in New York paid interest on interbank deposits unlike

those in any other city in the United States. The large New York banks were able to do

this by lending the reserves on call cash to investors who could then purchase railroad

bonds and other high-yield assets. The interest payments potentially create an additional

attraction for non-New York City Banks to place their interbank deposits in New York.

This effect can be modeled by reducing the distance between the seven largest New

York banks and all non-New York City banks in the system.29 If distance is thought of

as a physical space with an associated cost of travel, interest paid on deposits effectively

reduces this transportation cost. Distance between banks and New York City banks are

reduced by a fraction θI where θI is optimized along with δ and ν by the same process

as described above. We find that the optimal θI = 0.01 (to the nearest 0.005), meaning

that interest payments do have an effect on banks’ decision making. The effect, however,

is relatively small - the overall fit between the network and observed data improves by

approximately 1%. The remaining results are qualitatively similar as those presented

above and are available upon request.

29We do not model the distance between the seven largest banks and other New York City banks as
being reduced as other banks in the city would have had direct access to potential investors, and by
convention we assume all banks within a given city have distance 0.
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A.2 Redeeming Agents

The Bankers Almanac in the early 1870’s provides a list of the ‘New York Redeeming

Agent’ for each National Bank in the system. Banker’s Almanac data are available

for December 1872 and March 1874, and we manually digitized both lists and matched

redeeming agents to banks in the Comptroller sample where appropriate. Despite being

described as the New York Redeeming Agent, the banks listed were in many cases not

in New York - there are many instances of banks in Boston, Philadelphia and Pittsburgh

being named. Many name multiple banks as Redeeming Agents (the maximum being

three). Several banks also name private banks as either their sole redeeming agents or

one of a group. There are relatively few changes between the 1872 and 1874 lists with the

exception of those banks who used Jay Cooke and Co. as Redeeming Agent in 1872.

The redeeming agents listed in the Bankers Almanac represent knowledge of existing

relationships. They do not, however, necessarily mean that reserves are kept in these

banks (see, for example, the cases where private banks are listed). The existing relation-

ships, however, imply that these banks are closer in information space than their physical

distance would imply. We therefore incorporate this knowledge by reducing the distance

between every bank and its listed redeeming agents by some value θR. We optimize θR

at the same time as δ and ν using the same process as described above and find that the

optimal value is θR = 0.0, i.e. distance is unchanged. This information therefore does not

improve the fit of the model. This is because with a few exceptions the set of banks used

as redeeming agents is relatively small, meaning that those banks would be overly favored

by this scheme and so attract more deposits than are present on their balance sheets.

B Default algorithm

Section 6 of the paper analyzed the interbank network to understand how a shock to

either the liquidity or equity of banks in New York City could spread throughout the

financial system. To do this we used the fictitious default algorithm of Eisenberg and Noe

(2001) to identify failing banks. This algorithm assumes limited liability in accounting
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for payments, i.e., that payments are limited by the banks’ available cash balances and

that creditor banks in the event of default are paid in proportion to the size of the debt

owed and with priority of creditors over stock holders. We describe the algorithm below

first defining the key terms (notation as in the original).

Let pi be the vector of payments that bank i makes to each bank in the financial

system and p̄i the total payment of i to all banks. p̄ = (p̄1, p̄2, ...p̄n) is then the ‘total

obligation vector,’ which corresponds to the set of payments from every bank which would

satisfy all creditors in the system.

Define Π to be the matrix with entries:

Πij ≡















Lij

p̄i
if p̄i > 0

0 otherwise

(13)

where Lij is the liability of bank i to bank j as in the calculated interbank network. This

matrix then represents the liability of each bank to each other bank as a fraction of the

total debtor’s liabilities.

The total cash flow for each bank is the sum of payments from other banks, described

above, plus external payments, ei, minus payments to other banks:

n
∑

j=1

Πijpj + ei − pi (14)

Let D(p) be the set of banks who default under payment vector p, then define

Λ(p)ij =















1 if i = j and i ∈ D(p)

0 otherwise

(15)

This matrix contains zeros everywhere except on the diagonal for those banks that do not

default under payment vector p. The map FFp′ is then defined as:

FFp′(p) ≡ Λ(p′T (Λ(p′)p+ (I − Λ(p′)p̄)) + e) + (I − Λ(p′))(p̄) (16)

which gives for those banks not in default under p′, given by Λ(p′), the payment the bank
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must make p̄. For those banks in default, given by I − Λ(p), it gives the bank’s value.

This assumes that defaulting banks pay p while non defaulting banks pay p̄ as set out

above. Eisenberg and Noe (2001) showed that Fp′ has a unique fixed point f(p′). The

fictitious default algorithm computes this iteratively starting from p0 = p̄ and proceeding

through a series of fictitious defaults as pj = f(pj−1) until pj = pj−1, i.e. no more defaults

occur and all payments can be met.

In our model the imposition of a shock could mean that the banks suffer a withdrawal

of liquidity or impairments of assets. The logical interpretation of this would be negative

external payments (ei). In the above, however, external payments are required to be

positive. We address this potential problem with the solution originally suggested in

the same paper - by creating a fictitious additional bank which makes no payments but

receives all payments due from the shock.
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