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meter of an unobservable common factor when the factor is estimated by the principal

components method. When the number of cross-sectional observations is not su¢ciently

large, relative to the number of time series observations, the autoregressive coe¢cient

estimator of a positively autocorrelated factor is biased downward and the bias be-

comes larger for a more persistent factor. Based on theoretical and simulation analyses,
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1 Introduction

The estimation of dynamic factor models has become popular in macroeconomic analysis

since in�uential works by Sargent and Sims (1977), Geweke (1977) and Stock and Watson

(1989). Later studies by Stock and Watson (1998, 2002), Bai and Ng (2002) and Bai (2003)

emphasize the consistency of the principal components estimator of unobservable common

factors under the asymptotic framework with a large number of cross-sectional observations.

In this paper, we investigate the �nite sample properties of the two-step persistence estimator

in dynamic factor models when an unobservable common factor is estimated by the principal

components method in the �rst step. The �rst-step estimation is followed in the second step

by the estimation of autoregressive models of the common factor. Using analytical results

and simulation experiments, we evaluate the e¤ect of the number of the series (N) relative to

the time series observations (T ) on the performance of the two-step estimator of a persistence

parameter and propose a simple bootstrap procedure that works well when N is relatively

small.

In this paper, we focus on the persistence parameter of the common factor because of

its empirical relevance in macroeconomic analysis. In modern macroeconomics literature, dy-

namic stochastic general equilibrium (DSGE) models predict that a small set of driving forces

is responsible for covariation in macroeconomic variables. Theoretically, the persistence of the

common factor often plays a key role in the implications of these models. For example, in a

real business cycle model, there is a well-known trade-o¤ between the persistence of the tech-

nology shock and the performance of the model. When the shock becomes more persistent,

the performance improves along some dimensions but deteriorates along other dimensions

(King et al., 1988, Hansen, 1997, Ireland, 2001). In DSGE models with a monetary sector,

the optimal monetary policy largely depends on the persistence of real shocks in the economy

(Woodford, 1999). In open economy models, the welfare gain from the introduction of in-
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ternational risk-sharing becomes larger when the technology shock becomes more persistent

(Baxter and Crucini, 1995). Since these common shocks are not directly observable, a dy-

namic factor model o¤ers a simple robust statistical framework for measuring the persistence

of the common components that may cause macroeconomic �uctuations.1

Dynamic factor models have also been used to construct a business cycle index (e.g., Stock

and Watson, 1989, Kim and Nelson, 1993) and to extract a measure of underlying, or core,

in�ation (e.g., Bryan and Cecchetti, 1993). In such applications, the persistence of a single

factor can often be of main interest. For example, Clark (2006) examines the possibility of a

structural shift in the persistence of a single common factor estimated using the �rst principal

component of disaggregate in�ation series. In this paper, we consider only the case in which a

single common factor is generated from a univariate autoregressive (AR) model of order one.

This speci�cation makes our problem simple and transparent since the persistence measure

corresponds to the AR coe¢cient. However, in principle, the main idea of our approach can

be applicable to AR models of higher order.2

The principal components method is computationally convenient in estimating unobserved

common factors with a large number of cross-sectional observations N . This method also

allows for an approximate factor structure with possible cross-sectional correlations of idio-

syncratic errors.3 The large N asymptotic results obtained by Connor and Korajczyk (1986)

and Bai (2003) imply
p
N -consistency of the principal components estimator of the common

factor up to a scaling constant. Therefore, if N is su¢ciently large, we can treat the estimated

common factor as if we directly observe the true common factor when conducting inference.

However, since this argument is based on the large N asymptotic theory, an approximation

1Recently, Boivin and Giannoni (2006) proposed estimating a dynamic factor model in which they impose
the full structure of the DSGE model on the transition equation of the latent factors.

2In the case of AR models of higher order, however, there are several measures of persistence, including
the sum of AR coe¢cients, the largest characteristic root and �rst-order autocorrelation.

3The principal components estimator of the common factor with large N can also be used to estimate
nonlinear models (Connor, Korajczyk and Linton, 2006; Diebold, 1998; Shintani, 2005, 2008) or to test the
hypothesis of a unit root (Bai and Ng, 2004, and Moon and Perron, 2004).
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may not work well when N is small relative to the time series observation T that is typically

available in practice. Consistent with our theoretical prediction, the results from our Monte

Carlo experiment using the positively autocorrelated factor suggest the downward bias in the

AR coe¢cient estimator and signi�cant under-coverage of the naive con�dence interval when

N is small. We show that a simple bootstrap procedure works well in correcting the bias and

improves the performance of the con�dence interval.

The bootstrap part of our analysis is closely related to recent studies by Gonçalves and

Perron (2014) and Yamamoto (2012). Both papers also employ bootstrap procedures for the

purpose of improving the �nite sample performance of estimators of dynamic factor models.

Gonçalves and Perron (2014) employ a bootstrap procedure in factor-augmented forecasting

regression models with multiple factors. The factor-augmented forecasting regression models

are very useful in utilizing information from many predictors without including too many

regressors. This aspect is emphasized in Stock and Watson (1998, 2002), Marcellino, Stock

and Watson (2003) and Bai and Ng (2006), among others. Gonçalves and Perron (2014)

provide the �rst order asymptotic validity of their bootstrap procedure for factor-augmented

forecasting regression models, but not in the context of estimating the persistence parameter

of the common factor. It should also be noted that, unlike their factor-augmented forecast-

ing regression models with multiple factors, the bootstrap procedure for our univariate AR

model of the common factor is not subject to scaling and rotation issues.4 Yamamoto (2012)

examines the performance of the bootstrap procedure applied to the factor-augmented vector

autoregressive (FAVAR) models of Bernanke, Boivin and Eliasz (2005). While his multiple

factor structure is more general than our single factor structure, his main focus is the identi�-

cation of structural parameters in the FAVAR analysis using various identifying assumptions.

In contrast, we are more interested in the role of parameters in the model in explaining the

deviation from the large N asymptotics when N is small.

4To be more speci�c, under our normalizing assumption, the factor is estimated up to sign but the autore-
gressive coe¢cient can be identifed as the sign cancels out from both side of the autoregressive equation.
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The remainder of the paper is organized as follows. We �rst review the asymptotic theory

of the two-step estimator, and discuss its small sample issues in Section 2. A bootstrap

approach to reduce the bias is introduced in Section 3, and its usefulness is shown by the

simulation in Section 4. An empirical illustration of our procedure is provided in Section

5. Some concluding remarks are made in Section 6. All the proofs of theoretical results are

provided in the Appendix.

2 Two-Step Estimation of the Autoregressive Model of

Latent Factor

We begin our discussion by reviewing the literature of �nite sample bias correction of an

infeasible estimator of an AR(1) model, and then provide asymptotic properties of a two-

step estimator of dynamic factor structure. Let xit be an i-th component of N -dimensional

multiple time series Xt = (x1t; : : : ; xNt)
0 and t = 1; :::; T . We consider a simple one-factor

model given by

xit = �ift + eit (1)

for i = 1; :::; N , where �i�s are factor loadings with respect to i-th series, ft is a scalar common

factor and eit�s are possibly cross-sectionally correlated idiosyncratic shocks. To introduce a

dynamic structure in (1), we assume a zero-mean linear stationary AR(1) model of a common

factor given by,

ft = �ft�1 + "t (2)

where j�j < 1, and "t is i.i.d. with E ("t) = 0; E("t2) = �2" and a �nite fourth moment.

When ft is directly observable, the AR parameter � can be estimated by ordinary least

squares (OLS),

b� =
 
T+1X

t=2

f 2t�1

!�1 TX

t=2

ft�1ft: (3)
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Under the assumptions described above, the limiting distribution of the OLS estimator (3) is

given by
p
T (b�� �) d! N(0; 1� �2); (4)

as T tends to in�nity, which justi�es the use of the asymptotic con�dence intervals for �. For

example, the 90% con�dence interval is typically constructed as

[b�� 1:645� SE(b�);b�+ 1:645� SE(b�)] (5)

where SE(b�) is the standard error of b� de�ned as SE(b�) = (b�2"=
PT+1

t=2 f
2
t�1)

1=2, b�2" = (T �

1)�1
PT

t=2b"2t and b"t = ft � b�ft�1.

When T is small, the presence of bias of the OLS estimator (3) is well-known and several

procedures have been proposed to reduce the bias in the literature. Using the approximation

formula of the bias obtained in early studies by Hurwicz (1950), Marriott and Pope (1954)

and Kendall (1954), one can construct a simple bias-corrected estimator. For example, in

the current setting with a zero-mean restriction, the bias-corrected estimator is given by

b�KBC = T (T � 2)�1b�, which is a solution to b�KBC = b� + 2T�1b�KBC obtained from the

bias approximation formula E(b�) � � = �2T�1� + O(T�2).5 Alternatively, one can use the

bootstrap method for the bias correction. A similar methodology was �rst employed by

Quenouille (1949), who proposed a subsampling procedure to correct the bias. A bootstrap

method for AR models based on resampling residuals was later formalized by Bose (1988)

and was extended to the multivariate case by Kilian (1998), among others. In particular,

the bias-corrected estimator is given by b�BC = b��dbias where dbias = B�1
PB

b=1 b��b � b� is the

bootstrap bias estimator, b��b is the b-th AR estimate from the bootstrap sample and B is the

number of bootstrap replications. Both the Kendall-type bias correction and bootstrap bias

5This formula is valid if the intercept term is not included in the AR(1) model. With an intercept term, the
bias-corrected estimator becomes b�KBC = (Tb�+1)=(T�3) which is a solution to b�KBC = b�+T�1(1+3b�KBC)
obtained from the bias approximation formula E(b�)� � = �T�1(1 + 3�) +O(T�2).
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correction reduce the small T bias by the order of T�1.

To examine the �nite sample properties of the OLS estimator b�, we use the sample sizes

T = 100 and 200, and generate the common factor ft from (2) with the AR parameters,

� = 0:5 and 0:9 combined with "t � iidN(0; 1� �2). The initial value of ft is drawn from the

unconditional distribution of ft, that is N(0; 1). The mean values of b� along with the e¤ective

coverage rates of the nominal 90% conventional asymptotic con�dence intervals (5) in 10,000

replications are reported in Table 1.6 In addition to the OLS estimator b�, the mean values of

the Kendall-type bias-corrected estimator b�KBC and the bootstrap bias-corrected estimator

b�BC are also reported. For the bootstrap bias correction, we use B = 199. The results

suggest that the coverage of conventional asymptotic con�dence intervals seems very accurate

for sample sizes T = 100 and 200. In addition, comparisons between two bias correction

methods suggest that the small T bias of the OLS estimator (b�) can be corrected reasonably

well either by the Kendall-type correction (b�KBC) or the bootstrap-type correction (b�BC). In

what follows, we use the results in Table 1 as a benchmark to evaluate the performance of

the two-step estimator when the factor ft is not known.

Let us now review the asymptotic property of the two-step estimator for the persistence

parameter � when only xit from (1) is observable. Under very general conditions, ft can

still be consistently estimated (up to scale) by using the �rst principal component of the

N �N matrix X 0X where X is the T �N data matrix with t-th row X 0
t, or by using the �rst

eigenvector of the T � T matrix XX 0.7 We denote this common factor estimator by eft with

a normalization T�1
PT

t=1
ef 2t = 1. Once eft is obtained, we can replace ft in (3) by eft and the

feasible estimator of � is

e� =
 
T+1X

t=2

ef 2t�1

!�1 TX

t=2

eft�1 eft: (6)

6Since our results are based on 10,000 replications, the standard error of 90% coverage rate in the simulation
is about 0.003 (�

p
0:9� 0:1=10000).

7Since principal components are not scale-invariant, it is common practice to standardized all xit�s to have
zero sample mean and unit sample variance before applying the principal components method.
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Below, we �rst show the asymptotic validity of this two-step estimator, followed by the

examination of its �nite sample performance using a simulation. To this end, we employ the

following assumptions on the moment conditions for the factor, factor loadings and idiosyn-

cratic errors. Below, we let M be some �nite positive constant.

Assumption F (the factor): (i) Ejftj4 � M and (ii) F 0F=T
p! �2f = 1 where F =

[f1; � � � ; fT ]0 as T !1.

Assumption FL (factor loadings): (i) Ej�ij4 � M and (ii) �0�=N
p! �2� > 0 where

� = [�1; � � � ; �N ]0 as N !1.

Assumption E (errors): (i) For all (i; t), E (eit) = 0, E jeitj8 � M , (ii) E(eiseit) = 0

for all t 6= s, and N�1
PN

i;j=1 j� ijj � M where � ij = E(eitejt), (iii) EjN�1=2
PN

i=1[eiteis �

E(eiteis)]j4 �M for all t and s and (iv) (TN)�1
PT

t=1

PN
i;j=1 �i�jeitejt

p! � > 0, asN; T !1.

Since we focus on the AR(1) process of the factor, Assumption F is equivalent to the �nite

fourth moment condition of an i.i.d. error "t with variance �
2
" = 1� �2 given the stationarity

condition j�j < 1. Assumption FL can be replaced by the bounded deterministic sequence of

factor loadings, but we only consider the case of random sequence in this paper. Assumption

E allows cross-sectional correlation and heteroskedasticity but not serial correlation of idio-

syncratic error terms. It should be noted that Assumption E can be replaced by a weaker

assumption that allows serial correlations of idiosyncratic errors (see Bai, 2003, and Bai and

Ng, 2002). Finally, we employ the following assumption on the relation among three random

variables.

Assumption I (independence): The variables fftg, f�ig and feitg are three mutually

independent groups. Dependence within each group is allowed.

The following proposition provides the asymptotic properties of the two-step estimator of

the autoregressive coe¢cient.
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Proposition 1. Let xit and ft be generated from (1) and (2), respectively, and Assumptions

F, FL, E and I hold. Then, as T !1 and N !1 such that
p
T=N ! c where 0 � c <1,

p
T (e�� �) d! N(�c���4� �; 1� �2). (7)

The proposition relies on the asymptotic framework employed by Bai (2003) and Gonçalves

and Perron (2014) in their analysis of the factor-augmented forecasting regression model. In

particular, it relies on the simultaneous limit theory where both N and T are allowed to grow

simultaneously with a rate of N being at least as fast as
p
T . The bias term of order T�1=2

is analogous to the bias term in the factor-augmented forecasting regression discussed by

Ludvigson and Ng (2010) and Gonçalves and Perron (2014). Bai (2003) emphasizes that the

factor estimation error has no e¤ect on the estimation of the factor-augmented forecasting

regression model if
p
T=N is su¢ciently small in the limit (c = 0). Similarly, in the context

of estimating the autoregressive model of the common factor, the factor estimation error can

be negligible for small
p
T=N . A special case of Proposition 1 with c = 0 implies

p
T (e�� �) d! N(0; 1� �2) (8)

as T tends to in�nity, so that the limiting distribution of e� in Proposition 1 is same as that

of b� given by (4). In fact, we can further show the asymptotic equivalence of e� and b� with

their di¤erence given by e� � b� = oP (T�1=2).8 Therefore, when the number of the series (N)

is su¢ciently large relative to the time series observations (T ), the estimated factor eft can be

treated in exactly the same way as in the case of observable ft. Combined with the consistency

of the standard error, asymptotic con�dence intervals analogues to (4) can be used for the

8See the proof of Proposition 1.
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two-step estimator e�. For example, the 90% con�dence interval can be constructed as

[e�� 1:645� SE(e�);e�+ 1:645� SE(e�)] (9)

where SE(e�) is the standard error of e� de�ned as SE(e�) = (e�2"=
PT+1

t=2
ef 2t�1)1=2, e�2" = (T �

1)�1
PT

t=2e"2t and e"t = eft � e� eft�1.

WhenN is small (relative to T ), however, the distribution of e�may better be approximated

by (7) in Proposition 1, rather than by (8). In such a case, the presence of a bias term in (7)

can result in bad coverage performance of a naive asymptotic con�dence interval (9). Since

the asymptotic bias term �T�1=2c���4� � can also be approximated by �N�1���4� �, in what

follows, we refer to this bias as the small N bias as opposed to the small T bias, �2T�1�,

discussed above. Within our asymptotic framework, the small N bias dominates the small T

bias since the former is of order T�1=2 and the latter is of order T�1. However, it is interesting

to note some similarity between the small N bias and the small T bias. For positive values

of �, both types of bias are downward and increasing in �. However, the small N bias also

depends on the dispersion of the factor loadings (�2�) and covariance structure of the factor

loadings and idiosyncratic errors (�).

To examine the �nite sample performance of the two-step estimator e� in a simulation,

we now generate xit from (1) with the factor loading �i � iidN(0; 1), the serially and

cross-sectionally uncorrelated idiosyncratic error eit � iidN(0; �2e), and the factor ft from

the same data generating process as before. The relative size of the common component

and idiosyncratic error in xit is expressed in terms of the signal-to-noise ratio de�ned by

V ar(�ift)=V ar(eit) = 1=�2e, which is controlled by changing �
2
e. The set of values of the

signal-to-noise ratio we consider is f0:5; 0:75; 1:0; 1:5; 2:0g. We also follow Bai and Ng (2006)

and Gonçalves and Perron (2014) in considering the performance in the presence of cross-

sectionally correlated errors where the correlation between eit and ejt is given by 0:5
ji�jj if

ji� jj � 5. For a given value of T , the relative sample size N is set according to N = [
p
T=c]
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for c = f0:5; 1:0; 1:5g where [x] is integer part of x. Therefore, sets of Ns under consideration

are f7; 10; 20g for T = 100 and f9; 14; 28g for T = 200.

Table 2 reports the mean values of the two-step estimator e�, along with the e¤ective

coverage rates of the nominal 90% asymptotic con�dence intervals (9). The theoretical result

for c = 0 implies that the coverage probability of (9) should be close to 0.90 only if N is

su¢ciently large relative to T , but we are interested in examining its �nite sample performance

when N is small. The upper panel of the table shows the results with cross-sectionally

uncorrelated errors, while the lower panel shows those with cross-sectionally correlated errors.

Overall, the point estimates of the two-step estimator e� are clearly biased downward when

N is small. Compared to the results for the infeasible estimator b� in Table 1, the magnitude

of bias is much larger with e� re�ecting the fact that the theoretical order of the small N bias

dominates that of the small T bias. In addition, consistent with the theoretical prediction

in Proposition 1, the magnitude with bias increases when (i) � increases, (ii) c increases

(or N decreases) and (iii) the signal-to-noise ratio decreases (or � increases). For the same

parameter values for �, c and signal-to-noise ratio, the introduction of the cross-sectional

correlation seems to increase the bias of e�. This e¤ect does not show up in the �rst order

asymptotics in Proposition 1 since it does not change the value of �. However, when the

signal-to-noise ratio is highest, the di¤erence in point estimates between cross-sectionally

uncorrelated and cross-sectionally correlated cases is smallest.

The coverage performance of the standard asymptotic con�dence intervals also becomes

worse compared to the results in Table 1. For all the cases, the actual coverage frequency

is much less than the nominal coverage rate of 90%. The closest coverage to the nominal

rate is obtained when � = 0:5 is combined with a small c (a large N) and a large signal-to-

noise ratio. In this case, there is about a 2 to 4% under-coverage. The deviation from the

nominal rate becomes larger when � increases, c increases, the signal-to-noise ratio decreases

and the cross-sectional correlation is introduced. The fact that the degree of under-coverage
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is in parallel relationship to the magnitude of the small N bias can also be explained by

Proposition 1. When �c���4� � in (7) is not negligible, the con�dence interval (9), which is

based on approximation (8), cannot be expected to perform well. The presence of the small

N bias results in under-coverage of the con�dence interval (9) when N is small relative to T .

The e¤ect of this downward bias becomes more severe as the AR parameter approaches to

unity. In the next section, we consider the possibility of improving the performance of the

two-step estimator when N is small, by employing bootstrap procedures.

3 Bootstrapping the Autoregressive Model of the La-

tent Factor

In the previous section, we conjectured that the presence of the small N bias is likely

the main source of poor coverage of the asymptotic con�dence interval when N is small.

Recall that in the case of correcting the small T bias, an analytical bias formula is utilized

to obtain b�KBC , while the bootstrap estimate of bias is used to construct b�BC . Similarly,

we can either utilize the explicit bias function and correct the bias analytically using the

formula in Proposition 1, or estimate the bias using the bootstrap method for the purpose of

correction. For example, Ludvigson and Ng (2010) consider the former approach in reducing

bias in the context of the factor-augmented forecasting regression model. Here, we take the

latter approach and employ the bootstrap procedure designed to work with cross-sectionally

and serially uncorrelated errors. To be speci�c, we set � ij = 0 for all i 6= j in Assumption

E(ii). However, in simulation, we also investigate its performance in the presence of cross-

sectionally correlated errors (� ij 6= 0). We �rst describe a simple bootstrap procedure for the

bias correction.

Bootstrap I

1. Estimate the factor and factor loadings using the principal components method and

11



obtain residuals eeit = xit � e�i eft.

2. Recenter eeit, e�i and eft around zero. Generate x�1t = ��1
eft + e�1t for t = 1; :::; T by �rst

drawing ��1 from
e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j. Repeat

the same procedure N times to generate all x�it�s for i = 1; :::; N .

3. Apply the principal components method to x�it to compute
ef �t and set e�� =

�PT+1
t=2

ef �2t�1
��1

PT
t=2
ef �t�1 ef �t if v�NT � � and e�� = e� otherwise. Here, � is some small positive number,

v�NT is the largest eigenvalue of (1=TN)X
�X�0 where X� is the T � N bootstrap data

matrix with t-th row X�0
t = (x

�
1t; : : : ; x

�
Nt) and e� is the AR estimate from eft.

4. Repeat steps 2 to 3B times to obtain the bootstrap bias estimator bias� = B�1
PB

b=1 e��b�

e� where e��b is the b-th bootstrap AR estimate. The bias-corrected estimator of � is given

by e�BC = e�� bias�.

Beran and Srivastava (1985) have established the validity of applying the bootstrap pro-

cedure to the principal components analysis. Our procedure slightly di¤ers from theirs in

that we resample x�it using the estimated factor model in step 2.

In the implementation of the bootstrap, theoretically, it is possible that the �rst principal

components cannot be computed for some bootstrap sample if an associated eigenvalue is

extremely small. In such a case, we just set e�� = e� for the corresponding bootstrap sam-

ple. This modi�cation, however, does not a¤ect the asymptotic property of the bootstrap

estimator of bias.

It should be noted that the procedure above is designed to evaluate the small N bias

rather than the small T bias. In order to incorporate both the small T bias and the small N

bias simultaneously, we may combine the procedure above with bootstrapping AR models.

This possibility is considered in the second bootstrap bias correction method described below.

Bootstrap II
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1. Estimate the factor and factor loadings using the principal components method and

obtain residuals eeit = xit � e�i eft.

2. Compute the AR coe¢cient estimate e� from eft and obtain residuals e"t = eft � e� eft�1.

3. Recenter e"t around zero, if necessary, and generate "�t by resampling from e"t. Then

generate the pseudo factor using f �t = e�f �t�1 + "�t .

4. Recenter eeit and e�i around zero. Generate x�1t = ��1f
�
t + e

�
1t for t = 1; :::; T by �rst

drawing ��1 from
e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j. Repeat

the same procedure N times to generate all x�it�s for i = 1; :::; N .

5. Apply the principal components method to x�it to compute
ef �t and set e�� =

�PT+1
t=2

ef �2t�1
��1

PT
t=2
ef �t�1 ef �t if v�NT � � and e�� = e� otherwise.

6. Repeat steps 2 to 5B times to obtain the bootstrap bias estimator bias� = B�1
PB

b=1 e��b�

e� where e��b is the b-th bootstrap AR estimate. The bias-corrected estimator of � is given

by e�BC = e�� bias�.

The second procedure for the bias correction involves a combination of bootstrapping

principal components and bootstrapping the residuals in AR models (Freedman, 1984, and

Bose, 1988). Note that our procedures employ the bootstrap bias correction based on a

constant bias function. While this form of bias correction seems to be the one most frequently

used in practice (e.g., Kilian, 1998), the performance of the bias-corrected estimator may be

improved by introducing linear or nonlinear bias functions in the correction (see MacKinnon

and Smith, 1998).

Let P � denote the probability measure induced by the bootstrap conditional on the original

sample, and let E� denote expectation with respect to the distribution of the bootstrap sample

conditional on the original sample. The following proposition provides the consistency of the

bootstrap distribution.
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Proposition 2. Let all the assumptions of Proposition 1 hold with � ij = 0 for all i 6= j,

and the bootstrap data be generated as described in Bootstrap I or in Bootstrap II. Then, as

T ! 1 and N ! 1 such that
p
T=N ! c where 0 � c < 1, supx2< jP �(

p
T (~�� � ~�) �

x)� P (
p
T (~�� �) � x)j P! 0.

Proposition 2 implies the �rst-order asymptotic validity of our bootstrap procedure in the

sense that the limiting distribution of the bootstrap estimator ~�� is asymptotically equivalent

to that of e�.9 Since the limiting distribution of e� is given by (7) in Proposition 1, the same

distribution can be used to describe the limiting behavior of ~��. Thus, we conjecture that

the small N bias term �T�1=2c���4� � can be corrected by using the bootstrap procedure.

However, since the consistency of the bootstrap distribution does not necessarily imply the

convergence of the bootstrap moment estimator, a bootstrap version of the uniform inte-

grability condition is required to establish the consistency of the bootstrap bias estimator.

While direct veri�cation of the uniform integrability is typically complicated, Gonçalves and

White (2005) utilized a convenient su¢cient condition of the uniform integrability to prove

the consistency of the bootstrap variance estimator in the context of regression models. In

this paper, we focus on a similar su¢cient condition E�
�
j
p
T (~�� � ~�)j1+�

�
= Op(1) for some

� > 0 in order to obtain the uniform integrability of the sequence f
p
T (~��� ~�)g. The asymp-

totic justi�cation of using our bootstrap methods to correct the small N bias is established

in the following proposition.

Proposition 3. Let all the assumptions of Proposition 1 hold with � ij = 0 for all i 6= j,

Ejftj32 �M , Ej�ij32 �M , E jeitj64 �M , and the bootstrap data be generated as described in

Bootstrap I or in Bootstrap II. Then, as T ! 1 and N ! 1 such that
p
T=N ! c where

0 � c <1, E�(e�� � e�) = �T�1=2c���4� � + oP (T�1=2).
9In general, signs of the coe¢cients in the factor forecasting regression cannot be identi�ed, and Gonçalves

and Perron (2014) argue the consistency of their bootstrap procedure in renormalized parameter space. In
contrast, our result is not subject to the sign identi�cation problem since slope coe¢cients in univariate AR
models can still be identi�ed.
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Proposition 3 implies the consistency of the bootstrap bias estimator bias� since E�(e���e�)

can be accurately approximated by bias� with a suitably large value of B. The proposition

also suggests that the bias-corrected estimator e�BC = e� � bias� has the asymptotic bias of

order smaller than T�1=2. Since the same result holds for both Bootstrap I and Bootstrap

II, whether or not bootstrapping AR models is included in the procedure does not matter

asymptotically.

4 Monte Carlo Experiments

Let us now conduct the simulation to evaluate the performance of the bootstrap bias

correction method. The results of the simulation under the same speci�cation as in Table 2

are shown in Table 3. For each speci�cation, the true bias is �rst evaluated by using the mean

value of ~� � � in 10,000 replications. The theoretical asymptotic bias �T�1=2c���4� � is also

reported. The performance of bootstrap bias estimator based on Bootstrap I and Bootstrap

II is evaluated by using the mean value of bias� in 10,000 replications. The number of the

bootstrap replications is set at B = 199.

The results of the simulation can be summarized as follows. First, results turn out to be

very similar between the cases of Bootstrap I and Bootstrap II. This �nding suggests that

the small T bias is almost negligible for the size of T we consider, which is consistent with

the results in Table 1. Two bootstrap bias estimates match closely with the true bias for

both cases of � = 0:5 and � = 0:9 unless the signal-to-noise ratio is too small. Second,

while the direction of the changes in bias is consistent with the theoretical prediction, the

asymptotic bias only accounts for a fraction of the actual bias. In many cases, bootstrap bias

estimates are much closer to the actual bias than the asymptotic bias predicted by the theory.

Third, the bootstrap bias estimate does not seem to capture the e¤ect of increased bias in

the presence of the cross-sectional correlation. However, this is not surprising because our

bootstrap procedure is designed for the case of cross-sectionally uncorrelated errors. Overall,
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the performance of the bootstrap correction method seems to be satisfactory.

Since the bootstrap bias correction method has been proven to be e¤ective in simula-

tion, we now turn to the issue of improving the performance of con�dence intervals using

a bootstrap approach. Recall that the deviation of the actual coverage rate of a naive as-

ymptotic con�dence interval (9) from the nominal rate is proportional to the size of bias in

Table 2. Thus, it is natural to expect that recentered asymptotic con�dence intervals using

the bootstrap bias-corrected estimates improve the coverage accuracy. For example, the 90%

con�dence interval can be constructed as

[e�BC � 1:645� SE(e�);e�BC + 1:645� SE(e�)]: (10)

The asymptotic validity of the con�dence interval (10) can easily be shown by combining the

results in Propositions 1 to 3.

Instead of using a bias-corrected estimator, we can directly utilize the bootstrap distri-

bution of the estimator to construct bootstrap con�dence intervals. Here, we consider the

percentile con�dence interval based on the recentered bootstrap estimator e�� � e� as well as

the percentile-t equal-tailed con�dence interval based on the bootstrap t statistic de�ned as

t(e��) = (e���e�)=SE(e��) where SE(e��) is the standard error of e��, which is asymptotically piv-

otal.10 For example, the 90% percentile con�dence interval and 90% percentile-t equal-tailed

con�dence interval can be constructed as

[e�� q0:95(e�� � e�);e�� q0:05(e�� � e�)] (11)

and

[e�� q0:95(t(e��))� SE(e�);e�� q0:05(t(e��))� SE(e�)] (12)

respectively, where q�(x) denotes 100� �-th percentile of x. We now describe our procedure
10See Hall (1992) on the importance of using asymptically pivotal statistics in achieving the higher order

accuracy of the bootstrap con�dence interval.
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of constructing the bootstrap con�dence intervals.

Bootstrap Con�dence Interval

1. Follow either steps 1 to 2 in Bootstrap I or steps 1 to 4 in Bootstrap II.

2. Compute the bootstrap AR coe¢cient estimate e�� =
�PT+1

t=2
ef �2t�1
��1 PT

t=2
ef �t�1 ef �t and

t(e��) = (e�� � e�)=SE(e��) if v�NT � � and e�� = e� and t(e��) = t(e�) = (~� � �)=SE(e�)

otherwise.

3. Repeat steps 1 to 2 B times to obtain the empirical distribution of e�� � e� to construct

the percentile con�dence interval and of t(e��) to construct the percentile-t con�dence

interval.

Note that, as in Kilian�s (1998) argument on vector autoregression, e� in step 3 in Boot-

strap II can be replaced by the bias-corrected estimator e�BC without changing the limiting

distribution of the bootstrap estimator. Proposition 2 implies that the coverage rate of the

percentile bootstrap con�dence interval approaches the nominal coverage rate in the limit.

Similarly, we can modify Proposition 2 and replace ~�� and ~� by their studentized statistics

t(e��) and t(e�) and show the bootstrap consistency of t(e��) and the asymptotic validity of the

percentile-t con�dence interval.

Table 4 reports coverage of three con�dence intervals based on the bootstrap applied

to the two-step estimator e� for the � = 0:5 and � = 0:9 cases. Here, for the bootstrap bias

correction method required in the con�dence interval (10), we use Bootstrap II. Similarly, we

report percentile and percentile-t con�dence intervals based on Bootstrap Con�dence Interval

combined with Bootstrap II. The table shows that all three con�dence intervals signi�cantly

improve over the naive asymptotic interval (9) in Table 2. Especially, when T = 200, c = 0:5

and � = 0:5, the coverage rates of all three bootstrap intervals are very close to each other and

are nearly the nominal rate, regardless of the signal-to-noise ratio. The percentile con�dence
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interval (11) seems to work relatively well when T = 100. The percentile-t con�dence interval

(12) seems to dominate the bias-corrected con�dence interval (10) for all the cases.

As in the case of the bias correction result, the performance of con�dence intervals tends

to improve when the signal-to-noise ratio increases. Likewise, the performance deteriorates

when errors are cross-sectionally correlated. Yet, their coverage is much closer to the nom-

inal rate when compared to the corresponding results for the naive asymptotic con�dence

interval. In summary, the percentile-t con�dence interval works at least as well as the bias-

corrected con�dence interval, but does not uniformly dominates the percentile con�dence

interval. Therefore, we suggest using three methods complementarily in practice.

5 Empirical Application to US Di¤usion Index

In this section, we apply our bootstrap procedure to the analysis of a di¤usion index

based on a dynamic factor model. Stock and Watson (1998, 2002) extract common factors

from 215 U.S. monthly macroeconomic time series and report that the forecasts based on

such di¤usion indexes outperform the conventional forecasts.11 We use the same data source

(and transformations) as Stock and Watson, and the sample period is from 1959:3 to 1998:12,

giving a maximum number of time series observation T = 478. By excluding the series with

missing observations, we �rst construct a balance panel with N = 159.12 For the purpose

of visualizing the e¤ect of small N on the estimation of persistence parameter of the single

common factor, we then generate multiple subsamples using the following procedure. Based

on the full balanced panel, we select variables 1, 4, 7 and so on to construct a balanced panel

subsample. Next, we construct another subsample by selecting variables 2, 5, 8 and so on. By

11The list provided in Appendix B of Stock and Watson (2002) shows that the individual series are from 14
categories that consist of (1) real output and income; (2) employment and hours; (3) real retail, manufacturing
and trade sales; (4) consumption; (5) housing starts and sales; (6) real inventories and inventory-sales ratios;
(7) orders and un�lled orders; (8)stock prices; (9) exchange rates; (10) interest rates; (11) money and credit
quantity aggregates; (12) price indexes; (13) average hourly earnings; and (14) miscellaneous.
12The number of the series in the full balanced panel di¤ers from that of Stock and Watson (2002) due to

the di¤erent treatment of outliers.
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repeating such a selection three times, we can construct three balanced panel data sets with

T = 478 and N = 53. Similarly, we can select variables 1, 6, 11 and so on to construct �ve

balanced panels with T = 478 and N = 31. Since the number of the series in the full balanced

panel and the two subsamples are N = 159; 53 and 31, corresponding
p
T=N are 0.14, 0.41

and 0.71. Since the values of
p
T=N are not close to zero, the bootstrap method is likely more

appropriate than the naive asymptotic approximation in the two-step estimation. Di¤usion

indexes, obtained as the cumulative sums of the �rst principal components of panel data

sets, are shown in Figure 1. The bold line shows the estimated common factor using the full

balanced panel with N = 159. The darker shaded area represents the range of common factor

estimates among three subsamples with N = 53, while the lighter shaded area represents the

range of common factor estimates among �ve subsamples with N = 31. As the asymptotic

theory predicts, we observe that the variation among the indexes based on N = 31 is much

larger than the variation among indexes based on N = 53.

In the next step, we estimate the persistence of three di¤usion indexes using the AR(1)

speci�cation. Table 5 reports the point estimates e�, naive 90% con�dence intervals (9), bias-

corrected estimates e�BC and bootstrap-based 90% con�dence intervals (10), (11) and (12).

The bias-corrected estimates and bootstrap-based con�dence intervals are computed with

the number of bootstrap replication B = 799. One notable observation from this empirical

exercise is that the magnitude of the bootstrap bias correction is substantial for all three

cases. The estimated bias is largest in the case of N = 31 and is smallest in the case of

N = 159. In addition, the non-overlapping range between the naive and bootstrap intervals

seems to be wider when N is smaller. These observations are consistent with our �ndings

from the Monte Carlo simulation.
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6 Conclusion

In this paper, we examined the �nite sample properties of the two-step estimator of a

persistence parameter in dynamic factor models when an unobservable common factor is

estimated by the principal components method in the �rst step. As a result of the simu-

lation experiment with small N , we found that the AR coe¢cient estimator of a positively

autocorrelated factor is biased downward, and the bias is larger for a more persistent factor.

This �nding is consistent with the theoretical prediction. The properties of the small N bias

somewhat resemble those of the small T bias of the AR estimator. However, the bias caused

by the small N is also present in the large T case. When there is a possibility of such a

downward bias, a bootstrap procedure can be e¤ective in correcting bias and controlling the

coverage rate of the con�dence interval.

Using a large number of series in the dynamic factor analysis has become a very popular

approach in applications. The �nding of this paper suggests that practitioners need to pay

attention to the relative size of N and T before relying too much on a naive asymptotic

approximation. Finally, it would be interesting to extend the experiments to allow for higher

order AR models and nonlinear factor dynamics.
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Appendix: Proofs

Proof of Proposition 1

The principal components estimator eF =
h
ef1; � � � ; efT

i0
is the �rst eigenvec-

tor of the T � T matrix XX0 with normalization T�1
PT

t=�
ef2t = 1, where

X =

2

6
4

X0
1

...
X0T

3

7
5 =

2

6
4

x11
...
x1T

� � �
. . .

� � �

xN1
...

xNT

3

7
5 :

By de�nition, (1=TN)XX0 eF = eFvNT where vNT is the largest eigenvalue of
(1=TN)XX0. Following the proof of Theorem 5 in Bai (2003), the estimation er-

ror of the factor eft�HNTft = OP
�
N�1=2

�
, whereHNT = ( eF 0F=T )��0�=N)v�1NT

and �NT = m��f
p
N ;
p
Tg. From Bai�s (2003) Lemma A.3, we have p l�m

T�N!�
vNT =

�2��
2

� = v and p l�m
T�N!�

H2

NT = p l�m
T�N!�

( eF 0F=T )��0�=N)2(F 0 eF=T )v�2NT = v�2�v
�2 =

�2�(�
2

��
2

� )
�1 = �

�2
� = 1.

If ft is observable,

p
T (b�� �) =

p
T

 
T+�X

t=	

f
2

t�1

!�1
(
TX

t=	

ft�1ft � �
T+�X

t=	

f
2

t�1)

= T�1=2
TX

t=	

ft�1"t + oP (1)

since T�1
PT

t=� f
2

t = 1 + oP (1). If ft is replaced with eft, we have

p
T (e�� �) =

p
T

 
T+�X

t=	

ef2t�1

!�1
(
TX

t=	

eft�1 eft � �
T+�X

t=	

ef2t�1)

= T�1=2
TX

t=	

eft�1
�
eft � � eft�1

�
� T�1=2� ef 2T = T�1=2

TX

t=	

eft�1
�
eft � � eft�1

�
+ oP (1)

= T�1=2HNT

TX

t=	

eft�1"t

+T�1=2
TX

t=	

eft�1
n
eft �HNTft � �

�
eft�1 �HNTft�1

�


+ oP (1)

= T�1=2H2

NT

TX

t=	

ft�1"t � T�1=2�
TX

t=	

eft�1
�
eft�1 �HNTft�1

�

+T�1=2
TX

t=	

eft�1
�
eft �HNTft

�
+ T�1=2HNT

TX

t=	

�
eft�1 �HNTft�1

�
"t + oP (1):
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Under the assumptions, we can show (i) T�1�
P�

t�

e�t�1( e�t�1���� �t�1) =

����2N�1�+�� (�
�2
�� ); (ii) T

�1
P�

t�

e�t�1( e�t���� �t) = ���2N�1�+�� (�

�2
�� );

and (iii) T�1���
P�

t�
(
e�t�1���� �t�1)�t = �� (�

�2
�� ). Since proofs of (i) and

(iii) are almost same as those of Lemma A.2 (b) and Lemma A.1 in Gonçalves
and Perron (2014), respectively, we only show (ii) below. Note that

T�1
�X

t�


e�t�1( e�t ���� �t)

= T�1
�X

t�


( e�t�1 �����t�1)( e�t ���� �t) +���T�1
�X

t�


�t�1( e�t ���� �t):

For the �rst term, we have

T�1
�X

t�


( e�t�1 �����t�1)( e�t ���� �t)

= �
�2
���

2

��T
��

�X

t�


(
�X

s��

�sN
�1
�s

�X

i��

�ieit�1)(
�X

s��

�sN
�1
�s

�X

i��

�ieit) + �� (�
�2
�� )

= �
�2
���

2

��T
��(

�X

s��

�
2

s )
2

�X

t�


(N�1

�X

i��

�ieit�1)(N
�1

�X

i��

�ieit) + �� (�
�2
�� )

= �� (�
�2
�� ):

For the second term, we have

���T
�1

�X

t�


�t�1( e�t ���� �t)

= [T�1
�X

t�


�t�1�t][T
�1

�X

s��

( e�s ���� �s)N�1

�X

i��

�ie�s]+ �� (�
�2
�� )

= �T�1
�X

s��

( e�s ���� �s)N�1

�X

i��

�ie�s + �� (�
�2
�� )

= N�1
����� + �� (�

�2
�� ) = N

�1
��
�2� + �� (�

�2
�� ):

Combining the two results yields (ii). We can thus use (i), (ii), (iii), �2

�� � 1 =
�� (1) and T

1=2N�1 � c = �(1) to obtain

p
T (e�� �) = T�1=2

�X

t�


�t�1�t � c��
�2� + �� (1).

The desired result follows from the central limit theorem applied to the martin-
gale di¤erence sequence �t�1�t with E(�

2

t�1�
2

t ) = 1��2 combined with Slutsky�s
theorem.
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Proof of Proposition 2.

In this proof, we only consider the case of Bootstrap II because the proof
for Bootstrap I is similar but simpler. The bootstrap principal components

estimator e � =
#
e$�
1
% � � � % e$�&

'(
is the �rst eigenvector of the T �T matrix *�*,(

with normalization T�1
P&

t-.
e$�2t = 1, where the bootstrap sample is given by

*
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8
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1

...
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9

:
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1
8
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. . .
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...

x�>&

9

:
< :

Analogous to the original version, we have (1=TN)*�*,( ~ � = ?�>&
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�
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�
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�
i C
�
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error of the factor can be decomposed as
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�
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�
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where J�
>& = ( ~ ,( �=T KLM,(M�=N)?��1>& . We denote S

�
& = OQ �(R

�1
& ) if the

bootstrap statistic S�& satis�es U �(R& jS�& j V W) = OQ (1) for any W V 0 as
R& ! 1. From Lemma B.1 in Gonçalves and Perron (2014), we have ?�>& =
? + OQ�(1), and J

�2
>& � 1 = OQ �(1).

The dominant term of the bootstrap estimation error can be decomposed as

p
T (e�� � ~�) = T�1=2
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�
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The leading term can be written as
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J
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The last equality follows from the fact that J�2
>& � 1 = OQ �(1): Analogous to

the proofs of Proposition 1, we have (i) T�1~�
P&

t-Y
e$�t�1

�
e$�t�1 �J�

>& $
�
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�
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abd�2N�1� + gj �(k
�2
pq ); (ii) T

�1r�
Pq

ttu
ew�t�1

�
ew�t �x�

pqw
�
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�
= bd�2N�1� +
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qX

ttu
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�
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�
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} � + gj �(1):

We apply the bootstrap central limit theorem to the term T�1=2
Pq

ttu w
�
t�1y

�
t .

Since E��w�t�1y
�
t jw�t�2y�t�1� :::� = 0, we can use the central limit theorem for the

martingale di¤erence sequence under the bootstrap probability measure and
thus � �(

p
T (r�� � r�) � x) approaches normal distribution function with mean

�zb{�|} � and variance E�(w�2t�1y�2t ) under the bootstrap probability measure. In
the residual bootstrap procedure for the AR(1) model, since w�t is generated by
w�� = rbw���1 + y�� for � = 0��1��a� :::(see Bose, 1988, p. 1711), E�(w�2t�1) =P�
�t� r�

2�E�(y�2t ) = (1 � r�2)�1E�(y�2t ). Because, r� !j � and E�(y�2t ) =

T�1
Pq
�t� ey

2

t !j {2� = 1 � �2, we have E�(w�2t�1y�2t ) = E�(w�2t�1)E
�(y�2t ) !j

1� �2. Thus, we have � �(
p
T (r�� � r�) � x)� � (

p
T (r�� �) � x)!j 0 for any

x. By using Polya�s theorem, we have the uniform convergence result.

Proof of Proposition 3.

We show a su¢cient condition E��T (e�� � r�)
2
� = O�(1) for the uniform in-

tegrability of
p
T (e�� � r�). From Lemma C.1 of Gonçalves and Perron (2014),

with mutual independence of wt, �i, and �it, when Ejwtj� �� , Ej�ij� �� , and

Ej�itj2� �� for some � � a, we have (i) T�1
Pq

tt� j ewt�xpqwtj� = Oj (1); (ii)
N�1

Pp
it� jr�i � x

�1
pq�ij� = Oj (1); and (iii) (NT )

�1
Pp

it�

Pq
tt� r�

�
it = Oj (1).

(i), (ii) and (iii) imply that E�(���it ) = (NT )
�1
Pp

it�

Pq
tt� r�

�
it = Oj (1),

E�j��i j� = N�1

pX

it�

jr�ij� � a
��1N�1(

pX

it�

jr�i�x�1
pq�ij�+

pX

it�

jx�1
pq�ij�) = Oj (1)�

E�jy�t j� = (T � 1)�1
qX

ttu

j ewt � r� ewt�1j�

= (T � 1)�1
qX

ttu

j ewt �xpqwt +xpqwt � r�( ewt�1 �xpqwt�1)� rbxpqwt�1j�

� 4��1(T � 1)�1

�
qX

ttu

�j ewt �xpqwtj� + jxpqwtj� + jr�( ewt�1 �xpqwt�1)j� + jrbxpqwt�1j��

= Oj (1)�

and
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E�j��t�1j� = E�j��t�1 + ���
�
t�2 + :::j� � (1 + j��j� + j��j2� + :::)E�j��t j� = O� (1):

In addition, if Ej�tj�� �� , Ej�ij�� �� , and Ej�itj�� �� , we have

E�j��
�� j� = E�

�

j ����� �=T j�j �� �=N j�j¡��� j��
¢

� £
��E�

�

j ����� �=T j�j �� �=N j�
¢

� £
��
¤

E�
�

( ����� �=T )2�
¢

E�
¥
¦ 
��
 
�=N)2�

§¨1=2
= O� (1)

since

��
��
�
�=T = T�1

�©ªX

t«¬

��
�
t�1�

�
t�1 �

 
T�1

�©ªX

t«¬

��
�2
t�1T

�1

�©ªX

t«¬

�
�2
t�1

!1=2
=

 
T�1

�©ªX

t«¬

�
�2
t�1

!1=2
­

E�
�

( ����� �=T )2�
¢

� E�
®¯

T�1
�©ªX

t«¬

�
�2
t�1

!�°
� E�

®

T�1
�©ªX

t«¬

�
�2�
t�1

°

= E�(��2�t�1) = O� (1)

and

E�
¥
¦ 
��
 
�=N)2�

§
= E�±

 
N�1

�X

i«ª

�
�2
i

!2�
² = E�(����i ) = O� (1):

From the decomposition in the proof of Proposition 2, the second moment
of the bootstrap estimator under the bootstrap measure is
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E�³T (e�� � �́)2µ

= TE�f³
 
¶·X̧

t¹º

e»�2t�1

!�1
(
¶X

t¹º

e»�t�1 e»�t � �́
¶·X̧

t¹º

e»�2t�1¼µ2g

= T�1E�f³
¶X

t¹º

e»�t�1
�
e»�t � �́ e»�t�1

�
µ
2g+ ½¾ (1)

= T�1E�

¿
À

Á

Â
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Ã
e»�t �Ä
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�
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Ê
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Ä
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»
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�

+
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Combining the moment conditions introduced before, we can show that each
term in this expansion is O¾ (1). For example, the leading term is bounded in
probability because

T�1E�Ä�Î
Å¶

¶X

t¹º

»
�2
t�1È

�2
t

�

Ï

ÐE�Ä�Ñ
Å¶E

�
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�2
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1=2

�
Ô
E�Ä�Ñ

Å¶E
�
�
»
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�Î
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ÕÖ1=2
= O×(1):

The last equality follows from E�
�
»�Ît�1È

�Î
t

Õ
�
Ô
E�
�
»�Ñt�1)E

�(È�Ñt
ÕÖ1=2

= O¾ (1)
and E�Ä�Ñ

Å¶ = O¾ (1) under Ej»tjØº �Ù , EjÚijØº �Ù , and EjÛitjÜÎ �Ù .
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Table 1: AR Estimation

Estimator
ρ T ρ̂ ρ̂KBC ρ̂BC Coverage Rate

0.5 100 0.49 0.50 0.50 0.90
200 0.50 0.50 0.50 0.90

0.9 100 0.88 0.90 0.90 0.90
200 0.89 0.90 0.90 0.90

Note: Mean values of the OLS estimator (ρ̂), the Kendall-type
bias-corrected estimator (ρ̂KBC) and the bootstrap bias-corrected
estimator (ρ̂BC) and coverage rates of the asymptotic confidence
interval (5) in 10,000 replications.

Table 2: Two-Step AR Estimation

ρ̃ Coverage Rate
ρ T c 1/σ2

e =0.5 0.75 1 1.5 2 1/σ2

e=0.5 0.75 1 1.5 2
(A) No cross-sectional correlation

0.5 100 0.5 0.42 0.43 0.44 0.45 0.46 0.77 0.82 0.84 0.86 0.86
1 0.36 0.39 0.41 0.42 0.44 0.58 0.69 0.73 0.79 0.82
1.5 0.32 0.36 0.38 0.40 0.41 0.44 0.56 0.64 0.73 0.76

200 0.5 0.45 0.46 0.46 0.47 0.47 0.79 0.83 0.85 0.87 0.88
1 0.41 0.43 0.44 0.45 0.46 0.60 0.70 0.75 0.81 0.83
1.5 0.36 0.40 0.41 0.43 0.44 0.39 0.53 0.61 0.71 0.77

0.9 100 0.5 0.73 0.77 0.79 0.81 0.82 0.25 0.40 0.47 0.58 0.63
1 0.62 0.68 0.71 0.75 0.77 0.07 0.13 0.22 0.32 0.41
1.5 0.54 0.61 0.65 0.70 0.73 0.03 0.07 0.11 0.19 0.27

200 0.5 0.80 0.82 0.83 0.85 0.85 0.27 0.42 0.51 0.62 0.70
1 0.72 0.76 0.78 0.81 0.82 0.05 0.12 0.21 0.35 0.43
1.5 0.65 0.70 0.73 0.77 0.79 0.01 0.04 0.08 0.16 0.25

(B) Cross-sectional correlation
0.5 100 0.5 0.40 0.42 0.44 0.45 0.45 0.71 0.79 0.81 0.84 0.86

1 0.29 0.35 0.38 0.41 0.42 0.39 0.55 0.65 0.73 0.78
1.5 0.21 0.28 0.32 0.37 0.39 0.24 0.39 0.49 0.61 0.69

200 0.5 0.44 0.45 0.46 0.47 0.48 0.75 0.82 0.84 0.86 0.87
1 0.37 0.41 0.43 0.45 0.46 0.44 0.61 0.69 0.78 0.82
1.5 0.28 0.34 0.38 0.41 0.43 0.22 0.38 0.49 0.64 0.70

0.9 100 0.5 0.67 0.74 0.77 0.80 0.81 0.19 0.33 0.43 0.54 0.61
1 0.44 0.56 0.63 0.70 0.74 0.05 0.11 0.17 0.29 0.38
1.5 0.32 0.44 0.52 0.62 0.67 0.02 0.06 0.10 0.18 0.24

200 0.5 0.78 0.81 0.83 0.84 0.85 0.22 0.37 0.48 0.61 0.66
1 0.63 0.71 0.76 0.80 0.81 0.05 0.11 0.18 0.31 0.40
1.5 0.46 0.59 0.65 0.73 0.76 0.01 0.05 0.08 0.16 0.23

Note: Mean values of the two-step estimator (ρ̃) and coverage rates of the asymptotic confidence
interval (9) in 10,000 replications. 1/σ2

e is the signal-to-noise ratio.
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Table 3: Bootstrap Bias Corrections

T = 100 T = 200
ρ c 1/σ2

e
=0.5 0.75 1 1.5 2 1/σ2

e
=0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 0.5 bias -0.08 -0.07 -0.06 -0.05 -0.05 -0.05 -0.04 -0.04 -0.03 -0.02

asy bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias I* -0.05 -0.04 -0.03 -0.02 -0.02 -0.04 -0.03 -0.02 -0.01 -0.01
bias II* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.13 -0.11 -0.10 -0.07 -0.07 -0.09 -0.08 -0.06 -0.04 -0.04
asy bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias I* -0.08 -0.07 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.04 -0.03
bias II* -0.09 -0.09 -0.08 -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 -0.04

1.5 bias -0.18 -0.14 -0.12 -0.10 -0.08 -0.13 -0.10 -0.09 -0.07 -0.06
asy bias -0.15 -0.10 -0.07 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias I* -0.09 -0.08 -0.08 -0.07 -0.06 -0.08 -0.07 -0.07 -0.06 -0.05
bias II* -0.10 -0.10 -0.10 -0.09 -0.08 -0.09 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.17 -0.13 -0.11 -0.10 -0.09 -0.10 -0.08 -0.07 -0.06 -0.05
asy bias -0.09 -0.06 -0.04 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias I* -0.09 -0.08 -0.07 -0.05 -0.04 -0.07 -0.05 -0.05 -0.03 -0.03
bias II* -0.13 -0.12 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.28 -0.22 -0.19 -0.15 -0.13 -0.18 -0.14 -0.12 -0.09 -0.08
asy bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03
bias I* -0.14 -0.13 -0.11 -0.10 -0.09 -0.12 -0.10 -0.09 -0.07 -0.06
bias II* -0.17 -0.16 -0.15 -0.14 -0.13 -0.13 -0.12 -0.10 -0.09 -0.08

1.5 bias -0.36 -0.29 -0.24 -0.20 -0.17 -0.26 -0.20 -0.17 -0.13 -0.11
asy bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias I* -0.15 -0.15 -0.15 -0.14 -0.12 -0.15 -0.14 -0.12 -0.11 -0.09
bias II* -0.18 -0.18 -0.18 -0.17 -0.16 -0.16 -0.15 -0.14 -0.13 -0.11
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Table 3 (continued)

T = 100 T = 200
ρ c 1/σ2

e
=0.5 0.75 1 1.5 2 1/σ2

e
=0.5 0.75 1 1.5 2

(B) Cross-sectional correlation
0.5 0.5 bias -0.10 -0.08 -0.07 -0.05 -0.05 -0.06 -0.04 -0.04 -0.03 -0.02

asy bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias I* -0.05 -0.04 -0.03 -0.02 -0.02 -0.04 -0.03 -0.02 -0.02 -0.01
bias II* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.21 -0.15 -0.12 -0.09 -0.08 -0.14 -0.09 -0.07 -0.05 -0.04
asy bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias I* -0.06 -0.07 -0.06 -0.05 -0.05 -0.06 -0.05 -0.04 -0.04 -0.03
bias II* -0.08 -0.08 -0.08 -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 -0.04

1.5 bias -0.29 -0.22 -0.18 -0.14 -0.10 -0.23 -0.16 -0.13 -0.09 -0.07
asy bias -0.15 -0.10 -0.07 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias I* -0.07 -0.08 -0.08 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.05
bias II* -0.08 -0.09 -0.09 -0.09 -0.09 -0.08 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.22 -0.17 -0.13 -0.11 -0.09 -0.12 -0.08 -0.07 -0.06 -0.05
asy bias -0.09 -0.06 -0.04 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias I* -0.09 -0.08 -0.07 -0.05 -0.04 -0.07 -0.05 -0.05 -0.03 -0.03
bias II* -0.12 -0.11 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.45 -0.35 -0.26 -0.18 -0.16 -0.27 0.18 -0.14 -0.10 -0.08
asy bias -0.18 -0.12 -0.09 -0.06 -0.04 -0.13 -0.08 -0.06 -0.04 -0.03
bias I* -0.11 -0.11 -0.11 -0.10 -0.09 -0.11 -0.10 -0.09 -0.07 -0.06
bias II* -0.13 -0.14 -0.14 -0.13 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08

1.5 bias -0.57 -0.45 -0.37 -0.28 -0.23 -0.45 -0.31 -0.25 -0.18 -0.14
asy bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias I* -0.12 -0.13 -0.14 -0.13 -0.12 -0.12 -0.13 -0.12 -0.11 -0.09
bias II* -0.13 -0.15 -0.16 -0.16 -0.16 -0.13 -0.14 -0.14 -0.13 -0.11

Note: The actual bias (bias), bootstrap bias estimator based on Bootstrap I (bias I*) and bootstrap bias
estimator based on Bootstrap II (bias II*) are mean values in 10,000 replications. The asymptotic bias (asy
bias) is −T−1/2cρσ−4

λ Γ. 1/σ2

e is the signal-to-noise ratio.
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Table 4: Coverage Rate of Bootstrap Confidence Intervals

T = 100 T = 200
ρ c 1/σ2

e =0.5 0.75 1 1.5 2 1/σ2

e =0.5 0.75 1 1.5 2
(A) No cross-sectional correlation

0.5 0.5 Bc 0.85 0.86 0.86 0.86 0.87 0.86 0.87 0.87 0.87 0.88
Per 0.87 0.87 0.88 0.87 0.88 0.88 0.88 0.88 0.89 0.89
Per-t 0.86 0.87 0.87 0.87 0.88 0.87 0.88 0.87 0.88 0.89

1 Bc 0.77 0.80 0.83 0.83 0.85 0.81 0.83 0.84 0.87 0.86
Per 0.80 0.84 0.86 0.86 0.87 0.86 0.87 0.87 0.88 0.87
Per-t 0.79 0.83 0.85 0.85 0.87 0.84 0.85 0.86 0.87 0.87

1.5 Bc 0.68 0.75 0.77 0.80 0.82 0.72 0.79 0.81 0.82 0.85
Per 0.73 0.80 0.81 0.84 0.85 0.78 0.83 0.85 0.85 0.87
Per-t 0.72 0.79 0.80 0.84 0.84 0.75 0.82 0.84 0.84 0.87

0.9 0.5 Bc 0.78 0.82 0.83 0.84 0.84 0.84 0.87 0.88 0.89 0.89
Per 0.90 0.93 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.93
Per-t 0.80 0.86 0.87 0.88 0.88 0.86 0.90 0.90 0.90 0.89

1 Bc 0.60 0.70 0.75 0.79 0.80 0.70 0.80 0.83 0.84 0.86
Per 0.74 0.84 0.88 0.91 0.93 0.87 0.93 0.94 0.95 0.95
Per-t 0.62 0.73 0.79 0.84 0.87 0.72 0.82 0.86 0.89 0.89

1.5 Bc 0.45 0.60 0.66 0.73 0.76 0.50 0.64 0.71 0.76 0.80
Per 0.60 0.74 0.79 0.87 0.88 0.70 0.84 0.90 0.92 0.93
Per-t 0.48 0.63 0.70 0.79 0.82 0.53 0.70 0.79 0.84 0.88

(B) Cross-sectional correlation
0.5 0.5 Bc 0.81 0.84 0.86 0.86 0.87 0.85 0.86 0.87 0.88 0.88

Per 0.83 0.86 0.87 0.87 0.88 0.87 0.88 0.88 0.89 0.88
Per-t 0.82 0.85 0.87 0.87 0.88 0.86 0.86 0.87 0.89 0.89

1 Bc 0.58 0.71 0.78 0.82 0.84 0.68 0.79 0.83 0.86 0.87
Per 0.62 0.75 0.81 0.84 0.86 0.71 0.83 0.86 0.88 0.87
Per-t 0.61 0.73 0.80 0.84 0.86 0.69 0.81 0.84 0.87 0.87

1.5 Bc 0.45 0.60 0.67 0.75 0.78 0.48 0.64 0.73 0.78 0.82
Per 0.48 0.64 0.70 0.78 0.81 0.52 0.69 0.78 0.83 0.85
Per-t 0.47 0.63 0.69 0.77 0.81 0.51 0.66 0.76 0.81 0.84

0.9 0.5 Bc 0.62 0.73 0.78 0.81 0.83 0.75 0.83 0.85 0.87 0.88
Per 0.73 0.85 0.89 0.91 0.92 0.87 0.93 0.93 0.93 0.93
Per-t 0.62 0.76 0.81 0.85 0.86 0.73 0.82 0.87 0.88 0.89

1 Bc 0.32 0.48 0.59 0.70 0.74 0.43 0.63 0.71 0.80 0.82
Per 0.42 0.60 0.73 0.83 0.87 0.57 0.77 0.84 0.91 0.93
Per-t 0.33 0.50 0.63 0.75 0.79 0.44 0.63 0.72 0.82 0.85

1.5 Bc 0.21 0.36 0.46 0.60 0.65 0.24 0.42 0.56 0.65 0.71
Per 0.29 0.46 0.58 0.72 0.78 0.36 0.57 0.71 0.81 0.87
Per-t 0.23 0.39 0.50 0.65 0.71 0.26 0.44 0.60 0.71 0.78

Note: Coverage rates of three nominal 90% confidence intervals in 10,000 replications. Bc denotes the
bootstrap bias-corrected asymptotic confidence interval (10), Per denotes the percentile bootstrap
confidence interval (11) and Per-t denotes the percentile-t equal-tailed bootstrap confidence interval
(12). 1/σ2

e is the signal-to-noise ratio.
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Table 5: AR(1) Estimates of the US diffusion index

Asymptotic Bootstrap confidence intervals
Series ρ̃ Confidence interval ρ̃BC Bc Per Per-t

(A) Full sample (N = 159)
1 0.66 (0.60, 0.71) 0.69 (0.64, 0.75) (0.64, 0.76) (0.64, 0.75)

(B) Long subsample (N = 53)
1 0.65 (0.60, 0.71) 0.74 (0.69, 0.80) (0.68, 0.82) (0.68, 0.80)
2 0.58 (0.52, 0.64) 0.66 (0.60, 0.72) (0.59, 0.74) (0.59, 0.72)
3 0.68 (0.63, 0.73) 0.78 (0.72, 0.83) (0.71, 0.86) (0.71, 0.83)

average 0.64 (0.58, 0.69) 0.73 (0.67, 0.79) (0.66, 0.80) (066., 0.78)

(C) Short subsample (N = 31)
1 0.57 (0.51, 0.63) 0.75 (0.69, 0.81) (0.66, 0.84) (0.65, 0.80)
2 0.83 (0.79, 0.87) 0.95 (0.91, 1.00) (0.88, 1.06) (0.88, 0.99)
3 0.63 (0.58, 0.69) 0.75 (0.69, 0.80) (0.67, 0.83) (0.67, 0.80)
4 0.55 (0.49, 0.61) 0.65 (0.58, 0.71) (0.57, 0.73) (0.57, 0.71)
5 0.54 (0.48, 0.60) 0.67 (0.61, 0.74) (0.59, 0.77) (0.59, 0.75)

average 0.62 (0.57, 0.68) 0.75 (0.70, 0.81) (0.67, 0.84) (0.67, 0.81)

Note: The sample period is from 1959:3 to 1998:12 (T = 478). c =
√

T/N is 0.14, 0.41 and 0.71,
respectively, for series A, B and C. The first confidence interval next to ρ̃ is the 90% asymptotic
confidence interval (9). For the boostrap confidence intervals, Bc denotes the 90% bootstrap
bias-corrected asymptotic confidence interval (10), Per denotes the 90% percentile interval (11)
and Per-t denotes the 90% percentile-t equal-tailed interval (12).
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Figure 1: The US Diffusion Index
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