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1 Introduction

Impulse response analysis based on autoregressions plays a central role in quantitative economics
(see Kilian and Liitkepohl 2017). Many researchers have cautioned against relying on pre-tests
to diagnose and remove apparent unit roots in autoregressive processes (e.g., Elliott 1998; Rossi
and Pesavento 2007; Gospodinov, Herrera and Pesavento 2011). As result, autoregressions are
often estimated based on highly persistent data. A long-standing question has been how to assess
the uncertainty about response estimates when the dominant autoregressive root may be close to
unity. The asymptotic validity of conventional methods of asymptotic and bootstrap inference for
impulse responses for stationary processes has been established in Liitkepohl (1990) and Gongalves
and Kilian (2004). Extensions to possibly integrated autoregressive processes are provided in In-
oue and Kilian (2002, 2003), building on Park and Phillips (1989) and Sims, Stock and Watson
(1990). Kilian and Liitkepohl (2017) note that the assumptions underlying the analysis of higher-
order autoregressions in Inoue and Kilian (2002) may be relaxed further by fitting lag-augmented
autoregressions, as proposed by Dolado and Liitkepohl (1996) and Toda and Yamamoto (1995).1
All these asymptotic justifications, however, rely on pointwise convergence results. It is unclear
whether they are valid uniformly across the parameter space.

In many econometric applications the distinction between pointwise and uniform validity, as
discussed in Giraitis and Phillips (2006), Mikusheva (2007a), Andrews and Guggenberger (2009),
and Kasy (2018), among others, is of no practical importance. This distinction matters, however,
when the distribution of the statistic of interest changes with the value of the population parameter
to be estimated, as would be the case in the AR(1) model when the autoregressive root approaches
unity. The concern is that for a 1 — o confidence interval C' to be asymptotically valid we need to
show that

lim inf P,(p e C) > 1 —q,
T—oco p

where p denotes the AR(1) slope parameter and the infimum is taken over the parameter space of
p. This means that there exists a sample size that guarantees the coverage accuracy of the interval
for any parameter value p. In contrast, under the pointwise approximation, the actual coverage

accuracy is not known and may become arbitrarily low, since the true value of p is not known.?

'Related work also includes Kurozumi and Yamamoto (2000) and Bauer and Maynard (2012).

2For example, Mikusheva (2007a) demonstrates that the conventional asymptotic normal approximation for the
slope parameter in the AR(1) model with near unit roots is pointwise correct, but not uniformly correct, which helps
explain the poor coverage accuracy of conventional confidence intervals in this model, as p approaches unity (see
Nankervis and Savin 1988; Hansen 1999; Kilian 1999).



Concern over the reliability of conventional methods of inference when applied to highly persis-
tent autoregressive processes has subsequently motivated the development of nonstandard asymp-
totic approximations based on local-to-unity processes. For example, Stock (1991) proposes con-
structing confidence intervals for the dominant autoregressive root by inverting unit root tests.
Phillips (2014), however, proves that inference about the AR(1) slope parameter based on Stock’s
(1991) confidence interval, while asymptotically valid when the root is local to unity, has zero
coverage asymptotically when the root is far enough from unity.3

The lack of a uniform asymptotic approximation across the parameter space has undermined
the profession’s confidence in the accuracy of either of these confidence intervals in applied work
and has created interest in confidence intervals that remain asymptotically valid whether the AR(1)
slope parameter is unity, close to unity or far from unity. For example, under weak conditions,
the grid bootstrap of Hansen (1999) can be shown to provide a uniformly asymptotically valid
approximation to the distribution of the AR(1) slope parameter under both stationary and local-
to-unity asymptotics (see Mikusheva 2007a).

While the AR(1) process has been studied extensively in the literature, there has been much less
work on the problem of uniform inference in higher-order autoregressions, which are the workhorse
model in applied work. Allowing for additional lags turns out to change the properties of the
estimator of the autoregressive model dramatically. Our analysis shows that the lack of uniform
validity of the conventional Gaussian asymptotic approximation does not extend to inference on
individual slope parameters in higher-order autoregressive models. In the latter case, asymptotic
normality holds uniformly across the parameter space. This result has important implications
for inference on smooth functions of autoregressive slope coefficients such as impulse responses in
autoregressions.

Our contribution to this literature is fourfold. First, we show that conventional asymptotic and
bootstrap confidence intervals for individual impulse responses remain uniformly asymptotically
valid, as long as the horizon of the impulse response remains fixed with respect to the sample size,
generalizing the pointwise asymptotic results in Park and Phillips (1989), Sims, Stock and Watson
(1990) and Inoue and Kilian (2002). Our analysis covers both higher-order autoregressions and
lag-augmented autoregressions. We provide a suitable rank condition that ensures that inference

on impulse responses is uniformly valid. We show that lag-augmented autoregressions based on

3Phillips’ conclusion is consistent with simulation evidence in Hansen (1999), which illustrates the comparatively
poor coverage accuracy of Stock’s method in the stationary region.



stationary, unit root or local-to-unity AR(p) processes always satisfy this rank condition at horizons
h<pt

Second, we establish the uniform asymptotic validity of Gaussian inference on the vectors of
autoregressive slope parameters and vectors of impulse responses. The joint asymptotic normality
of the estimator of autoregressive slope parameters has been postulated as a high-level assumption
in a range of studies including Montiel Olea, Stock and Watson (2016), Guerron-Quintana, Inoue
and Kilian (2017), and Gafarov, Meier and Montiel Olea (2018). Our analysis establishes the unifom
joint asymptotic normality of the lag-augmented estimator of the autoregressive slope parameters
under conditions not requiring the process to be stationary. We furthermore establish, under
the same conditions, the uniform joint asymptotic normality of the impulse response estimator
postulated by Granziera, Moon and Schorfheide (2018).

The latter result is also central for the construction of joint impulse response confidence in-
tervals based on Wald test statistics. Joint inference on impulse response functions has become
increasingly recognized as essential for practitioners interested in understanding the true extent
of the uncertainty about estimates of impulse response functions (e.g., Jorda 2009; Liitkepohl;
Staszewska-Bystrova and Winker 2015a,b,c; Inoue and Kilian 2016; Kilian and Liitkepohl 2017;
Bruder and Wolf 2018; Montiel Olea and Plagborg-Mgller 2018). Our analysis shows that the use
of lag-augmented autoregressions is required for inference about impulse response functions based
on Wald test statistics to be uniformly asymptotically valid, when the dominant autoregressive root
may be arbitrarily close to unity.’?

Third, a simulation study involving univariate autoregressions with varying degrees of persis-
tence confirms that the conventional asymptotic approximation based on fixed impulse response
horizons remains accurate even uniformly, as long as the horizon is reasonably small relative to the
sample size. We find that impulse response confidence intervals based on lag-augmented autore-
gressions are considerably more accurate in small samples than confidence intervals based on the
original autoregression. Substantial further improvements in coverage accuracy may be achieved by
bootstrapping the lag-augmented autoregression. The reason that delta method confidence inter-

vals tend to be less accurate than suitably constructed bootstrap confidence intervals is that, even

“In related work, Mikusheva (2012) established the uniform validity of one-dimensional impulse response inference
for a specific form of the grid bootstrap applied to autoregressions. Her uniformity results, however, do not apply to
the conventional delta method and bootstrap confidence intervals considered in our analysis.

In contrast, the use of conservative sup-t or Bonferroni bounds, as discussed in Montiel Olea and Plagborg-
Mpgller(2018), only requires the marginal distributions of the impulse responses to be uniformly asymptotically normal
with strictly positive variances.



for stationary processes, the finite-sample distribution of impulse responses is far from Gaussian.
The longer the horizon, the worse the normal approximation becomes. One potential remedy is the
use of the Hall percentile interval, which allows the distribution of the impulse response estimator
to be non-Gaussian. We find, however, that the use of the Hall percentile interval yields at best
modest improvements in practice and cannot be recommended.

An alternative is the bias-adjusted bootstrap method of Kilian (1999), which was designed
to improve the small-sample accuracy of impulse response confidence intervals in stationary au-
toregressions. This method yields consistently high uniform coverage accuracy when applied to
lag-augmented autoregressions. For example, for T' = 240, uniform coverage rates range from 87%
to 89% and for T = 480 from 89% to 90%, for horizons between 1 and 12 periods, which is a
substantial improvement relative to the delta method for the same model. In contrast, without
lag augmentation, both delta method and bootstrap confidence intervals are much less accurate,
consistent with earlier simulation evidence in the literature. These results suggest that highly
persistent autoregressions in applied work should be routinely lag-augmented when conducting im-
pulse response inference. While lag-augmenting the autoregression will cause an increase in the
average width of the interval, we show by simulation that this loss in efficiency may for all practical
purposes be ignored, when the original autoregressive lag order is already large, as is typically the
case in applied work.

Fourth, we establish the asymptotic validity of the Efron percentile interval at long horizons
based on the lag-augmented autoregression within the local-to-unity framework. Although impulse
response inference is not uniformly valid at long horizons, these results explain the excellent coverage
accuracy of this interval for persistent autoregressive processes at horizons as long as 60 periods.
Our simulation evidence suggests that there is little need for nonstandard interval estimators based
on long-horizon asymptotics in many applications of impulse response analysis. This result is in
stark contrast to earlier theoretical and bootstrap simulation results based on autoregressions that
were not lag augmented (see Phillips 1998; Kilian and Chang 2000). We also formally show that
other bootstrap confidence intervals for impulse responses based on lag-augmented autoregressions
such as Hall’s percentile interval or, for that matter, the delta method are not asymptotically valid
at long horizons. Likewise, equal-tailed and symmetric percentile-t intervals are not asymptotically
valid. This is the first example to our knowledge of a situation in which Efron’s percentile interval
is asymptotically valid for impulse response inference, but other intervals are not. Our results

also provide a formal justification for conducting long-horizon inference based on autoregressions
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in levels rather than in differences.

In related work, Mikusheva (2012) proposed a generalization of the grid bootstrap of Hansen
(1999) for autoregressions that allows uniformly asymptotically valid inference on individual impulse
responses. The advantage of Mikusheva’s procedure is that it nests as special cases the conven-
tional normal approximation for short-horizon impulse response estimators and the nonstandard
asymptotic approximation for long-horizon impulse response estimators, as discussed in Phillips
(1998), Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). Its disadvantage is
that it tends to be computationally costly. Our simulations show that for roots arbitrarily close to
or equal to unity the coverage accuracy of our computationally much less costly bias-adjusted boot-
strap method based on lag-augmented autoregressions is close to nominal coverage for reasonably
large sample sizes. It matches or surpasses the coverage accuracy of the grid bootstrap interval for
comparable horizons, as reported in Mikusheva (2012).

The remainder of the paper is organized as follows. In section 2, we establish notation and state
our assumptions about the data generating process and the estimated model. Section 3 contains
the derivation of the uniform validity of the conventional asymptotic Gaussian approximation.
We consider inference on individual impulse responses as well as vectors of impulse responses. In
section 4, we establish the uniform asymptotic validity of inference based on the recursive-design
bootstrap for autoregressions. In section 5, we examine the practical relevance of our asymptotic
analysis in finite samples. In section 6, we provide long-horizon asymptotics based on the local-to-
unity framework for impulse responses estimated from lag-augmented autoregressions. Section 7

contains the concluding remarks. Details of the proofs can be found in the appendix.

2 Notation and Assumptions

Consider a scalar autoregressive process of known order p > 1:

yt:dz'f_yiv

i =yl )+ doyl -+ ¢py2.fp + uy,

where dI is a deterministic function of time, u; is iid with zero mean and variance o2 and Ayg =...=

Apr = 0. Without loss of generality, we will focus on linear time trends, i.e., d;f = (53 + 51 (t/T).



This process has an augmented Dickey-Fuller representation:

t
Ay = 0o+ 51? + Y1 FVIAY—1 o Y1 AYr—pr1 + ur
= ﬁll‘t —l—Ut, (1)
where 8y = ¢(1)0) + 01(¢1 + 262 + -+ + pgp), 61 = d(1)8], G(L) = 1 — ¢1L — - — ¢pLP, 7 =

—H(1) = X0 d— 1 vy = (B b w X (0,02), B =[J0 61 71 - Ypalls and

ze = [1¢/T y—1 Ayi—1 -+ Ays—p1)’. When ¢, = 0, the AR(p) process underlying equation (1)
without loss of generality may be reinterpreted as a lag-augmented autoregression of order p — 1.
The autoregressive lag-order polynomial may equivalently be expressed as ¢(L) = IIY_, (1—p;L),
where [p1| < [p1] < ... < |pp-1| < |pp| are the p autoregressive roots. Then w = o2/(47(1))? where
o' (L) = ¢(L)/(1 — p,L) and p, is the largest root. Let § = [3',0%]". Let the parameter space
© C R% denote the set of § where dyg = p + 3. Finally, let J.(r) denote an Ornstein-Uhlenbeck
process such that Jo(r) = [; e“"=5)dW (s), where W (s) is a standard Brownian motion defined on

[0,1] and ¢ = T'log(|pp|). The model is estimated by least squares, yielding

T T
a /\—1
Br = ( g iﬂtl't) E TtYt,
t=p+1 t=p+1
~ 2y
Uy = Yy — By,
T
~2 o 1 ~92
or = — Ut
ptzp—f—l
T
1
~ . ~2  ~28\2
T = 7, (u; —o7)",
t=1
~2 T n—1
5 or ® (Zt:pH T4Ty) 0(2+p)><1
T = )
01x(24p) T o4t

Assumption A. The data generating process satisfies:

(i) There are constants p and p in (0, 1) such that |p, 1| < and either |p,| <

ol
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(ii) {u¢}l_; is a sequence of iid random variables with E(u;) = 0 and

!/



(iii) There are constants x and K, where 0 < K < K < oo, that do not depend on the data
generating process such that k < 0? < K, k< oy < K,k < BE(uf) < K, —-K < (58 < K, and

~K <6 <K.

Remarks.

1. Assumption (i) implies that the roots of |¢(z)| = 0 are either all outside the unit circle in
modulus or that ¢(z) = 0 has at most one unit root and all the other roots are outside the
unit circle in modulus. We rule out the possibility that the data are generated by an I(2)
process or that the process is explosive. This assumption is standard in the literature (e.g.,

Mikusheva 2012). Assumption (i) also rules out complex near unit roots and roots near —1.

2. When the model is augmented with one lag, the population coefficient on that lag is known
to be zero. Although the augmented lag parameter is estimated, the uniform coverage rate
is defined as the limit of the infimum of the coverage probabilities with respect to the other
parameters, with the augmented lag parameter fixed at zero. This coverage rate is greater
than or equal to the uniform coverage rate in which the infimum is taken with respect to all

parameters. Thus, without loss of generality, we focus on the latter.

3. We abstract from the complications introduced by conditional heteroskedasticity in the error

term (see Gongalves and Kilian 2004; Andrews and Guggenberger 2009).

4. We deliberately abstract from the lag order selection problem. As discussed in Kilian and
Liitkepohl (2017), conditioning on estimates of the lag order invalidates the asymptotic va-
lidity of inference on the autoregressive parameters. One way of circumventing this problem
is to set p equal to a conservative upper bound on the lag order, not unlike the upper bound

that users of infomation criteria already have to provide when estimating the lag order.

3 Asymptotic Results for the Delta Method

Let §T denote the least-squares estimator of 6.

Proposition 1: Suppose that © satisfies Assumption A. Then

a1
lim sup sup |P(X,;*(0r —0) <z)—-P(n0,T) <xz)| = 0, (2)
T—o00 0€0 LecRdo
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where 7(0,T) is

1 % wfol Je(r)dr 0 = N
T-1(0) % % wfol rde(r)dr 0 T-1(0) o1 No '
wfol Je(r)dr wfol rde(r)dr  w? fol Je(r)2dr 0 ow fol Je(r)dW (r) if |pp| < 1,
0 0 0 M Ny
Ny
N if pp =1,

(3)
T (c) = diag(1,1, \/%QC,IPH, 1), ¢ =Tlog(|pp|), pp is the largest root of ¢(z) =0, [N1 Na|', N3 and

N, are independent normal random vectors with zero means and covariance matrices given by

/

Ay Ay
, 0?’M = ¢*F : : and oy, (4)

[N
W= N

AyYi_pt1 AyYi_pt1
respectively, and N is the standard normal random vector that is the limit of n(6,T) as p, T 1.

Express the dy, x 1 vector of impulse responses ¢ as a function of ¢:

where f: X — R% and © ¢ X C ®#P3. Our goal is to provide methods for uniform inference on

impulse responses in O.

Assumption B. Suppose that f: X — R% is continuously differentiable, that 1 does not depend

on 58 and 51, and that the rank of

Df(0)diag(I2, \/—21og(|pp|), Ip+1) (6)

is dy, for all € © where Df(6) = 0f(0)/06" and pj, is the largest autoregressive root.

Remarks.

1. A violation of Assumption B would occur, for example, if the autoregressice parameters were
zero in population and the impulse response horizon h > p (see Benkwitz, Liitkepohl and
Neumann 2000). We abstract from this well-known problem, as is standard in the literature,

since we are concerned with inference about impulse responses estimated from persistent time
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series processes.

. Likewise, assumption B may fail for some exact unit root processes. Specifically, standard
delta method and bootstrap inference fails when the first-order linear approximation to ¢ is
proportionate to p. In that case, the limiting variance of v/T (1,2 — 1)) is zero, as discussed in
Kilian and Liitkepohl (2017), and the rank condition fails. Lag augmenting the autoregression

helps rule out this singularity in the asymptotic variance of f(6).

. To appreciate the usefulness of the rank condition in Assumption B, consider the AR(2)
process

Ayy = myp—1 + 7Ay—1 + ug,

where T = ¢1 + ¢o — 1 and v = —¢2, and the first two impulse responses are ¢ and ¢ + ¢o.

Then

1 1
Df(0) =
1@ 2(m+~v+1) 2(m+y+1)—1

Note that the rank condition for the delta method is always satisfied. The matrix (6) can be
written as

TIDO) T (o) = —21log(|p2]) 1 ,

2/ —2log(|p2|)(m +~v+1) 2(r4+~v+1)—1

where the first two columns are omitted because there is no deterministic component. This
expression shows that if one is interested in inference on the first impulse response, the rank
condition is always satisfied. As ¢1, ¢2 — 1/2, however, the second row approaches zeros, so
inference about the second impulse response is not possible. Even if the conventional rank
condition is satisfied, we can conduct uniform inference only on one of the parameters of
interest. Replacing the normalization matrix Y7 (c) so that the scaled Jacobian matrix has
full rank does not solve the problem because the joint asymptotic normality is likely to be
lost under a different normalization.

In contrast, when fitting an AR(3) model to the data generated by the AR(2) DGP, the rank
of the matrix (6),

—2log(|ps|) 1 0
2¢/—2log(lps)(m +m +1) 2(m+m+1)—1 1

)



is always 2. Thus, lag augmentation allows inference about the second impulse response as

well as joint inference about both of the impulse responses.

. This example may be generalized. It can be shown that the rank condition in Assumption
B is satisfied for the first p impulse responses for all # in the parameter space specified in
Assumption A and for all p = 1,2, ..., when the autoregression is augmented by one lag. This
is true even for the processes described in Benkwitz et al. (2000). Suppose that y; follows an

AR(p) process. The companion matrix for the first p coefficients of the lag-augmented model

is given by
T+ym+1l 2=y =72 0 -1 W+l — W
1 0 0 0 0
0 1 0 0 0
F = (7)
0 0 1 0 0
0 0 0 1 0

Then the h-step-ahead impulse response is given by the (1,1) element of F”. The responses

are given by

T+v +1,
(m+v+1)%+ 92—,

T4+ +13+2m+y+1) (2 — 1) + (93 — 72),

(4714 17+ pOpar — %) (2 = )+ i —

for h = 1,2,3, ..., p, respectively. We are concerned about uniform joint inference about the
first p impulse responses. Our claim is that the submatrix M, obtained from eliminating the
first three columns of the p x (p + 3) matrix in Assumption B has rank p. Note that the
first p — 1 impulse responses are identical to those from an AR(p) model with ~, = 0. Thus,
the (p — 1) x (p — 1) upper-left submatrix of M, matches the corresponding (p —1) x (p—1)
submatrix for the AR(p) model that is obtained from lag-augmenting an AR(p — 1) model.
We prove this claim by mathematical induction. When p = 1 (i.e., the DGP is an AR(1)

10



process and an AR(2) model is fitted), the 1 x 2 matrix in Assumption B always has rank 1
satisfying Assumption B. Suppose that the rank condition is satisfied for p = k. That is, the
k x k submatrix has rank k. Denote that matrix by M. Then the (k4 1) x (k+1) submatrix
for the AR(k + 1) model can be written as

My Ogxa N Ok xk Okx1
O1xk 0 le(kfl) -1 1

(8)
Because My, has rank k, this matrix has rank k4 1 anywhere in the parameter space specified
in Assumption A. Thus, the claim holds for p = k£ + 1. Since this result holds for the first p

impulse responses jointly, it holds also for individual elements in this vector.

Proposition 2. Under Assumptions A and B,

Jim sup [P ((Dfr(@r)SrDfr(@r)) 2 (f@r) = 10) <) ~®@)| = 0, (9)
Jim ggglp((ﬂé})—f(e))’<Df(5T)§TDfT(5T>/)—1<f<5T>—f<6)>Sm)—Fxgw@c)( = 0, (10)

where F,» (-) is the cdf of the chi-square distribution with d,, degrees of freedom.
"

It follows from Lemma 2 of Kasy (2018) that confidence sets constructed from quantiles of the

standard normal and chi-square distributions have confidence level 1 — o uniformly on ©.

4 Asymptotic Results for Bootstrap Inference

Bootstrap approximations of the asymptotic distribution of the impulse response estimators may be
generated by standard recursive residual-based bootstrap algorithms for autoregressions (see Kilian
and Liitkepohl 2017). Let 5} denote the bootstrap estimator of §T, constructed by bootstrapping
the original or the lag-augmented autoregressive model. Similarly, let P* denote the bootstrap

analogue of P.

Proposition 3. Under Assumptions A and B,

lim sup |P*(Yr(c*)(05 — 0r) < 2) — P*(n*(0r,T) < )| = 0, (11)
T—o00 PcO
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almost surely conditional on the data, where ¢* = ¢ + fol Jg(r)alW(r)/fol(,]g(:n)ﬁdr7 JI(r) =
Je(r) — fol (4 —65)J.(s)ds —r f01(123 —6)J.(s)ds and n*(-,-) is n(-, ) with ¢ replaced by c*.

Proposition 4. Under Assumptions A and B,

Jim_sup |P*((DS B S0 7))72 £07) = FO)] < @) = @(@)] = 0, (12)

~ ~

Jim sup [P((F(0) — F@r)(DF@R)S5DFr(@))7 (FFF) ~ 10r) < ) = Fal@)] = 0, (13

almost surely conditional on the data.

To summarize, Propositions 1 through 4, extend the pointwise asymptotic results in Park and
Phillips (1989), Sims, Stock and Watson (1990), and Inoue and Kilian (2002) by establishing the
uniform validity of asymptotic and bootstrap inference about individual slope parameters and
impulse responses based on higher-order autoregressions. They also establish the corresponding
results for asymptotic and bootstrap inference based on lag-augmented autoregressions. Finally,
they establish the uniform validity of asymptotic and bootstrap inference based on lag-augmented

autoregressions about vectors of impulse responses.

5 Simulation Evidence

In this section, we demonstrate that our asymptotic analysis helps understand the finite-sample
accuracy of delta method and bootstrap confidence intervals for impulse responses. Without loss
of generality, we generate 5,000 samples of {yt}?zl from the data generating process y; = pys—1+uy,
Uy ud N(0,1), where p € {0.95,0.96,0.97,0.98,0.99,0.995,1}, T" € {80, 120, 240, 480, 600, 6000, 12000,
24000}, and yp = 0. We focus on roots exceeding 0.95 because for smaller roots conventional boot-
strap approximations are known to work well (see Kilian 1999).6 For each sample of length T,
we fit an AR(p) model, p € {2,4,6}, with intercept and construct the implied responses to a unit

shock at horizons h € {1,...,60}. Lag-augmented autoregressions include an additional lag, but

the impulse responses are based on the estimates of the first p slope coefficients only. We do not

S Alternative specifications of the data generating process with standardized t4 or standardized x?2 errors, as in
Kilian (1998a), yield results very similar to the baseline specification with N (0, 1) errors and, hence, are not shown to
conserve space. These specific distributions were chosen because their moments resemble those of residual distributions
often encountered in applied work (see Kilian 1998a). Although the standardized ¢4 distribution does not satisfy our
sufficient condition A(iii), the simulation results are robust to this violation.

12



include a linear time trend in the fitted model because the inclusion of deterministic time trends is
rare in applied work.”

Since the results are not sensitive to the lag order p, the tables shown in this section concentrate
on the case of p = 4. Our analysis focuses on confidence intervals for individual impulse responses.
The nominal confidence level is 90%. In constructing the uniform coverage rates as the infimum of
the coverage rates for a given impulse response across p € {0.95,0.96,0.97,0.98,0.99,0.995,1} for
given T, one has to account for the bias caused by data mining across p. The reason is that the
coverage rates in the simulation study (like any estimate of a proportion) are subject to estimation
error. They have an approximate Gaussian distribution. Thus, even if the estimate of the coverage
rate were centered on 0.90 for each p, there would be sampling variation in the simulated coverage
rates. It can be shown by that under the null hypothesis that the coverage is truly 0.90, the lowest
coverage rate across all p would be 0.894, which biases downward our estimate of the uniform
coverage rate. This means that we need to adjust upward the infimum across p obtained in the
simulation by 0.006 to control for data mining. This adjustment is independent of the sample size
because it only reflects the Monte Carlo simulation error. Details of the rationale of this adjustment
can be found in the appendix.®

The delta method intervals are based on closed-form solutions for the impulse-response standard
error, as discussed in Liitkepohl (1990). Table 1 shows that the uniform coverage rates of the delta
method interval converge to 0.90, as T' — 0o, as predicted by asymptotic theory, whether inference
is based on the AR(4) model or the lag-augmented AR(5) model. There is strong evidence that
delta method intervals based on the lag-augmented AR(5) model are considerably more accurate in
small samples than delta method intervals based on the AR(4) model. For example, for T = 480,
the uniform coverage accuracy at horizon 12 is 86% for the lag-augmented model compared with
only 63% for the original model. These differences are not predicted by our asymptotic analysis in
section 3. For large T, as expected, there is nothing to choose between these approaches.

Not surprisingly, the coverage accuracy is excellent at short horizons, but deteriorates as h
increases, except when 7 is large. This finding mirrors the conclusions of Kilian and Chang (2000)

and Phillips (1998) that the conventional asymptotic approximation remains accurate, as long as

"Likewise, we do not consider autoregressions excluding an intercept. Normal asymptotic appoximations tend to
work better when the regression model does not include an intercept because the exclusion of deterministic regressors
reduces the small-sample bias of the least-squares estimator. This regression specification is hardly ever used in
applied work, however.

8An alternative approach would have been to view p as local to unity and to report results for the implied p,
given T and a grid of Pitman drifts. Since our asynptotic results do not hinge on this particular asymptotic thought
experiment, it is more natural to focus on the grid of possible p values in the simulation study.
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the horizon is small relative to the sample size. Only when the horizon of the impulse response is
allowed to grow with the sample size, conventional asymptotic approximations for impulse response
estimators become asymptotically invalid in a local-to-unity setting. Table 1 illustrates that even for
horizons as large as h = 12, for moderately large samples, the conventional asymptotic Gaussian
approximation remains reasonably accurate. For example, for T" = 480, coverage rates for the
lag-augmented model range from 90% at short horizons to 86% at horizon 12.

An important question is whether the accuracy of impulse response inference may be improved
by bootstrapping the impulse responses. In Table 2, we examine the coverage accuracy of several
commonly used bootstrap confidence intervals.” The distribution of impulse response estimators
is known to be non-normal in small samples (see Kilian 1999). The first two panels in Table
2 show results based on the Hall percentile interval which accounts for small-sample bias in the
impulse response estimator and which does not require normality to hold (see Hall 1992). The
bootstrap data are generated based on a recursive design-bootstrap, as discussed in Kilian and
Liitkepohl (2017). All results are based on 1,000 bootstrap replications. Table 2 shows that
bootstrap confidence intervals greatly improves the accuracy of inference based on the AR(4) model.
For example, the uniform coverage rates for T' = 480 range from 90% at horizon 1 to 85% at horizon
12. In contrast, for the lag-augmented model bootstrap inference does not yield improved uniform
coverage accuracy. Thus, overall, the Hall percentile interval cannot be recommended.

An alternative approach that has been shown to work well in bootstrapping stationary autore-
gressions is the bias-adjusted bootstrap of Kilian (1999), which replaces the least-squares estimates
of the slope parameters by first-order mean bias-adjusted estimates when implementing the boot-
strap. Impulse response intervals are based on the standard Efron percentile interval (see Efron
1979). Table 2 shows that this method greatly improves the uniform coverage accuracy of the
bootstrap confidence intervals, whether the model is lag-augmented or not, but by far the most
accurate coverage rates are obtained based on the lag-augmented model. For T' = 80, the coverage
rates are between 80% and 87%, depending on the horizon. For T = 120, the coverage accuracy
improves to between 83% and 88%. For T' = 240, they are at least 87% and for T" = 480 and
T = 600 at least 89%. This evidence suggests that the conventional asymptotic approximation
remains accurate at longer horizons than previously thought possible. Performance deteriorates,

when the autoregression is not lag-augmented, whether inference is based on the delta method or

9A general introduction to bootstrap methods for autoregressions and details of the construction of each of these
intervals can be found in Kilian and Litkepohl (2017).
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the bootstrap.

Our coverage results suggest that highly persistent autoregressions in applied work should be
routinely lag-augmented. While lag-augmenting the autoregression will cause an increase in the
average width of the interval, a reasonable conjecture is that this loss in efficiency may for all
practical purposes be ignored, when the original autoregressive lag order is already large, as is
typically the case in applied work. Since lag augmentation is necessary to control coverage accuracy
in finite samples, it is difficult in general to compare the average width of intervals based on the
original and on the lag-augmented model. Some insight may be gained, however, by comparing the
average width of the Efron percentile interval at short horizons, because at these horizons both the
intervals based on the bias-adjusted lag-augmented autoregression and the intervals based on the
bias-adjusted original autoregression are about equally accurate (see Table 2). Table 3 shows the
percentage increase in the average interval width at these horizons, computed as the average of the
percentage increases in average interval width obtained for each p. We find that the loss in power
from lag augmentation tends to be negligible. Even for T' = 80 and T" = 120 the average interval
width increases by only 1.5% and 1%, respectively, when a fifth autoregressive lag is added. For
T = 240, that increase drops to 0.5% and for larger samples sizes the increase further reduces to
0.2%, consistent with our conjecture.

An important question is how quickly the accuracy of our asymptotic approximation deteriorates
with the impulse response horizon. Table 4 shows that the coverage accuracy of the Efron percentile
interval based on the bias-adjusted lag-augmented autoregression is preserved even at much longer
horizons. For example, for T' = 240 uniform coverage accuracy of the bootstrap confidence interval
for the lag-augmented model is at least 88% at every impulse response horizon from 12 to 36. For
T = 480 the lowest uniform coverage rate at these horizons is 89% and for T' = 600 it is 90%. Even
for horizons as long as 60, the coverage accuracy remains excellent.!'®

These results suggest that for many applications of impulse response analysis there is no need to
rely on nonstandard interval estimators based on long-horizon asymptotics for impulse responses,
as long as we apply the bias-adjusted bootstrap method to the lag-augmented autoregression.

The superior accuracy of this method at longer horizons is not explained by our fixed-horizon

0ur analysis in Tables 1 through 4 focused on nominal 90% intervals. Confidence levels of 90% or smaller
are conventional for element-wise impulse response inference. In constructing joint confidence intervals based on
the Bonferroni method, it is customary to rely on much higher element-wise confidence levels (see Liitkepohl et al.
2015, 2018). It is therefore useful to note that, for T = 240 or larger, nominal 99% impulse response confidence
intervals based on our preferred method have effective uniform coverage rates of between 98% and 99% at all horizons
considered.
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asymptotics in sections 3 and 4, however. In the next section, we formally establish the asymptotic
validity of this method (and this method alone) under the assumption that the impulse response
horizon increases linearly with the sample size, which helps explain its greater robustness to the

impulse response horizon.

6 Impulse Responses at Long Horizons

In this section, we show that Efron’s percentile interval bootstrap is asymptotically valid for long-
horizon impulse response inference when there is a near unit root. We first consider the AR(1)
model for illustration:

Yo = O1Ye—1 + e, (14)

where ¢; = ¢“/T for some constant ¢ < 0, yo = 0 and i (0,02). As is well known, the estimator

~

¢1 in this model has a nonstandard distribution, as does the [\T]-step-ahead impulse response

A[l’\T]. In contrast, in the lag-augmented model

Yt = O1Yi—1 + P2Yi—2 + uy, (15)

which may equivalently be expressed as
Ayt = myr—1 + 7Ayt—2 + s, (16)

\/T(al,T —¢1) = VT(Ry + 77 — ™ — 7) is asymptotically normally distributed.

Let z and z* be random variables such that vT(3 — v) 4 2 and VTH* - 7) KN z*,
where * denotes random variables defined under the bootstrap probability measure. The linear
approximation to the limiting distribution of the impulse response depends on the limit of the
Jacobian. The Jacobian of QAS[I)‘T], [AT] (QAﬁl)P‘T}_l, converges to zero when z is negative and diverges
to infinity when z is positive. In contrast, the bootstrap version of the Jacobian [/\T](QAS’{)[AT]_1

converges to zero when z 4+ z* is negative and diverges to infinity when z + z* is positive. Thus,
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Hall’s percentile interval fails in the lag-augmented model.
Moreover, the delta method interval fails because it is based on the t-statistic
AT AT

1 s 17
TG0 T ASE () 1

where ASE (&5\1) is the estimate of the asymptotic standard error of 51. Expressing the numerator

of the t-statistic as

@14 g2, 4 TN g, (18)

the t-statistic can be expressed as

(g’g[l)\T]—l + "[1)\T]—2¢1 4o +¢[1>\T]—1) . 51 o Cbl
AT ASE(y)

(19)

Note that the second component of (19) is the t-statistic for ¢; and is asymptotically normally

distributed in the lag-augmented model. The first component of (19) can be written as

1 1 <¢1>2 <¢1>W“>
1+ =+ =) ++ (=
[AT] < o1 \¢1 b1

11— (¢1/d1)P]
AT 1 - (61/61)
1- (/o) 4

= . 20
\T]/VT VT (¢1 — ¢1) 20)
Because
»1 1
f 1—@P1
o 14 LTG0

it follows that

(e (1 VT e
[)\T]/\/T <1 <$1> >_ [AT]/\/T <1+\/T o1 +0(1).

Thus, depending on the sign of the limit z, the first component either converges to zero or diverges
to infinity. The delta method fails because the t¢-statistic (17) does not converge to a standard
normal distribution.

Similarly, intervals based on bootstrapping the t-statistic fail. The bootstrap-t statistic can be
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written as

1
1 -
T VT ( T
#
VT (¢} — 61)
ASE(4)

X

61

1 \/T(QAST - 51)) -

(22)

The percentile-t bootstrap interval fails because the original ¢-statistic either converges to zero or

diverges to infinity, whereas the limiting value of the bootstrap-t statistic depends on the sign of

z*, which may differ from the sign of z.

In contrast, impulse response inference based on Efron’s percentile interval remains asymptoti-

cally valid at long horizons, because, as the horizon lengthens, the impulse response can be expressed

as a monotonic function of the asymptotically normal estimator qz?m Unlike other confidence in-

tervals, the Efron percentile interval is transformation-respecting. In other words, the interval for

a given monotonic transformation of the original parameter may be obtained by transforming the

interval endpoints obtained for the original parameter using the same function (see Efron 1979).

The implications of this point for long-horizon impulse response inference are formalized in the

following proposition.

Assumption C. The data generating process satisfies:

(i) |pjl <1for j=1,...,p—1and p, = €T for some constant ¢ < 0.

(ii) {w;}X is a sequence of iid random variables with E(u;) = 0 and E(u?) < oo.

Proposition 5: Suppose that the DGP is an AR(p) model and that Assumption C is satisfied. The

AR(p) model is augmented by one lag. Let F and F* denote the companion matrices for the first

p coefficients of the estimated lag-augmented model and its bootstrap analogue,

)

(bpfl d’p

0 0

0o o0 |, Fr=
10
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respectively. The h-step-ahead impulse response estimate and bootstrap estimate are the (1,1)

clements of F" and F\*h, respectively.

F' can be written as

F = pJjp!, (23)

where J is the Jordan normal form of F' and P consists of eigenvectors and generalized eigenvectors
of P. Thus
F' = pjhp! (24)

The hth power of the Jordan normal form is given by

ph 0 0
0 Jh _ 0
Jh _ . 2(.pp 1) . ' ’ (25)
| 0 0 eI (1)

where m; is the multiplicity of the jth largest root with m; = 1 such that Z?Zl m; = p, and

_ _ h—m; ]
T (VTP G VA
O h h h—1 h h—mj+2
0 0 0 o} |

for j = 1,2,...,q. Because there is one and only one local-to-unity root (p,), the (1,1) element of

FPT] can be approximated by
PupMIPMY 4 o(1), (27)

where Py is the (1,1) element of P and P! is the (1,1) element of P~!. Similarly, the (1,1) element
of FPT! and that of F*T] can be approximated by

ﬁuﬁg\ﬂﬁll +0p(1), (28)

PP 4 o%(1), (29)
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respectively. Taking the log on both sides

log(P11) + log(P) + [\T] log(5,) + 0p(1), (30)

log(Pfy) + log(P™*) + [\T]log(p}) + 03(1). (31)

Because there is one and only one local-to-unity root (p,), pp and pj, are continuously differentiable
in (ggl, e $p) and (qg{, ey (;AS;), respectively. Thus, p, is asymptotically normally distributed in the
lag-augmented model. Because Efron’s percentile bootstrap method is transformation-respecting
and because p, is asymptotically normally distributed, the percentile bootstrap remains asymptot-
ically valid, when other intervals fail. Since bias adjustments of the slope parameters are of order
T, this argument remains valid when using Efron’s interval in conjunction with bias adjustments
(see Kilian 1998b).

It is useful to illustrate these points by simulation. Table 5 restricts the impulse response horizon
to be a fraction A € {0.1,0.3,0.5,0.7,0.9} of the sample size T. We focus on impulse response
inference based on the lag-augmented autoregression, since impulse response inference based on the
original autoregression fails at long horizons, regardless of how the interval is constructed. This fact
follows from Phillips (1998) and may easily be verified by simulation. The more interesting question
is how well our asymptotic approximation works for the lag-augmented AR(4) model. As predicted
by our theoretical analysis, conventional delta method inference breaks down at long horizons,
even when working with the lag-augmented model. Even for T = 600, the coverage rates of the
nominal 90% delta method interval remain between 49% and 68%, depending on A. Similarly, the
coverage rates of the Hall percentile interval range from 43% to 52% for T" = 600, illustrating the
failure of this method. Likewise, equal-tailed and symmetric percentile-t impulse response intervals
show no tendency to converge to their nominal probability content (results not shown to conserve
space). In contrast, even without bias adjustments, the coverage rates of Efron’s percentile interval
improve range about 85% for T" = 240 to 89% for T' = 600. Applying bias adjustments for the
slope parameters, further increases the finite-sample accuracy. The coverage accuracy increases to

about 89% for T' = 240 and 90% for T' = 600, regardless of .

Remarks.

1. Proposition 5 establishes the asymptotic validity of impulse response inference based on

Efron’s percentile interval within the local-to-unity framework. It does not establish its
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asymptotic validity in the stationary region. Thus, long-horizon inference is not uniformly
valid in the parameter space. It is valid only for roots close to unity. Further simulations
(not shown to conserve space) suggest that for reasonably large samples our asymptotic ap-
proximation is excellent for roots of 0.8 or larger. An immediate implication is that impulse
response inference is likely to be more reliable at long horizons when persistent autoregressive

processes are expressed in levels rather than in differences.

2. Proposition 5 may be generalized to vector autoregressive processes, as long as there is only
one large root, as is commonly assumed in related studies (see, e.g., Pesavento and Rossi
2006; Mikusheva 2012). For a potential alternative approach that allows for multiple large

roots see Phillips and Lee (2016) and the references therein.

3. In related work, Mikusheva (2012) proposes a generalization of the grid bootstrap of Hansen
(1999) for autoregressions that allows inference on individual impulse responses that, like
our approach, is uniformly asymptotically valid in the parameter space. The advantage of
Mikusheva’s asymptotic approximation is that it nests as special cases the conventional normal
approximation for short-horizon impulse response estimators and the nonstandard asymptotic
approximation for long-horizon impulse response estimators, as proposed by Phillips (1998),
Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). The disadvantage of
Mikusheva’s procedure is that its computational cost tends to be prohibitive for all but the

1 Our approach provides a computationally less costly

simplest autoregressive processes.
alternative to Mikusheva’s grid bootstrap in many applied settings for short as well as long
horizons. For example, at horizons up to 12 periods, even for T' = 240, the infimum of the
impulse response coverage rates based on our conventional bootstrap asymptotics for lag-
augmented autoregressive models ranges from 87% to 89%. For T = 480, the coverage rates
reach 89% to 90%, depending on the horizon. The latter coverage rates are at least as accurate

as the grid bootstrap coverage rates for T' = 500 reported in Mikusheva (2012), which range

from 87% to 92% at similar horizons.

7 Concluding Remarks

Although impulse response inference has played an important role in macroeconometrics since the

"'The largest process considered by Mikusheva (2012) in her simulation analysis is an AR(2) process. Her method
does not appear to have been applied to autoregressions with more lags.
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1980s, all existing proofs of the asymptotic validity of conventional delta method and bootstrap
confidence intervals are based on pointwise Gaussian asymptotic approximations. As has been
shown for the AR(1) model, this approximation may fail when the dominant root of the autore-
gressive process is near unity, resulting in intervals with poor coverage accuracy. In this paper, we
showed that the failure of conventional confidence intervals, as the dominant autoregressive roots
approaches unity, does not extend to higher-order autoregressions. We established the uniform
asymptotic validity of conventional asymptotic and bootstrap inference about individual impulse
responses and vectors of impulse responses at fixed horizons. We showed that for inference about
vectors of impulse responses based on Wald test statistics to be uniformly valid in the parameter
space, autoregressions must be lag augmented. Inference about individual impulse responses, in
contrast, under weak conditions is uniformly valid even without lag augmentation.

We further documented that the conventional asymptotic approximation works well in mod-
erately large samples, as long as the impulse response horizon remains reasonably small relative
to the sample size. The highest small-sample accuracy is achieved when bootstrapping the lag-
augmented autoregressive model using the bias-adjusted bootstrap method of Kilian (1999). For
horizons between 1 and 12 periods, for example, this approach achieves uniform coverage rates of
between 87% and 90% for T' = 240 and between 89% and 90% for T' = 480 and T = 600, which is a
substantial improvement relative to the delta method for the same model. In contrast, without the
lag augmentation, both delta method and bootstrap confidence intervals are much less accurate,
consistent with earlier simulation evidence in the literature. We provided formal asymptotic argu-
ments why our preferred method of inference based on lag-augmented autoregressions retains its
accuracy even at very long impulse response horizons, when other methods do not. Although the
latter result does not hold uniformly across the parameter space, it does hold in a local-to-unity
setting.

These results suggest that highly persistent autoregressions in applied work should be routinely
lag-augmented when conducting impulse response analysis. While lag-augmenting the autoregres-
sion will cause an increase in the average width of the interval, we showed that the loss in efficiency
caused by including one extra lag may for all practical purposes be ignored, when the original
autoregressive lag order is already large, as is common in applied work.

Our approach provides a highly accurate alternative to the much more computationally costly
grid bootstrap of Mikusheva (2012) in many applied settings. In fact, the coverage accuracy of

the bias-adjusted bootstrap remains excellent at horizons as long as 60 periods for sample sizes as
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small as T' = 240. Thus, we overturn the standard finding that conventional bootstrap confidence
intervals become increasingly inaccurate at longer horizons, even when using bias adjustments.
For example, Kilian and Chang (2000) documented by simulation that the coverage accuracy of
conventional methods of impulse response inference is inadequate for all but the shortest horizons.
The reason for this difference in results was our use of the lag-augmented autoregressive model,

which is new in impulse response inference.
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Appendix A

To prove Proposition 1, we follow the steps taken in Mikusheva (2007a,b). First we show that
the estimation uncertainty about the asymptotic covariance matrix is asymptotically negligible
(Lemma B1). Next, we show that the distribution of the least-squares estimator can be uniformly
approximated by that based on Gaussian autoregressive processes (Lemma B2). Third, we show
that the latter can be uniformly approximated by the local-to-unity asymptotic distribution (Lemma
B3). Proposition 2 follows from Proposition 1 and the rank condition in Assumption B.

As in Mikusheva (2007a, 2012), we split the parameter space into two overlapping parts:

Ar = {#€0:]1—py| <T 9},

Br = {#€0:]1-py|>T"%},

for some 0 < o < 1.

Proof of Proposition 1. First, it follows from Lemma B1 that

Lo 1
lim sup sup |P(X;%(0r —0) <z)—P(E,2(0r—0) <x)| = 0, (A1)
T—009eO pcpdo
where
~ T _ T _
S o= 01 (Ximprr 217~ Opr2)x1 , Y = o (Cimpr1 m2) ™ Oprayxa . (A2)

O1x(p+2) oar O1x(p+2) o4

1
Next, it follows from Lemma B2 that the distribution of X% (67 — 0) based on {y;}_; can be

uniformly approximated by that based on {g;}._; where

_ t _ _ _ _
Ayy = do+ (T) + g1 +T1AG 1+ + T 1 A1 + U

= BE + 1, (A.3)
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and @y % N (0,02). Tt follows from Lemma 5 of Mikusheva (2007a) and Lemma B3 that

1 : w(c) fol Je(r)dr 0
T 1 1 1
5 5 Je(r)d 0
T Y i) |2 L < rna = 0,(1) (A4)
t=pt1 w [y Je(r)dr w [y rdo(r)dr  w? [y Jo(r)2dr 0
and . -
M
T
No
Y7 () Z Ty — ) = op(1), (A.5)
t=p+1 ow(c) [y Je(r)dW (r)

uniformly over Ar, where ¢ = T log(|pp|).

Third, it follows from Lemma 12(a) and (b) of Mikusheva (2007b), (A.4) and (A.5) that

1
7T
1 & .
= T > ((ur = (Br = B)'zy)* - 0?)
T
& S° (2 — 02 — 2(Br — B + (Br — Bz (Br — B)
1

— ﬁ Z (u? _ 0_2 i 2\/T(BT Tﬁ)/’rT(C) TEl(C) Z Ty
t=p+1 t—

T
b (Br = YT TR (@) Y wal T O Te(0) Br — )

t=p+1
LY o
= »
\/T t=p+1
4Ny, (A.6)
uniformly on O.
It follows from (A.4), (A.5) and (A.6) that
_ 1o
lim sup sup |P(X;%(0r—0)<z)—PnO,T)<z) = 0. (A.7)

T—o0ge Ay zeRe
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Using

V—=2c / 1Jc(r)dW(r) 4 N(0,1), (A.8)
0 ! 2 p
(—20)/0 JZ(r)ydx — 1, (A.9)

as in Phillips (1987), it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6) that

P(S72 (B — 0) < 2) — P(g(6,T) < z)| = o. (A.10)

lim sup sup
T—o00 0€Br pcRdo

Therefore, Proposition 1 follows from (A.7) and (A.10). [

Proof of Proposition 2. Because f(-) is continuously differentiable,

T2 (f(Br) - f(0)) = T:Df(@r)(br —0)
= T:Df(Or)Y5 () Yr(c)(Or —0)
= T%Df(_T)ZT%“E;%(é\T —0)
= T:Df(Or)Y7 ()(Tr(0)SrTr(c)?
< S2 (0r — 0), (A.11)

where 67 is a point between §T and 6.
Note that 72 F (0)Yr(c) equals (6), that the first two columns consist of zeros by Assumption B
and that in the nonstationary region Arp, the elements of the third column converge to zero. Thus,

it follows from (A.4), (A.5) and (A.11) that

T3 (f(0r) — £(0)) (A.12)

=

(Df(Br)SrDf(0r))”

converges in distribution to the standard normal random vector uniformly on Az. In the stationary
region B, it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6) that (A.12) converges
in distribution to the standard normal random vector uniformly on Br. Thus, (9) follows. (10)

follows from the second remark about Theorem 1 in Kasy (2018). [

Proof of Proposition 3. Because we assume that the variance is uniformly bounded away from zero

and uniformly bounded from above in Assumption A(iii), the arguments in the proof of Lemma 6 of
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Mikusheva (2007a) carry through after scaling the residual in her proof by its standard deviation.
Thus, the empirical distribution of the scaled residuals belongs to the £,.(K, M, 0) class'?, and the
Skorohod representation result in Lemma 12 of Mikusheva (2007a) applies. In other words, for
any realization of the disturbance term, there exists K > 0, M > 0 and 6 such that the empirical
distribution function of the residual-based bootstrap, F\T, belongs to L,(K,M,0) for all § € ©.
Thus, there is an almost sure approximation of the partial sum process by Brownian motions: For
any € > 0 there exists 6 > 0 such that

[sT]
lim sup P* | sup uf —oW(s)| >eT™°| | = 0. (A.13)
=1

1
T—00 prer, (K,M.,9) 0<s<1 | VT <
Moreover, by Lemma B2 with ¢, u¢, z¢, Y+ replaced by c*, uf, x}, y;, respectively, the relevant boot-
strap sample moments can be approximated by those generated from a Gaussian autoregressive
process with g = BT almost surely conditional on the data. A bootstrap version of Lemma Bl may
be constructed by replacing o4 7 and o417 by EZ?T and 04,7, respectively. Repeating the arguments

in the proof of Lemma 5 of Mikusheva (2007a) yields a bootstrap version of Lemma B3 in which ¢

is replaced by ¢* from which we obtain the desired result. |
Proof of Proposition 4. The proof of Proposition 4 is analogous to that of Proposition 2. |
Appendix B

Throughout Appendix B, suppose that Assumptions A and B are satisfied.
The following lemma builds on Lemma 3 of Mikusheva (2007a):

Lemma B1.

847'1“ = O'4+Op(1) (B.l)

2Mikusheva (2007a) defines this class to be the class of sequences of distributions Fr such that the mean is zero,
the variance o2 satisfies \a%\ < MT~?% and the supremum of the rth moment with respect to T is less than K.
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uniformly on ©.

Proof of Lemma B1.

o4,T

047 can

T-p

be approximated by

T
~4 4
Uy — 0
t=p+1

T

ay — o' +0,(1)

t=p+1
T
> (w— (Br—B)w)t — o'
t=p+1
A R
S ul = 4(Br — B)w)ud
Lt=p+1

+0p(1)

+6((Br — B)z:)*ui — 4((Br — B)'x4)*ue + ((Br — 5)'%)4}

T-p

Lt=p+1

T
D ui = ACrE)ui + 6(Cra)*ui — 4(¢rFe) us + <<’Txt)4} (B.2)

where the second equality follows from Lemma 3 of Mikusheva (2007a), (7 = (ZtT:p 41 xtxg)% (BT -

B) and T, = (ZtT:p i :cta:é)féxt. As shown in the proof of Proposition 1, {(r = O,(1) uniformly on

T ~
©. Because ), 1 747y = Ipio,

T p+2
S Yat<n (B3
t=p+1 j=1
for k = 4,6,8. Thus, it follows from the Cauchy-Schwarz inequality that
1 1
1 & 1 & N i
R, Z (Craup| < T Z (Cr@eiCr) T, Z up
p t=p+1 p t=p+1 p t=p+1
= 0,(T2), (B.4)
1 R : 1 :
f (CrEe)*uf| < T Z (Cr@e)? T, Z uy
p t=p+1 p t=p+1 p t=p+1
1 1
lorl* N~ 80 ) (1 N )
ol 5 (A v
t=p+1 j=1 t=p+1
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T
'1 (CrEe)’u| = OP(T_%)v (B.6)
P
T
! (Cra)t| = 0,(T3), (B.7)
pt:p+1

where the last two results follow from arguments similar to the one used in the second result and

the Op(Tfé) terms are uniformly on ©. Thus, (B.1) follows. [

The next lemma is a slight extension of Lemma 11 of Mikusheva (2007b) which we present for

completeness.

Lemma B2. Suppose that y; follows

Ay = c+d(t)T)+ mh—1 + 1AGe—1 + - + Yp—1ATs—pt1 + Uy

= Bjt + ﬂta (BS)

where N (0,0%). Then thre exists a completion of the initial probability space and the

realization of 7; on this probability space such that

Yt Ut
sup sup ||— — —=|| = o(1) a.s., B.9
ocArt=1,.7||VT VT @) (B.9)
Ye
sup sup ||—=| = O(1) a.s., B.10
ocArt=1,..T ||VT ) ( )
T T
sup (Y7 (e) Y mow — Y3 () D mw| = o(1), (B.11)
fcAr t=p+1 t=p+1
T T
sup ([ T7' () Y @y Y5l (e) = Y5 () D #& Y5 (o)) = o(1), (B.12)
0eAr t=p+1 t=p+1
T .z T .z
sup (Z Ty) "2 Z zuy — ( Z 7)) 2 zei|| = o(1). (B.13)
OeAr || 1=pt1 t=p+1 t=p+1 t=p+1

Proof of Lemma B2.
Because £ < 02 < K, (B.9) and (B.10) follow from Lemma 11(a) and (b), respectively, of
Mikusheva (2007b) who normalizes o2 to one. Similarly, (B.11) follows from Lemma 11(c), (d),
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(e), and (f) of Mikusheva (2007b) and (B.12) from her Lemma 11(g), (h), and (i). (B.13) follows
from (B.11) and (B.12). [ |

The next two results follow from the arguments used in the proof of Lemma 5 of Mikusheva

(2007a).
Lemma B3.
2
1 i wfol Je(r)dr 0
a : 2 FrJe(r)dr 0
lim sup E |vech [ 7' 3 z2 5 - 2 O “folr (r)dr =0,
T—00 ge Ap t—pt1 w [y Je(r)dr  w [y rde(r)dr  w? [ Je(r)’dr 0
0 0 0 M
(B.14)
_ .
N
T
N
lim sup E||T;! Z Tyilly — . 2 = 0. (B.15)
T=ocgedr t=p+1 ow [y Je(r)dW (r)
N3
The following result is a slight modification of equation (21) of Inoue and Kilian (2002):
Lemma B4.
Let 8o = ¢r (1)), + & 2 8 =00 + €TV 4 o(T~V/2), 610 =
et do,r = ¢1r(1)dy 7 + 61 (P11 + 2012 + - + pdryp), dgp = I + & +o( ) 01,7
¢r(1)0] 7, 017 = 0] + &l V2 + o(T~Y?), ¢p(L) = 1 — ¢l — -+ — ¢rpL?, 70 = —¢r(1) =
SE org =1 =&T +o(TY), vy = =g+ -+ 0rp) = v + T2 +o(T7H2),
urg % (Onx1,0%), and 03 = 02 + £,2TY/% + o(T1/2) for some [& €1 &0,&1 + Epo1 Ep2) .
Define a triangular array
t
Ayry = o1 +iT (T) + Tryri—1 + YT 1 AYyT—1 VT p— 1 AYT i —pt1 + UTy
= Brore +urg, (B.16)
where 81 = [do1 d1,7 7T Y11 - Y1l and xp = [1¢/T yi1 Ays1 -+ Ays—py1]’. Then
lim sup sup |P(Yr(er)(0r —0) < z) — P(yr(0,T) < 2)| = 0, (B.17)

T—000eO Lcnde
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where ¢p = T'log(1 + pp 7).

The proof of Lemma B4 is based on the same arguments already used in the proof of Proposition

1 and is omitted. [ |

Appendix C

We want to evaluate the 1 — o level confidence set

in P, (¢; € Cy), B.18
il i (i € Cy) (B.18)

where v; and C; are the true parameter values and p; is the ith value of p.
Because P, (¢; € C;) is not analytically tractable in finite samples, it is approximated by

simulation:

M
P (i€ Ci) = Z ec?) (B.19)

where M is the number of Monte Carlo simulations and CZ-(j ) is a level 1 — a confidence set for the
jth Monte Carlo iteration.
The problem is that even when the coverage rate is uniform in finite samples the estimate (B.19)
may have downward bias due to “data mining”.
To estimate the bias, express the Monte Carlo estimate of the coverage rate as:
;M
X; = OO;dzj, (B.20)

where d;;’s are iid Bernoulli random variables with parameter 1 —o for i = 1,...,7. That is, 5000.X;

is a binomial random variable with parameters 5000 and 1 — «. Then the expectation of

Y = min X; (B.21)
1€{1,2,...,7}

minus (1 — «) is the data mining bias. Thus, the expectation of Y can be estimated from
n

= min XY (B.22)
njzlie{l,z,...,n '
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When a = 0.1, d = 7, and M = 5000, as in our simulation study, the normal approximation
yields 0.894, implying a data mining bias of 0.006. The same answer is obtained when simulating

this bias rather than relying on the normal approximation.
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