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1 Introduction

In this paper we investigate the behavioral origins of epidemiological bifurcations.1 Human responses in

the face of endogenous disease risk lead to bifurcations in epidemiological models with a variety of dynamic

implications. The dynamic implications lead to the potential for unintended consequences from public

health policies. As seen in the macroeconomic literature on monetary and fiscal policy (Clarida, Gali, and

Gertler (2000)), we show how well-intentioned public health policy may contribute to multiple equilibria and

aggregate instability. For instance, government policy designed to lower the transmission probability or raise

the quality-of-life associated with infectious diseases may push these equilibria from being stable to exhibiting

instability or indeterminacy. The latter also have the potential of contributing to self-fulfilling “sunspot”

equilibria, which can contribute to the volatility and unpredictability of the system (Grandmont (1986);

Smith (1989); Woodford (1986)). We show how public health interventions that reduce the consequences

of infection can lead to a bifurcation with excess variability in prevalence for diseases such as the common

cold and tuberculosis. We also show how the observability of a disease status leads to a type of dynamic

externality imposed on the economic system that differs from the infection externality typically stressed in

the literature (Kremer (1996); Gersovitz and Hammer (2004)).

The results indicate a richer set of implications for how human behavior impacts the spread of infectious

diseases than typically found in economic epidemiological (EE) models. The economic epidemiology field

integrates traditional mathematical epidemiology and rational economic decision making. Economic research

in this area began in response to the AIDS epidemic and has led to an improved understanding of how decision

making by individuals and policymakers influences infectious disease dynamics. For example, policymakers

may have limited ability to eradicate infectious diseases if rational individuals respond to lower prevalence by

reducing protection (Geoffard and Philipson (1996)) or may increase disease prevalence and induce fatalistic

behavior with the introduction of imperfect vaccines (Kremer (1996)). These examples highlight the need

to understand how economic incentives can alter policy prescriptions in the presence of infectious diseases.

Our focus is on how economic and epidemiological characteristics influence the dynamic properties of EE

equilibria and the relationship to public health policy.2 To the best of our knowledge, these are new findings

in the EE literature and an additional reason for policymakers to consider the predictions of integrated

economic and epidemiological models.

1By epidemiological bifurcations, we are referring to the general idea that “...the state of the [epidemiological] system depends
on some parameter .... usually with a concomitant change in stability” Shivamoggi (2014).

2The stability properties of continuous-time epidemiological systems have been studied in detail (see e.g., Korobeinikov and
Wake (2002)). In general, the endemic equilibrium has been found to be globally stable.
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2 An Economic Epidemiological Model

Following work by Philipson and Posner (1993) and Lightwood and Goldman (1995), we specify an integrated

economic epidemiological model to describe individual behavior in the face of endogenous risk of infection

from a communicable disease. In any period t, individual i from a constant population of N individuals is

in one of three epidemiological states as indicated by the binary variables: susceptible (si,t), infected (ini,t),

or recovered and immune (ri,t). The proportions of susceptible, infected and recovered individuals in the

entire population are given by averaging over all i.3 A similar model is presented in Aadland, Finnoff, and

Huang (2013) to examine the dynamics and potential eradication of syphilis.

The risk of infection is endogenous because individuals choose to engage in activities which affect their

exposure to the disease. Additional exposure brings immediate satisfaction but also the risk of future

infection, leading to a deterioration of the individual’s health. We assume current utility of an individual

depends on their choice of exposure in a period, xi,t, and their health status hi,t. As exposure is a direct

choice and health status an indirect consequence of past choices, we assume utility is diminishing in exposure

and linear in health status. Individuals maximize expected lifetime utility by choosing exposure in each

period

max
xi,t

Et
∑∞

j=0
βj [ln(xi,t+j) + hi,t+j ] (1)

where 0 < β < 1 is the discount factor, Et represents an individual’s rational expectation of future outcomes

conditional on all information dated t and earlier, x̄ is the maximum feasible amount of exposure per period.

For tractability, we assume the health status of individuals in each epidemiological state is constant and

the health status of susceptible (or recovered/immune) individuals exceeds that of infected individuals, hS

> hIN . All individuals maximize (1) without concern for the welfare of the general population, subject to

the epidemiological dynamics.

2.1 Epidemiology

The epidemiological portion of the model describes the evolution of the three mutually exclusive disease

categories measured as proportions of the overall population. We specify the most general SIRS model

(Anderson and May (1991)), where individuals transition from being susceptible to infected to recovered

(and immune) and then back to susceptible. The SIRS model has previously been used to model infectious

3The model is set in discrete time (Auld (2003), Lightwood and Goldman (1995)), where t indexes the decision interval.
Allen (1994) finds that endemic equilibria from discrete-time epidemiological models have the potential to be stable, exhibit
periodicity or be chaotic. Instability tends to be driven by high contact rates and high birth/death rates per time interval.

3



diseases such as syphilis and whooping cough (Grassly, Fraser, and Garnett (2005); Rohani, Zhong, and King

(2010)). The SIRS model is sufficiently general to handle cases with permanent infection (SI diseases such

as HIV/AIDS), diseases with recovery but no immunity (SIS diseases such as the common cold and active

tuberculosis), and diseases with permanent immunity (SIR diseases such as measles and chicken pox).

The disease dynamics are represented by the system

st+1 = µ+ (1− pt − µ)st + γrt (2)

int+1 = (1− v − µ)int + ptst (3)

rt+1 = (1− γ − µ)rt + vint, (4)

where µ is the common birth/death rate, 1/γ is the average duration of immunity, v is the recovery rate, and

pt is the probability of infection for a susceptible individual, which depends on their exposure choices, xi,t.

If the disease is transmitted person-to-person such as an STD, then xi,t can be interpreted as the chosen

number of partners. If the disease is vector-borne such as the common cold, measles or malaria, then xi,t

can be interpreted as exposure time to the disease. Assuming independence across episodes of exposure,

the probability that (identical) susceptible individuals become infected is

pt = Pr(infection) = 1− (1− λint)
xi,t , (5)

where λ is the per unit exposure (or per partner) transmission rate (Kaplan (1990); Oster (2005)). The

fact that pt depends on the chosen degree of exposure distinguishes the analysis from standard mathematical

epidemiology (ME).

Imposing the condition that all three categories sum to one, the model simplifies to a two-variable system

in in and r:

int+1 = (1− pt − v − µ)int + pt(1− rt) (6)

rt+1 = (1− γ − µ)rt + vint. (7)

The SIR model sets γ = 0 so that individuals are permanently recovered and immune to the disease. The

SIS and SI models omit the immunity category.
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2.2 Decision Making

The value functions for each state — susceptible (S), infected (IN), and recovered (R) — are given by

V St = ln(xt) + h
S + βEt[ptV

IN
t+1 + (1− pt)V

S
t+1] (8)

V INt = ln(x̄) + hIN + βEt[vV
R
t+1 + (1− v)V

IN
t+1] (9)

V Rt = ln(x̄) + hS + βEt[γV
S
t+1 + (1− γ)V

R
t+1], (10)

where infected and immune individuals choose the maximum feasible amount of exposure, x̄, because they

face no risk of immediate infection (Geoffard and Philipson (1996)). Similar to Gersovitz and Hammer

(2004), this behavior imposes an externality on susceptible individuals. We discuss this in detail later in

the paper. In contrast, susceptible individuals will choose the degree of exposure that balances the current

marginal benefits of exposure with the discounted expected future marginal costs of exposure as given by

the Euler equation:

x−1t = βpx,tEt[V
S
t+1 − V

IN
t+1], (11)

where the partial derivative of pt with respect to the degree of exposure is px,t = − ln(1−pt)(1−pt)/xit.
4 The

left side of (11) gives the marginal benefit of exposure, while the right side of (11) gives the expected future

marginal costs of exposure. The implication from (11) is that individuals will choose to expose themselves

until the marginal benefits from additional exposure cease to outweigh the marginal costs of exposure.

However, unlike ME models where the infection rate is constant or varies deterministically (Korobeinikov

(2006)), the term px,t highlights the fact that the transition probability from susceptible to infected is

endogenous in EE models. Aadland, Finnoff, and Huang (2013) demonstrate the implications of the decision

rule in (11). While the marginal benefits of exposure diminish with additional exposure, the marginal costs

of exposure rise (fall) when exposure is low (high). This curious shape follows from exposure increasing

the probability of infection, putting an upward pressure on marginal costs, but as the probability rises its

rate of change decreases, pushing marginal costs back down. At low levels of exposure the former effect

overwhelms the latter effect, while the reverse occurs at high levels of exposure. This type of endogenous

risk creates a non-convexity.

4The standard sufficiency conditions for this epidemiology problem do not hold (Goenka and Liu (2012); Gersovitz and
Hammer (2004)). Therefore, we use numerical simulation to check the optimality of the transition path given by equation (11).
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2.2.1 Endogenous Risk, Non-Convexities and Multiple Equilibria

The implication from the non-convexity is the potential for multiple equilibria, which is well-known in

economic epidemiological models (Goldman and Lightwood (2002)). What is not so well known are the

dynamic consequences of the non-convexities. They cause both bifurcations in equilibria and have the

potential to alter the stability properties of equilibria. Bifurcations can occur from changes in any parameter

that alter the marginal benefit or cost of exposure. We focus on two parameters that are likely levers of

public policy, the per unit transmission rate, λ, and the health status of the infected state, hIN .

Consider an SIS variant of the model, with parameter values as shown in Table 1 (based on those in

Aadland, Finnoff, and Huang (2013)). These values are used to create Figure 1a, which plots the steady-

state marginal benefit and marginal cost curves across a variety of values of λ and hIN .

Table 1. SIS Parameter Values

Parameters β µ v x̄ λ hIN hS

Value 0.96 0.05 1 100 0.5 20 50

The value of β implies a 4% annual discount rate, µ gives a 5% birth and death rate for the population

(Garnett et al. (1997)), and the maximum annual number of exposures is set at 100. For each parameter

combination there are up to two equilibria, one with a low degree of exposure (equilibrium points 1, 3 and

5 in Figure 1) and one with a high degree of exposure (equilibrium points 2 and 4 in Figure 1). Changes

in economic and epidemiological characteristics that shift either curve can lead to bifurcations and complex

dynamics.

SIS Equilibria For example, in the right Panel (a) of Figure 1, increases in the health status of the

infected state (i.e., a reduction in the consequences of being infected, an increase in hIN from 20 to 40) scale

the marginal cost curve downward. The marginal costs associated with all levels of exposure decline, yet

the exposure required to attain a certain level of marginal costs increases for low exposures, and falls for

high exposures. The result is a small increase in the low-exposure equilibrium (such as the movement from

equilibrium 1 to 3) and a larger decrease in the high-exposure equilibrium (movement from equilibrium 2 to

4). Further increases in hIN — beyond where the curves are tangent — cause the marginal benefits of exposure

to be everywhere greater than the marginal costs (as seen with hIN = 43). Here, a bifurcation occurs and

the two equilibrium points merge into one, leading susceptible individuals to choose the maximum level of

exposure.

Public policies that reduce the per unit transmission rate λ provide an interesting contrast. While the
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increase in hIN scaled marginal costs downward, a policy that reduces λ leads to a flattening and shifting of

the marginal cost curve, as shown in the left Panel (a) of Figure 1. Lower λ’s lead to a reduction in marginal

costs for low exposures and an increase in marginal costs for high exposures. The result is that lower λ’s

cause increases in exposure for both the low-exposure and high-exposure equilibria (i.e., the movements from

equilibrium 1 to 3 to 5 and the movement from equilibrium 2 to 4).

SIS Dynamics and Stability Analysis Figure 1b demonstrates the bifurcations that occur for variations

in λ or hIN (holding the other constant at the benchmark values of λ = 0.5 or hIN = 20). The figure plots

both equilibria and notes their local stability properties using the method of Blanchard and Kahn (1980).

The equilibria can exhibit local saddle-path stability, indeterminate paths (infinite number of paths), or

unstable explosive paths. In the presence of saddle-path stability, public intervention can play a meaningful,

predictable role. In the presence of indeterminacy, there are multiple equilibrium paths and the possibility

of “sunspot” equilibria (Benhabib and Farmer (1999)). Sunspot equilibria are often associated with self-

fulfilling prophecies and additional aggregate volatility.

Figure 1b illustrates that variations in the key policy parameters lead to significantly different equilibrium

exposures and a wide variety of approach paths. Reductions in λ below the benchmark lead to increased

equilibrium exposures and differing approach paths. The approach paths at the benchmark levels are both

saddle (unique) paths, but as λ is lowered, the path to the upper equilibrium switches to being indeterminate.

In contrast, increasing hIN above the benchmark pulls the two equilibria together and the saddle paths switch

to unstable spirals. As hIN approaches the health status of a susceptible individual (hS), the equilibria

merge to become a single unstable equilibrium. Thus, public policy aimed at lowering λ or raising hIN may

induce indeterminacy or aggregate instability, in either case lowering the predictability of policy interventions

and leading to increased fluctuations in disease prevalence.

2.2.2 SIRS Immunity Externality

Human beliefs over diseases, or lack thereof, lead to significant changes in behavior and dynamics of the

system. This is especially clear for SIRS diseases such as pertussis or syphilis. Although these diseases have

an interval of immunity that is typically known by the scientific or medical community, it is not often well

known in the bulk of the population. Whether or not individuals know (or believe) they will experience

an interval of immunity leads to a shift in the marginal cost of exposure. Specifically, when recovered

individuals know or can observe their own immunity, they rationally choose the maximum feasible degree
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of exposure x̄ and have health level hS . Susceptible individuals under the same set of beliefs, on the other

hand, choose a specific degree of exposure xt to satisfy

x−1t = βpx,tEt

[
ln(xt+1/x̄) + h+

(1− v − pt+1)

xt+1px,t+1
− β∆t+2

]
, (12)

where

∆t+2 =
vγ

xt+2px,t+2
+ (1− v − γ)

[
ln
(xt+2
x̄

)
+

1− pt+2
xt+2px,t+2

]
+ (1− γ)

[
h−

1

βxt+1px,t+1

]

and h = hS−hIN is the health gap between being susceptible and infected. See Appendix A for a derivation

of equation (12). The term ∆t+2 captures the expected future personal “costs” of infection associated with

acquired immunity. Because ∆t+2 enters the right side of (12) with a negative sign, the possibility of future

immunity is a personal benefit of becoming infected. In the decentralized equilibrium considered here,

immunity (if known) thus imposes an additional externality on society. The externality is dynamic and

different than the infection externalities discussed in Gersovitz and Hammer (2004). Here, forward-looking

susceptible individuals expose themselves to more risk when the possibility of immunity is known, because

future infection also carries along the benefit of future immunity.

In contrast, if individuals do not know or believe they will have an interval of immunity (i.e., unobserved

immunity), individuals with immunity (i.e., the R state) believe they are susceptible, and susceptibles do

not account for being immune in their decision making. In this case the term ∆t+2 is equal to zero and

equation (12) can be rewritten as

x−1t = βpx,tEt

[
ln(xt+1/x̄) + h+

(1− v − pt+1)

xt+1px,t+1

]
. (13)

Figure 2 demonstrates the implications of the externality. If the externality is internalized by the

individual (i.e., they observe immunity) it lowers the marginal costs of exposure (similar to the effect of

increasing hIN in the SIS model, Figure 1a). For the sketch given, this results in the low-exposure choice

increasing, and the high-exposure choice decreasing. While there remains two alternative equilibrium choices,

the magnitudes are altered in different directions and to different degrees.
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2.3 Complete SIRS Bifurcation and Stability Analysis

To perform a complete bifurcation and stability analysis5 , we extend the analysis to cover several variants

of the models across all combinations of the policy parameters, λ and hIN . Similar to Goenka, Liu, and

Nguyen (2012), we note the existence of an eradication equilibrium but focus on endemic EE equilibria.6

The analysis uses the parameter values in Table 1 and a few additional parameters for SIR and SIRS models.

We consider treatable SIR and SIRS diseases with a 100% recovery rate within a year of infection (i.e.,

v = 1). Following Garnett et al. (1997), the SIRS variant is calibrated so individuals experience a five-year

period of protective immunity (i.e., γ = 0.2).

Figures 3-5 summarize the stability and bifurcation of the exposure equilibria, across ranges of the per

unit transmission rate, λ, and infected health, hIN , for all of the SI, SIS, SIR and SIRS models. Infected

health hIN can be lowered by public policy that results in the discovery and introduction of drug treatments,

while the per unit infection rate λ can be lowered through the introduction of vaccines or new prevention

technologies. Our main findings are:

• EE models typically produce two endemic steady states. Aggregate welfare is always higher along the

transition path to the low-exposure endemic steady state. For the SIRS model, the dynamic disease

externality leads to increased risk-taking by susceptible individuals (along the transition path to the

low-exposure steady state). Rational, forward-looking individuals who know that future infection will

also carry a period of immunity will choose to be riskier than if they were unaware of the immunity.

• Increasing infected health status hIN or reducing the per unit infection rate λ increases aggregate

welfare for most model variants, yet can move the system from a unique stable equilibrium to one that

exhibits aggregate instability and indeterminacy.

We now turn to more detailed analyses for each variant of the EE model.

5See Appendix B for the complete economic SIRS system used in the bifurcation and stability analysis.
6There is also an eradication steady state where in = r = 0, s = 1, and x = x̄. For the range of parameter values we

consider, the economic eradication steady state is locally unstable because susceptible individuals have no incentive to reduce
the degree of exposure. More specifically, the local stability condition requires that the basic reproduction number, R0, is
less than one (Anderson and May (1991)). The basic reproduction number is defined as the number of secondary infections
generated by a single infected individual in an otherwise susceptible population. For the SIRS model described above, we have
R0 = p/(in(v + µ)). Using L’Hôpital’s rule, this reduces to R0 = λpx̄/(v + µ), which is greater than one for all the parameter
combinations considered below.
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2.3.1 Economic SI and SIS Models

Figure 3 shows the map of path types for the SI and SIS models around the low-exposure endemic steady

state (left panels) and high-exposure endemic steady state (right panels). For high values of infected health

hIN , there is a single endemic steady state. In this case, the dynamics of the system are evaluated around

the maximum feasible level of exposure, x̄, because the marginal benefits of exposure are everywhere greater

than the marginal costs. The top panels show the type of localized dynamic paths for the economic SI model

with no available treatment, v = 0. The majority of the parameter space for the economic SI model is defined

by saddle-path equilibria. For a given initial prevalence level (in0), there is a unique initial exposure choice

(x0) that puts the system on a convergent path to the endemic steady state. All other initial exposure

levels lead to divergent paths that violate non-negativity or non-explosion conditions. Because both the

low-exposure and high-exposure steady states exhibit local saddle-path stability, the system has the potential

to gravitate toward either steady state. The welfare contours show that, in the long run, society is better

off at the low-exposure, low-prevalence steady state.7

The bottom panels of Figure 3 show the dynamic path types for the SIS model where infected individuals

have access to perfectly effective treatment (v = 1) and return to the susceptible pool after treatment. The

parameter region for the low-exposure steady state is primarily a saddle-path equilibrium, but there is also

an explosive region for the low-exposure steady state at high levels of hIN . Public policy aimed at improving

the health of infected individuals could inadvertently move the system from a stable saddle-path region to

an explosive system with higher waves of prevalence as individuals rationally take more risk.8

To gain intuition for the types of dynamic paths in the economic SIS models, consider the exposure

elasticity with respect to prevalence near the endemic steady state, κ = ∂xss
∂inss

inss
xss
. Prevalence elasticity

measures the percentage change in exposure for a one-percent change in prevalence. This elasticity is gen-

erally negative, indicating that susceptible individuals respond to the increased risk of infection by choosing

less exposure.9 For example, the prevalence elasticities for the economic SIS system depicted in the lower

left panel of Figure 3 are negative and inelastic in the saddle-path region. In the explosive band (unstable

spiral) the magnitude of κ (for the interior solutions) flips to being positive (an increase in prevalence leads

to an increase in exposure) with elastic and inelastic magnitudes.

7Total welfare is calculated at steady state using a weighted average of the value functions for the three disease types:
s · V S + in · V IN + r · V R.

8Mathematical epidemiological models, by contrast, do not vary the number of partners in response to changes in disease
prevalence. For reasonable partner rates, the mathematical SI and SIS models are characterized by stable dynamic paths with
a fixed number of partners.

9Kremer (1996) discusses the possibility of a positive prevalence elasticity and fatalistic behavior.
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2.3.2 Economic SIR and SIRS Models with Observable Immunity

Figure 4 shows a similar map for the dynamic paths in SIR and SIRS models where immunity is observable.

The top panels show the dynamic equilibrium types for the economic SIR model with permanent immunity,

γ = 0. For all combinations of λ and hIN , there is a single endemic steady state. For most of the parameter

region, susceptible individuals choose the maximum level of exposure and the system is locally stable. This

makes intuitive sense because susceptible individuals know that if they become infected, they can receive

immediate treatment and enjoy a lifetime of disease immunity. There is a small range of indeterminacy for

low levels of infected health and low levels of the infection parameter.

The lower panels show the path types for the economic SIRS model with γ = 0.2 (i.e., average immunity

duration of five years). Unlike the economic SIR model, the economic SIRS model produces large regions of

indeterminacy where there are multiple approach paths and the possibility of “sunspot” equilibria (Benhabib

and Farmer (1999)). Considering that welfare is higher in the lower left panel, public policy aimed at

improving the quality of life for individuals infected with diseases that have known temporary immunity

may induce aggregate instability and indeterminacy.

2.3.3 Economic SIR and SIRS Models with Unobservable Immunity

Figure 5 depicts the SIRS counterpart to Figure 4 but with unobservable immunity. Unobservable immunity

causes two primary changes. First, individuals in the economic SIR system now choose less exposure for any

parameter combination. Knowledge of perfectly effective treatment and permanent immunity, as depicted

in Figure 4, greatly reduces the future cost of current risky behavior. Second, the indeterminacy region

for the SIRS system now covers a much smaller range of the health parameter. While well-intentioned

public policy that improves the quality of life for infected individuals leads to equilibria with higher welfare,

indeterminate paths that approach the equilibrium with spiral trajectories imply aggregate volatility and

potentially wide swings in prevalence.

3 Nonlinear Dynamic Analysis

To illustrate the full dynamic implications of the public policies, here we simulate a nonlinear economic

SIS model. As the epidemiology choice problem is non-convex (Goenka and Liu (2012)), we use GAMS to

solve for the nonlinear transition paths as a dynamic mixed complementary problem. Overall, the nonlinear

dynamic analysis confirms the linearized, local analysis performed earlier. More specifically, the analysis
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confirms that public policy which reduces λ or increases hIN , while successful at improving welfare, has the

potential to increase the volatility in disease prevalence and make the transition path less predictable.

Figure 6 plots the approach paths for prevalence (int) and exposure (xt) that correspond from changes in

λ and hIN . In each panel of Figure 6, the equilibrium points of Figure 1 are shown along with the transition

paths (where arrows indicate the direction of change). The parameter changes in λ and hIN cause the

low-exposure equilibrium to move from equilibrium (1) to (3) and the high-exposure equilibrium to move

from equilibrium (2) to (4). The 45 degree lines represent time-invariant levels of each variable.

Start with the policies that reduce λ from the benchmark value of 0.5 to 0.15, as shown in panel (a).

Figures 1 and 3 classify the low-exposure equilibrium in both cases as being saddle-path stable (points 1 and

3 in Figure 1b), while the high-exposure equilibrium switches from a saddle path to indeterminate (points

2 and 4 in Figure 1b). The nonlinear dynamics for the low-exposure equilibrium are simple — there is a

small increase in equilibrium prevalence and exposure with a quick convergence from point 1 to 3. The

transition path for the high-exposure equilibrium demonstrates the issues of indeterminacy - the reduced

per unit transmission leads to a large increase in exposure (point 2 to 4), and wide fluctuations in exposure

and prevalence as the system converges. As shown by Figure 7, the reduction in λ leads to an increase in

welfare for both equilibria with the low-exposure equilibrium path preferred.

The implications from policies to increase the quality of life for those infected, hIN , are shown in panels (b)

and (c) of Figure 6. For an increase in hIN from the benchmark to a level of 40 in panel (b), both equilibria

remain on the saddle paths, converging to the new equilibria. At the low-exposure equilibrium, prevalence

and exposure increase; more individuals are infected but their quality of life has significantly improved

and aggregate welfare increase (as shown in Figure 7). At the high-exposure equilibrium, prevalence and

exposure decrease with a similar increase in welfare. Similar to above, the low-exposure equilibrium path

is preferred. Increasing hIN further to a level high enough that the two equilibria merge into one (i.e.,

hIN = 0.43) as shown in panel (c), causes individuals to choose the maximum level of exposure and the

equilibrium to be unstable and volatile.

4 Conclusions

Economic epidemiology has made significant advances in educating health officials about the behavioral

implications of public policies. However, one area that has received little attention is how policy and human
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responses influences the nature of communicable disease dynamics. In this paper, we explore the nature

of the dynamics for rational expectation economic epidemiological systems. The analysis digs beneath a

comparison of fixed parameter values and demonstrates the behavioral origin for epidemiological bifurcations.

Indeed, we show that well-intentioned policy has the potential to create instability and indeterminacy when

individuals behave rationally and in a self-interested manner. Future research should focus on providing

precise policy recommendations by considering the costs of policy and applying the methods outlined in this

paper to specific diseases.

References

Aadland, D., D. Finnoff, and K. Huang (2013): “Syphilis Cycles,” The B.E. Journal of Economic

Analysis and Policy, 14, 297—348.

Allen, L. (1994): “Some discrete-time SI, SIR, and SIS epidemic models,”Mathematical biosciences, 124(1),

83—105.

Anderson, R., and R. May (1991): Infectious Diseases of Humans, Dynamics and Control. Oxford Uni-

versity Press.

Auld, M. (2003): “Choices, beliefs, and infections disease dynamics,” Journal of Health Economics, 22,

361—377.

Benhabib, J., and R. Farmer (1999): “Indeterminacy and sunspots in macroeconomics,” Handbook of

macroeconomics, 1, 387—448.

Blanchard, O. J., and C. M. Kahn (1980): “The solution of linear difference models under rational

expectations,” Econometrica, 48(5), 1305—1311.

Clarida, R., J. Gali, and M. Gertler (2000): “Monetary policy rules and macroeconomic stability:

evidence and some theory,” Quarterly journal of economics, 115(1), 147—180.

Garnett, G., et al. (1997): “The Natural History of Syphilis: Implications for the Transition Dynamics

and Control of Infection,” Sexually Transmitted Diseases, 24(4), 185—200.

Geoffard, P., and T. Philipson (1996): “Rational epidemics and their public control,” International

Economic Review, 37(3), 603—624.

13



Gersovitz, M., and J. Hammer (2004): “The Economical Control of Infectious Diseases,” The Economic

Journal, 114, 1—27.

Goenka, A., and L. Liu (2012): “Infectious diseases and endogenous fluctuations,” Economic Theory,

50(1), 125—149.

Goenka, A., L. Liu, and M.-H. Nguyen (2012): “Infectious Diseases and Endogenous Growth,” Discus-

sion paper, Mimeo: National University of Singapore.

Goldman, S., and J. Lightwood (2002): “Cost Optimization in the SIS Model of Infectious Disease with

Treatment,” Topics in Economic Analysis and Policy, 2(1), 1—22.

Grandmont, J.-M. (1986): On endogenous competitive business cycles. Springer.

Grassly, N., C. Fraser, and G. Garnett (2005): “Host immunity and synchronized epidemics of

syphilis across the United States,” Nature, 433, 417—421.

Kaplan, E. (1990): “Modeling HIV infectivity: must sex acts be counted?,” JAIDS Journal of Acquired

Immune Deficiency Syndromes, 3(1), 55.

Korobeinikov, A. (2006): “Lyapunov functions and global stability for SIR and SIRS epidemiological

models with non-linear transmission,” Bulletin of Mathematical Biology, 68(3), 615—626.

Korobeinikov, A., and G. Wake (2002): “Lyapunov functions and global stability for SIR, SIRS, and

SIS epidemiological models,” Applied Mathematics Letters, 15(8), 955—960.

Kremer, M. (1996): “Integrating behavioral choice into epidemiological models of AIDS,”Quarterly Journal

of Economics, 111(2), 549—573.

Lightwood, J., and S. Goldman (1995): “The SIS Model of Infectious Disease with Treatment,” Unpub-

lished Manuscript.

Oster, E. (2005): “Sexually transmitted infections, sexual behavior, and the HIV/AIDS epidemic,” Quar-

terly Journal of Economics, 120(2), 467—515.

Philipson, T., and R. Posner (1993): Private Choices and Public Health: The AIDS Epidemic in an

Economic Perspective. Harvard University Press.

Rohani, P., X. Zhong, and A. King (2010): “Contact network structure explains the changing epidemi-

ology of pertussis,” Science, 330(6006), 982.

14



Shivamoggi, B. K. (2014): Nonlinear dynamics and chaotic phenomena: an introduction, vol. 103. Springer.
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Appendix A. Derivation of the Economic SIRS Euler Equation with Observable Immunity

Here we derive the Euler equation for the economic SIRS model with observable immunity. To begin,

note that equations (9) and (10) imply

V Rt − V INt = h+ βEt
[
γ(V St+1 − V

R
t+1) + (1− v)(V

R
t+1 − V

IN
t+1)

]
, (A.1)

while equations (8) and (9) imply

V St − V
IN
t = ln(xt/x̄) + h+ βEt

[
(1− pt)(V

S
t+1 − V

IN
t+1)− v(V

R
t+1 − V

IN
t+1)

]
. (A.2)

Using equation (11), we have

Et(V
S
t+1 − V

IN
t+1) = (βxtpx,t)

−1, (A.3)

for all t. Next, rearrange (A.2) as

V Rt+1 − V
IN
t+1 =

1

βv
[ln(xt/x̄) + h] +

1

v
(1− pt)Et(V

S
t+1 − V

IN
t+1)−

1

βv

(
V St − V

IN
t

)
. (A.4)

Take Et−1 on both sides of (A.4) and substitute (A.3) to get

Et−1(V
R
t+1 − V

IN
t+1) =

1

βv
Et−1[ln(xt/x̄) + h] +

1

βv
Et−1

(
1− pt
xtpx,t

)
−

1

β2v

(
1

xt−1px,t−1

)
. (A.5)

Now rewrite equation (A.1) as

V Rt − V INt = h+ βEt
[
γ(V St+1 − V

IN
t+1) + (1− v − γ)(V

R
t+1 − V

IN
t+1)

]
. (A.6)

Move (A.6) ahead one period, take Et−1 of both sides, and set equal to (A.5) to get

1

βv
Et−1 [ln(xt/x̄) + h] +

1

βv
Et−1

(
1− pt
xtpx,t

)
−

1

β2v

(
1

xt−1px,t−1

)
(A.7)

= h+ βEt−1

{
γ(βxtpx,t)

−1 + (1− v − γ)

(
1

βv
[ln(xt/x̄) + h] +

1

βv

(
1− pt
xtpx,t

)
−

1

β2v

(
1

xt−1px,t−1

))}
.

Impose perfect foresight, move ahead one period, and rearrange to get

x−1t = βpx,t

[
ln(xt+1/x̄) + h+

(1− v − pt+1)

xt+1px,t+1
− β∆t+2

]
,
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where

∆t+2 =
vγ

xt+2px,t+2
+ (1− v − γ)

[
ln
(xt+2
x̄

)
+

1− pt+2
xt+2px,t+2

]
+ (1− γ)

[
h−

1

βxt+1px,t+1

]
.

Appendix B. SIRS Economic Epidemiological (EE) Steady-State and Matrix Systems

Here, we describe the steady state EE system and the linearized EE matrix system used in the bifurcation

and stability analyses. The endemic steady states solve time-invariant versions of (6), (7), and the Euler

equation. The Euler equation either takes the form of (12) when an indicator variable set at φ = 1

(observable immunity) or the form of (13) when φ = 0 (unobservable immunity). The steady-state system

can therefore be rewritten as three equations:

in = p(1− in− r)/(v + µ) (B.1)

r = vin/(γ + µ) (B.2)

x−1 = β[px(ln(x/x̄) + h− φβ∆) + (1− v − p)/x] (B.3)

in three unknown variables (in, r, x), where the immunity externality is given by

∆ =
1

pxx
[vγ + (1− v − γ)(1− p)− (1− γ)/β] + (1− v − γ) ln(x/x̄) + (1− γ)h.

Similar to Goenka, Liu, and Nguyen (2012), we also note the existence of an eradication steady and focus

on the local stability properties around the endemic steady states.

To analyze these transition dynamics, we linearize around the endemic steady states:

înt+1 = (1− v − µ− p)înt + (1− in− r)p̂t − pr̂t (B.4)

r̂t+1 = (1− γ − µ)r̂t + vînt, (B.5)
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where hats (ˆ) over the variables indicate deviation from one of the steady states. The linearized Euler

equation is:

pxx̂t + xp̂x,t = βpx(1− v − p− xpx)Etx̂t+1 + βx(1− v − p)Etp̂x,t+1 + βxpxEtp̂t+1 (B.6)

+φβ2Et




px[vγ + (1− v − γ)(1− p− xpx)]x̂t+2 + x[vγ + (1− v − γ)(1− p)]p̂x,t+2+

[(1− v − γ)xpx]p̂t+2 − [(1− γ)px/β]x̂t+1 − [(1− γ)x/β]p̂x,t+1





where

p̂t = pinînt + pxx̂t (B.7)

p̂x,t = [(1 + ln[1− p])/x]p̂t − (px/x)x̂t (B.8)

and

pin = xλ(1− λin)x−1 (B.9)

px = − ln(1− p)(1− p)/x. (B.10)

In matrix form, the EE system can be written as

ẑt = J ẑt+1, (B.11)

where ẑt = (x̂t, înt, r̂t)
′ when φ = 0 or ẑt = (x̂t, înt, r̂t, x̂t+1, înt+1)

′ when φ = 1, and J is the transition

matrix.

Specifically, if we impose perfect foresight, the φ = 0 linearized EE matrix system can be written as:




0 1− v − µ− p −p

0 v 1− γ − µ

px 0 0




︸ ︷︷ ︸
A




x̂t

înt

r̂t



+




1− in− r 0

0 0

0 x




︸ ︷︷ ︸
B



p̂t

p̂x,t




=




0 1 0

0 0 1

βpx(1− v − p− xpx) 0 0




︸ ︷︷ ︸
C




x̂t+1

înt+1

r̂t+1



+




0 0

0 0

βxpx βx(1− v − p)




︸ ︷︷ ︸
D



p̂t+1

p̂x,t+1


 (B.12)
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and



−1 0

−(1 + ln(1− p))/x 1




︸ ︷︷ ︸
F



p̂t

p̂x,t


 = −



px pin 0

px/x 0 0




︸ ︷︷ ︸
G




x̂t

înt

r̂t



. (B.13)

When φ = 1, we have




0 1− v − µ− p −p 0 0

0 v 1− µ− γ 0 0

px 0 0 0 0

0 0 0 1 0

0 0 0 0 1




︸ ︷︷ ︸
A




x̂t

înt

r̂t

x̂t+1

înt+1




+




s 0 0 0

0 0 0 0

0 x 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
B




p̂t

p̂x,t

p̂t+1

p̂x,t+1




=




0 1 0 0 0

0 0 1 0 0

βpx(1− v − p− xpx)− β
2[(1− γ)px/β] 0 0 β2px[vγ + (1− v − γ)(1− p− xpx)] 0

1 0 0 0 0

0 1 0 0 0




︸ ︷︷ ︸
C




x̂t+1

înt+1

r̂t+1

x̂t+2

înt+2




+




0 0 0 0

0 0 0 0

βxpx βx(1− v − p)− β2[(1− γ)x/β] β2(1− v − γ)xpx β2x[vγ + (1− v − γ)(1− p)]

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
D




p̂t+1

p̂x,t+1

p̂t+2

p̂x,t+2




and




−1 0 0 0

−(1 + ln(1− p))/x 1 0 0

0 0 −1 0

0 0 −(1 + ln(1− p))/x 1




︸ ︷︷ ︸
F




p̂t

p̂x,t

p̂t+1

p̂x,t+1




= −




px pin 0 0 0

px/x 0 0 0 0

0 0 0 px pin

0 0 0 px/x 0




︸ ︷︷ ︸
G




x̂t

înt

r̂t

x̂t+1

înt+1




.

(B.14)
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where

J = (A−BF−1G)−1(C −DF−1G). (B.15)

We use the method of Blanchard and Kahn (1980) to analyze the nature of the rational expectation EE

equilibrium. When φ = 0 the three-variable system contains one jump (x̂t) and two predetermined (înt and

r̂t) variables. The system will exhibit saddle-path stability if there are two eigenvalues of J outside the unit

circle, indeterminate multiple stable paths if there are no forward stable eigenvalues, and explosive paths

if there is more than one forward-stable eigenvalue. When φ = 1 the five-variable system contains three

jump (x̂t, x̂t+1 and înt+1) and two predetermined (înt and r̂t) variables. The fifth equation is an identity

for înt+1with a zero eigenvalue. Considering the other four eigenvalues, the system will exhibit saddle-path

stability if exactly two of the eigenvalues are outside the unit circle, indeterminate multiple stable paths

if there are three or more eigenvalues outside the unit circle, and explosive paths if there is less than two

eigenvalues outside the unit circle.
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Figure 1. Optimal Choices and Bifurcation for the Economic SIS Model 

 

 
(a) Optimal Choices 

 

 
(b) Bifurcations 

 

  



Figure 2. Immunity Externality 

 

 



Figure 3.  Types of Local Dynamic Paths for Rational Expectations Economic SI and SIS Models 

Economics SI Model 

Low Exposure Steady State 

 

High Exposure Steady State 

 

Economics SIS Model 

Low Exposure Steady State 

 

High Exposure Steady State  

 

Notes:  Contour lines indicate welfare at the steady state.  Parameter values are given in Table 1. 



Figure 4.  Types of Local Dynamic Paths for Rational Expectations Economic SIR and SIRS Models (w/ Observed Immunity) 

Economics SIR Model 

 

Economics SIRS Model 

Low Exposure Steady State 

 

High Exposure Steady State  

 

Notes:  Contour lines indicate welfare at the steady state.  Parameter values are given in Table 1.  



Figure 5.  Types of Local Dynamic Paths for Rational Expectations Economic SIR and SIRS Models (w/ Unobserved Immunity) 

Economic SIR Model 

Low Exposure Steady State 

 

High Exposure Steady State 

 

Economic SIRS Model 

Low Exposure Steady State 

 

High Exposure Steady State  

 

Notes:  Contour lines indicate welfare at the steady state.  Parameter values are given in Table 1. 



Figure 6. Nonlinear Transition Dynamics  

 
(a) Paths from reduction to λ = 0.15 

 

 
(b) Paths from increase hIN = 40 

 

 
(c) Paths from increase to hIN=43 (exposure at upper bound) 

 



Figure 7. Welfare 

 
 


