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1 Introduction

The core is an anchoring concept in game theory going back, in its origins,

to Edgeworth’s contract curve, and the contributions of Debreu and Scarf

(1963) and Aumann (1964). The core remains a central concept in economics

and most recently, in market design; see, for example, Roth (2002). Even in

games with many, but finite numbers of players, however, the core may be

empty. The addition of a single player to a large game with a nonempty core

may result in a game with an empty core. The problem of the emptiness

of the core is especially salient in economies with public goods subject to

congestion and exclusion (local public goods) or in economies with clubs.

Even in pure exchange economies, the nonemptiness of the core can depend

on whether commodities are infinitely divisible. It is, however, a remarkable

fact that, as established by Wooders (1983), in games with many players

satisfying apparently mild conditions approximate cores are nonempty.

In this paper, inspired by the payoff dependent balancedness notion2

of Herings and Predtetchinski (2004) and Bonnisseau and Iehle (2007), we

demonstrate nonemptiness of approximate cores for sequences of games with

arbitrary distributions of players. Recall that much of the literature on ap-

proximate cores of NTU games, beginning with Wooders (1983) and most

recently Kovalenkov and Wooders (2001, 2003) and Wooders (2008), estab-

lishes nonemptiness of approximate cores of large games by showing that

payoffs in the cores of derived “balanced cover” games can be approximated

by feasible payoffs of the original games. Quite surprisingly, a modification of

a key construct from the literature on payoff dependent balancedness, a cor-

respondence from limiting feasible payoffs to distributions of players types3

achieving them, enables us to establish that for large games limiting payoffs

vary continuously with the distribution of player types. With such a corre-

spondence in hand, we can bypass approximation of the original games by

balanced cover games and simply appeal to a fixed point argument rather

than to approximating balanced games.

More specifically, for sequence of games with growing numbers of players

of each of a finite number of types and arbitrary distributions of player types

we introduce a set of limiting equal treatment payoffs, denoted by Γ, and

2Payoff dependent balancedness generalizes the well-known notion of Scarf balancedness

for NTU games.
3In interpretation a distribution of player types reflects a player set á la Aubin (1979),

where players have different participation rates (see also Florenzano (1990)).
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a correspondence from payoffs in Γ to distributions of players types able to

achieve them. A limiting equal treatment payoff is approximately feasible

for some group, possibly large, described by the distribution of player types

in the group. We require essentially three conditions for our results:

1. Superadditivity: Any coalition  of players can realize at least the

payoffs achievable by cooperation only within coalitions in a partition

of ;

2. Small group effectiveness (SGE): All or almost all gains to coalition

formation can be realized by coalitions bounded in size (an apparently

mild condition); and

3. Quasi-transferable utility (QTU): It is possible to make small transfers

from one player to another player, not necessarily at a one-to-one rate;

payoff sets are uniformly bounded away from having level segments

(sometimes called “non-leveledness”).

Our result differs from Wooders (1983) primarily in that we allow se-

quences of games with player sets converging to distributions of player types

with possibly non-rational components, and with distributions having pos-

itive measures of players of each type. This is enabled by the assumptions

of SGE and, in a secondary way, QTU4. Recall that Wooders (2008, Theo-

rem 2) uses these same conditions as employed in this paper to demonstrate

that, for games with a compact metric space of player types, given   0

there is an integer 0() such that all games with more than 0() players

have nonempty equal-treatment -cores. As demonstrated in a concluding

section of this paper, our result is a Corollary of Wooders earlier result; our

contribution is our new proof.

Although both this paper and Predtetchinski (2005) and Allouch and

Predtetchinski (2008) use the payoff dependent balancedness notion, their

approaches differ in many aspects from that of the current paper. First, as

in Wooders (1983), the current paper deals with a sequence games defined in

characteristic form with possibly ever-increasing equal-treatment payoff sets.

Our framework can accommodate a general class of exchange economies in-

cluding ones with (local) public goods and clubs. In contrast, Predtetchinski

4We could have, for example, required convexity instead of QTU. Or we could have

used a less restrictive notion of approximate cores, ignoring small percentages of players

of some types (cf., Wooders 2008, Theorem 1).
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(2005) and Allouch and Predtetchinski (2008) treat a pure exchange econ-

omy, where equal-treatment payoff sets are identical under replications of

the total player set. As a result, in our approach both feasible payoffs and

core concepts are defined approximately, in contrast to Predtetchinski (2005)

and Allouch and Predtetchinski (2008) where feasible payoffs and core con-

cepts are exact. Moreover, the crucial argument in our paper, based on small

group effectiveness, is to show that payoffs achieved in the limit by a distrib-

ution of player types vary continuously with the distribution of player types.

However, in Allouch and Predtetchinski (2008) such a continuity argument

is inferred directly from the upper semi-continuity of utility functions over

feasible allocations. Finally, in our approach we seek a fixed point for an arbi-

trary limiting distribution of player types, (both rational and non-rational),

unlike Allouch and Predtetchinski (2008) where the distribution of players

type is fixed and rational.

The paper is organized as follows. In Section 2, we present the basic

features of NTU games. In Section 3, we present our main result on the non-

emptiness of approximate cores of a sequence of games with a finite number

of types of players.

2 NTU games

We follow Scarf’s (1967) classic paper in our definition of a game. An NTU

game (a non-transferable utility game in coalitional function form) is a pair

( ) where  is a finite set (the set of players) and  is a set-valued

function that assigns to each nonempty subset  of  (a group or coalition)

a nonempty subset  () of R , called a payoff possibilities set or simply a

payoff set, with the following properties:

 () is a closed subset of R ;

0 ∈  ();

 () is comprehensive (that is,  ∈  () if and only if there is some

 ∈  () ∩ (R
+ × R\) such that  ≥ ).

 () ∩ (R
+ × 0\) is bounded above.

A payoff vector for a game ( ) is a vector  in R . A payoff vector  is

feasible for if  ∈  (). Let  be a payoff vector. We assume that, if there

exists a partition {} of  into groups with the property that  ∈  ()

for each , then  ∈  () (superadditivity). This implies that any payoff

vector that can be realized by groups in a partition of the total player set is
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feasible for the entire game.

A payoff vector  is in the -core of a game (  ) if it is feasible for 

and if, for every subset  of  ,  + 1 ∈ int  ().5 Informally, a feasible
payoff vector  is in the -core if no set of players can improve upon  by

more than  for each player in the set.

For NTU games our definition of substitutes requires that if  and  are

substitutes then they make the same contribution to any group they might

join and, if they both belong to one group and a payoff vector  is feasible

for the group, then 0 is also feasible for the group, where 0 is derived from
 by interchanging the payoffs of  and .6 More formally, consider an NTU

game ( ). Two players   ∈  are substitutes if

1. For any  ⊂  such that   ∈  if  ∈  (∪{}) then 0 ∈  (∪{})
where 0 is defined by 0 =  and 0 =  for all  ∈ .

2. For any  ⊂  such that   ∈  if  ∈  () then 0 ∈  () where 0

is defined by 0 =  , 
0
 =  and 0 =  for all  ∈ ,  6=  .

3 The limiting utility possibilities set for NTU

games with a finite number of types of play-

ers

We investigate sequences of games with finite sets of player types  = 1     

A typical player set is denoted by

 = {( ) |  = 1      and  = 1     }

and the profile of  , denoted by pro() defined as follows:

pro() = (pro1()     pro ())

where

pro() = |{ : ( ) ∈ }| = 

5It would be possible to include the requirement that  is Pareto-optimal in the sense

that there does not exist another feasible payoff  for  with  ≥ ,  6= . We do not

do so, however, since it does not seem consistent with the notion of an approximate core.
6The notion of substitute players in NTU games is introduced in Wooders (1983).
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The set of players { : ( ) ∈ } consists of players of type .
We assume that there is a correspondence  mapping all player sets 

into  . With every set of players  we associate an NTU game ( ). In

the game ( ) we assume that all players of the same type are substitutes.

Let  ∈ R, 0    1 be given. The correspondence  satisfies the -

QTU property if it is possible to decrease the payoff of one player by  while

increasing the payoff to another player by .7 This ensures that payoff

sets are uniformly bounded away from being level.8 That is,  satisfies the

-QTU property if, for any set of players  , for any  ∈  (), given any

  0 it holds that 0 ∈  () where, for some (0 0) (00 00) ∈ 

0 =

⎧⎨⎩  if ( ) 6= (0 0) (00 00)
 −  if ( ) = (0 0)
 +  if ( ) = (00 00)



For each player set , we define the subset of payoff vectors that represent

equal treatment payoffs for the game ( ) :

 etp()
def
= { ∈ R | Π

=1(Πv)
 ∈  ()}

If  ∈  etp() we say that  represents an (equal treatment) payoff in  ().

Note that since it always contains the 0 payoff the set of equal treatment

payoffs is non-empty. When the meaning is clear, we will simply say that 

is an equal treatment payoff for the game.

The correspondence  satisfies small group effectiveness if for every  

0 there is a positive integer () such that each group  has a partition

P() = ()

=1 with the properties that || ≤ () for each , and

 etp() ⊂
\
=1

 etp() + 1

7It would suffice to make require -QTU’ness only for payoffs with the equal treatment

property, but this would require more complex notation.
8Non-levelness of payoff sets has played a role in the theory of large games since Wooders

(1983). It has also appeared in a number of economic models, for example, Mas-Colell

(1977) on private goods exchange economies and Wooders (1980) on economies with clubs

or local public goods. Uniform non-levelness, as in this paper, appears in Kaneko and

Wooders (1994) and in Wooders (2008), where it is called compensation.
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where 1 = (1     1) ∈ R  This property ensures that almost all (within ,

for  arbitrarily small) gains to group formation can be realized by a partition

of the total player set into groups uniformly bounded in size (given ).9

During the proof of the following Theorem, we will use the following

notation: Denote by |·| the sum-metric in R ; that is, for  ∈ R we have

|| =P

=1 || Let ∆ denote the simplex in R : ∆={ ∈ R
+ | || = 1} and

int∆ denote its interior. For each point  in ∆ let supp() denote the set

{ ∈  |   0}, called the support of .

THEOREM. Assume  satisfies small group effectiveness and the -QTU

property. Let {(  )} be a sequence of games such that ||→∞ and

lim
→+∞

pro()

|| = ∗ ∈ int∆

Then there exists ∗ ∈ R satisfying the property: for every   0 there is

an integer  such that for each  ≥ , (
∗− 1) is in the -core of (  ).

Proof of the Theorem.

Define a subset Γ of R as follows:

Γ
def
=

⎧⎨⎩ ∈ R

¯̄̄̄
¯

There exists  ∈ ∆ ∩Q such that

for each   0 there exists a group  satisfying
pro()

|| =  and ( − 1) ∈  etp()

⎫⎬⎭ 

The set Γ represents equal treatment payoffs that are feasible or approxi-

mately feasible for some group, possibly large, described by the fixed dis-

tribution of player types in the group. When ( − 1) ∈  etp() we say

that  approximately achieves . Note that given  ∈ Γ it may be that there

does not exist a group  that can fully achieve , that is, there need not

exist a group  such that  ∈  etp(). Note also that if ( − 1) ∈  etp()

then ( − 1) ∈  etp(0) for every group 0 containing a positive integer
multiple of players of each type as , that is, for every group  such that

pro(0) =  pro() for any positive integer .
10

9This property, for NTU games, originates in Wooders (2008).
10This is an easy consequence of superadditivity. See Wooders (1983) for details.
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Given  ∈ Γ, there are multiple groups with different distributions that

can all approximately achieve . Thus, we define the correspondence Π : Γ⇒
∆ as follows:

Π()
def
=

⎧⎨⎩ ∈ ∆ ∩Q

¯̄̄̄
¯

For each   0

there exists a group  satisfying
pro()

|| =  and ( − 1) ∈  etp()

⎫⎬⎭ 

The set Π() consists of those distributions  of player types that ap-

proximately support  those distributions of player types that are required

to exist in the definition of Γ. Note that the nonemptiness of the set Π()

follows immediately from the definitions of Γ and Π.

The graph of the correspondence Π is denoted by (Π) and defined by

(Π) = {( ) ∈ Γ× (∆ ∩Q ) |  ∈ Π()}

Obviously, given that the domain of the graph (Π) is Γ× (∆ ∩Q ), there

are some converging sequences {( )} with each element in the sequence
contained in the graph but the limits of the sequences are not. The following

proposition is crucial to be able to use a fixed point argument, since it will

allow us to show that the closure of the graph of (Π) equals the graph of

the closure of the correspondence Π.

Proposition 1. Let ( ) ∈ R × ∆. Let {( )} be a sequence in
Γ× (∆ ∩Q ) converging to ( ) such that  ∈ Π() for each . That is,

( ) ∈ (Π) for each .

(1).  ∈ cl(Π()).

(2). For any sequence of groups {} satisfying lim→+∞
pro()

|| =  (with

possibly
pro()

|| 6= ) and || → ∞, for every   0 there exists 

such that for each  ≥ , it holds that ( − 1) ∈  etp()

(3). If  ∈ ∆ there exists  ∈ ∗+ such that  ≤  for each  =

1     

Before the proof of Proposition 1 below, we provide an example that

illustrates some of the issues.

Proof of Proposition 1 .
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(1). Let us fix   0. Since  ∈ Π(), there exists a group 
 such that

pro(
 )

|
 |

=  and ( − 

3
1) ∈  etp(

 )

If the sequence |
 | is bounded, then passing to a subsequence if necessary,

we may assume that there is a group  such that (
 ) = () for each

. Then, obviously it holds that

pro()

|| =  and ( − 

3
1) ∈  etp()

Thus,  ∈ Π()

If the sequence |
 | is unbounded then, since  satisfies small group

effectiveness, there is an integer () and a partition P(
 ) = (

)
()

=1 of


 such that

 etp(
 ) ⊂

()\
=1

 etp(
) +



3
1

with the property |
| ≤ (), for each 

 ∈ P(
 ). Since there is only a

finite number of possible profiles for any group  satisfying || ≤ () we can

define () as the cardinality of these profiles and let 1          ()

denote these profiles. Thus, one can write

pro(
 ) =

()X
=1




for some non-negative real numbers 
. Since the sequence {} converges

to , without loss of generality we can assume that (

| |) converges to a real

number  for each  = 1    (). Let

M∗
 = { |   0} and

P∗(
 )

def
= {

 ∈ P(
 ) | there exists  ∈M∗

 such that pro(

) = }

SinceM∗
 is finite there exists 

∗ such that for all  ≥ ∗ and  ∈M∗


we have 
  0. Thus, for every coalition  ∈ P∗(

 ) it holds that for all

 ≥ ∗

( − 

3
1) ∈  etp() +



3
1

9



Vanderbilt University Department of Economics Working Papers, VUECON-14-00013

Rearranging terms, it follows that

( − 2
3
1) ∈  etp()

Since  etp() is a closed set it holds that

( − 2
3
1) ∈  etp() (1)

Let

∗


def
=

[


∈P∗( )




Then, by superadditivity, it holds that

( − 2
3
1) ∈  etp(∗

 )

Given that

lim
→∞

|
 \ ∗

 |
|

 |
= 0 (2)

Therefore, by the -QTU property and the fact that for a large enough ,

one can “subsidize” the reminders (
 \ ∗

 ) so that

( − 1) ∈  etp(
 )

That is, we can make small transfers from the set of players in ∗
 to the

players in 
 \∗

 so that no group of players can improve on − by more

then .11 Hence,
pro(

 )

|
 |

=  ∈ Π()

which implies that  ∈ cl(Π())
(2). Consider an arbitrary sequence of groups {} satisfying lim→+∞

pro()

|| =

 (with possibly
pro()

|| 6= ) and || → ∞. Then taking  (and other

11This idea has been used in a number of papers so we spare the reader the details; see,

for example, Wooders (2008) and Allouch and Wooders (2008). As a simple illustration,

suppose that any two players can earn $100 and that all other groups can only achieve

the payoffs attainable by splitting into two-person groups. Suppose that there is a large,

but odd, number of players, say 1,000,001. Then it is obvious that by imposing a small

"tax" on 1,000,000,players and subsidize one player so that no player has a strong (greater

than ) incentive for try to form am improving coalition.

10
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definitions) as given in the proof of (1) above, let 
 denote the projection

of  on the convex cone C spanned by ()∈M∗

(by the definition of the

projection on a convex set 
 exists and is unique). Thus, one can write

 = 
 + \

  where 

 ∈ C

Since

lim
→+∞

pro()

|| =  = lim
→∞

pro(∗
 )

|∗
 | ∈ C

it follows that

lim
→∞

| \
 |

|| = 0

Note that one can write pro(
 ) =

P
∈M∗


 for some real numbers

 ∈ R+ Let ∗
 =

P
∈M∗


[] where [] denotes the integer part of

 Then,

lim
→∞

| \∗
 |

|| = lim
→∞

| \
 |+ |

 \∗
 |

|| ≤ 0 + lim
→∞

|M∗
|

|| () = 0

Moreover, given that from (1)

( − 2
3
1) ∈  etp()

if pro() =  for some  ∈M∗
 it follows that for a large enough 

( − 2
3
1) ∈  etp(∗

 )

Therefore, by the -QTU property, one could subsidize the reminders ( \
∗

 ) so that

( − 1) ∈  etp()

3. Given  ∈ int∆ define

 = max max
{0∈ etp()|∈P∗( ) ∈}

(0 +
2

3
)

Because  ∈ int∆ for each type  there exists  ∈ P∗(
 ) such that

 ∈ , it holds that  ∈ R+, that is,  is finite The remainder of the proof

follows from the fact that

( − 2
3
1) ∈  etp(∗

 ) =  etp(
[



∈P∗( )


)

11
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¥
Now, we define the correspondence eΠ : Γ⇒ ∆ as follows: for each  ∈ Γ

eΠ() def= cl(Π())

Proposition 2. The graph of eΠ is closed.
Proof of Proposition 2. Let (eΠ) denote the graph of the correspondence eΠ.
Let {( )} be a sequence of points in (eΠ) converging to a point ( ) in
R ×∆. For each , since  ∈ eΠ() = cl(Π()) it holds that there exists
 ∈ Π() such that | − | ≤ 1


. Hence  converges to . From (1). of

Proposition 1 it holds that  ∈ eΠ() = cl(Π()) and hence ( ) belongs to
(eΠ)¥
Proposition 3. For each  ∈ Γ the set eΠ() is nonempty and convex.
Proof of Proposition 3. Let  ∈ Γ Obviously, the set eΠ() is nonempty since
Π() is nonempty. Moreover, from superadditivity it holds that

coQ(Π()) = Π()12

Since coQ(Π()) is dense in co(Π()) it holds that

clco(Π()) = cl(coQ(Π())) = cl(Π()) = eΠ()
Thus, eΠ() is convex.¥
The set Γ is a nonempty, closed, and comprehensive from below subset of

R . Note that the set Γ is a proper set of R . Moreover, it holds from our

assumptions that 0 ∈ intΓ.
Define  as the set

 = Γ ∩ [−∞ ∗ + 1]
 

where ∗ is defined as in (3). of Proposition 1. A point  ∈  belongs to

the boundary of  if and only if either  ∈ Γ or  = ∗ + 1 for some

 = 1      .

12The set coQ() is the set of all convex combinations of  with rational coefficients.
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Proposition 4. There is a homeomorphism  from the space ∆ to the space

 ∩R
+ such that 

() = 0 whenever  ∈ ∆ and  ∈  \ supp().
Proof of Proposition 4. Let  ∈ ∆ be given. Let  be the ray emanating

from the point 0 = (0     0) in the direction of . Thus, every point  of 

is of the form  =  for some non-negative real number . It is clear that,

since  is closed, comprehensive from below, and bounded from above, 

intersects the boundary of  at exactly one point.

Define the map  from∆ to  ∩R
+ by letting () be the unique point

in the intersection of the ray  and the set  . We now demonstrate that

 has an inverse. Let  denote the map from  ∩ R
+ to ∆ given by the

equation

() =


|| 

The map  is well defined since the point 0 lies in the interior of It is easy

to see that  is indeed the inverse of , that is,  ◦  and  ◦  are equal to
the respective identity maps.

Clearly,  is a continuous map. Furthermore, because its domain is com-

pact and the codomain is Hausdorff, it carries closed sets to closed sets.

Therefore,  is also a continuous map. This proves that  is a homeomor-

phism.

The rest of the proof relies on a version of the well-known Fan’s coinci-

dence theorem, as stated below. Given a nonempty and convex subset  of

R and a point  of  , let ( ) = { ∈ R | ( − 0)> ≥ 0 for each 0 ∈
 } denote the normal cone of the set  at the point . A zero point of a

correspondence Φ :  ⇒ R is a point  of  such that Φ() contains the

zero.

Theorem. (Fan, 1972). Let  be a nonempty compact and convex subset

of R . Let Φ :  ⇒ R be a correspondence with nonempty convex values

having a compact graph. Suppose that for each  ∈  and for each  ∈
( ) there exists a  ∈ Φ() such that > ≤ 0. Then, Φ has a zero

point.

Proposition 5. There exists ∗ ∈ Γ such that ∗ ∈ eΠ(∗).
Proof of Proposition 5. Define the correspondence Φ : ∆ ⇒ R by letting

Φ() = eΠ(()) − {∗} for each  ∈ ∆. Clearly, the correspondence Φ has

nonempty and convex values. Its graph is closed, because  is continuous

and the graph of eΠ is closed. Since Φ maps a compact set ∆ into a compact

set ∆− {∗}, its graph is, in fact, a compact set.

13
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We now verify the boundary condition of Fan’s coincidence theorem. Let

 ∈ ∆ be given. Let  denote the vector () and let  denote the (possibly

empty) set  \ supp(). Then, the normal cone of ∆ at  is the set

(∆ ) =
©
 ∈ R

¯̄
 = 1+

P
∈ e  ∈ R  ≤ 0

ª


where (e1     e ) is the standard canonical basis of R . Let  ∈ (∆ ) be

given. If  belongs to the relative interior of ∆ so that supp() =  , then

every (∈ (∆ )) is proportional to the vector 1. In this case the equality

> = 0 holds for each  ∈ Φ().

Consider now the case where  lies on the relative boundary of ∆, so that

the set  is nonempty. Then,  = () = 0 for each  ∈ . But this

implies that the set Π() (and consequently eΠ() = cl(Π())) contains the
entire face ∆ = { ∈ ∆ |  = 0 for each  ∈ \} of the simplex ∆. In

particular, eΠ() contains a ∗ of ∆ defined as follows

∗ =

⎧⎪⎨⎪⎩
∗ = ∗ +


∈\ ∗
|\| if  ∈ 

0 otherwise.

The vector  = ∗ − ∗ is therefore an element of Φ(). Since 0 ≤  for

each  ∈ , the inequality > ≤ 0 holds for each  ∈ (∆ ). By Fan’s

coincidence theorem, the correspondence Φ has a zero point. Letting ∗ be
equal to (∗), we see that ∗ ∈  and ∗ ∈ eΠ(∗). Since ∗ is the per-

capita bound it follows that ∗  ∗ + 1 for each  = 1      and thus

∗ ∈ Γ

Finally, Proposition 5, together with (2). in Proposition 1, implies that

for every   0 there exists  such that for each  ≥ , (
∗ − 1) is in the

-core of (  ).¥

4 A Corollary

To further relate our work to Wooders (2008) we provide the following Corol-

lary. Using our notation, following is a version of Wooders (2008, Theorem

2).13

13Wooders (2008) allows a compact metric space of player atributes, so our mdel is a

special case.
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Wooders (2008, Theorem 2). Assume  satisfies small group effectiveness

and -QTU. Given   0 there is an integer 0() such that any game ( )

with | |  0 has a non-empty (equal treatment) -core.

Corollary. Assume  satisfies small group effectiveness and -QTU. Then

for any sequence of games such that ||→∞ and

lim
→+∞

pro()

|| = ∗ (3)

there exists ∗ ∈ R satisfying the property: for every   0 there exists 
such that for each  ≥ , (

∗ − 1) is in the -core of (  ).

Proof of the Corollary. Let {(  )} be a sequence satisfying (3). From
Wooders (2008), for each term (  ) in the sequence with ||  0(


3
)

the game (  ) has a non-empty 
3
-core (and contains an equal-treatment

payoff). Let  
3
be sufficiently large so that for every  ≥  it holds that

||  0(

3
). Let  ∈ R be in the 

3
-core of (  ) Without loss

of generality we can assume that lim→+∞  exists and equals ∗. Since
lim→+∞  = ∗ there is an integer 1(


3
) ≥ 0(


3
) sufficiently large so that

for all   1(

3
) it holds that| −∗ |  

3
. This implies that  −∗ ≥ 0

so (∗ − 1) is feasible for all sufficiently large games (  ). Since  is in

the 
3
-core for all  sufficiently large it follows that (∗ − 1) is in the -core

of (  ). ¥
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