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We restrict our attention to the class of superadditive and essential games. A game is super-

additive if, for any pair of disjoint coalitions � and � , �(�) + �(�) ≤ �(� ∪ �). In par-

ticular,
∑

�∈� �(�) ≤ �(�). If the latter inequality holds with a strict inequality, the game

is said to be essential. Convex games (Shapley 1971) are games for which the inequality

�(�) + �(�) ≤ �(� ∪ �) + �(� ∩ �) holds for all coalitions � and � . Convexity implies su-

peradditivity. A game is convex if (and only if) marginal contributions are increasing with

coalition size. Under superadditivity, the formation of the grand coalition is desirable, and the

question then concerns the allocation of the resulting value among players. Ensuring that no

player ends up with an amount smaller than his stand-alone worth defines the imputation set:

� (�, �) = {� ∈ R
� | �(�) = �(�), �� ≥ �(�) � �� ��� � ∈ �}.

Any essential game (�, �) can be transformed into a normalized game (�, �̄) in which the

values of singletons are equal to 0 and the value of the grand coalition is equal to 1:

�̄(�) =
�(�) −

∑

�∈� �(�)

�(�) −
∑

�∈� �(�)
.

Superadditivity and convexity are preserved through normalization. In what follows, we limit

to superadditive and essential games involving three players. Its normalized version is then

defined by three numbers: � = �̄(1, 2), � = �̄(1, 3) and � = �̄(2, 3). Without loss of generality,

we assume that � ≤ � ≤ �. The inequalities 0 ≤ � ≤ � ≤ � ≤ 1 then ensure superadditivity

and � = {(�, �, �) ∈ R
3 | 0 ≤ � ≤ � ≤ � ≤ 1} is the set of admissible parameters. Convexity

requires, moreover, that � + � ≤ 1, � + � ≤ 1 and � + � ≤ 1. Only the latter is actually active,

the other two resulting from superadditivity. As a result, games whose parameter � is smaller

than 0.5 are convex: � + � ≤ 0.5 + 0.5 = 1.

Harsanyi (1959) defines the concept of dividend associated with each coalition. They are defined

recursively, starting with ��
∅
= 0, as follows:

��
� = �(�) −

︁

�⊊�
��
� . (1)

The worth of a coalition can then be written as �(�) =
∑

�⊂� ��
�

for all � ⊂ � .

Positive games are games whose dividends are non-negative. Positive games are convex.3

The dividends that are associated with a normalized 3-player game (�, �̄) are given by

��̄ = (0, 0, 0|�, �, � |1 − � − � − �). Hence, positivity holds if � + � + � ≤ 1.

3. The Shapley value and nucleolus of a 3-player game

The Shapley value (Shapley 1953) and the nucleolus (Schmeidler 1969) are two prominent

allocation rules. Harsanyi (1959) shows that the Shapley value allocates to each player the sum

of the per capita dividends of the coalitions of which he is a member:

��� (�, �) =
︁

�⊂�: �∈�

1

�
��
� .

Given (1), the Shapley value of a 3-player normalized game (�, �̄) is then easily computed:

��1(�, �̄) =
� + �

2
+

1 − � − � − �

3
=

� + �

6
+

1 − �

3
,

��2(�, �̄) =
� + �

2
+

1 − � − � − �

3
=

� + �

6
+

1 − �

3
,

��3(�, �̄) =
� + �

2
+

1 − � − � − �

3
=

� + �

6
+

1 − �

3
.

(2)

3 Moreover, solution concepts tend to converge on positive games. For details, see Dehez (2017).



The core extends the idea of imputations from individual players to coalitions:

� (�, �) = {� ∈ R
� | �(�) = �(�) and �(�) ≥ �(�) for all � ⊂ �}.

It was introduced by Gillies (1953) and established as a solution concept by Shapley (1955).

Bondareva (1963) and Shapley (1967) have independently given necessary and sufficient con-

ditions under which the core of a game is nonempty. Games with nonempty core are called

balanced. For a 3-player superadditive game, these conditions reduce to a single additional

condition: �(1, 2) + �(1, 3) + �(2, 3) ≤ 2�(1, 2, 3) or � + � + � ≤ 2 in the normalized version.4

The nucleolus is the allocation that results from the lexicographic minimization of the excesses

defined as the difference between what a coalition is worth and what it obtains. It shares with

the Shapley value three important properties: efficiency (the worth of the grand coalition is

exactly allocated), symmetry (players who contribute equally are allocated identical amounts)

and null player (a player that does not contribute gets a zero amount). The Shapley value does

not necessarily define a core allocation for games whose core is nonempty while the nucleolus

selects a core allocation. Dehez and Pacini (2024) show that �� (�, �̄) ∈ � (�, �̄) if and only if

� + � ≤ 4(1 − �).

The core, the Shapley value and the nucleolus are covariant solution concepts. Consequently,

when dealing with normalized games, the inverse transformation can be applied to the resulting

allocations to generate the allocations within the original game:

� ∈ � (�, �̄) ⇔ � ∈ � (�, �) where �� = ��

(

�(�) −
︁

�∈�
�(�)

)

+ �(�). (3)

Computing the nucleolus is not straightforward. There are algorithms (see Kohlberg 1971) and

software packages.5 Legros (1981) provides a formula for 3-player games with five cases that

correspond to five subsets which form a partition (up to the boundaries) of the parameter space:

�1 = {(�, �, �) ∈ � | � ≤ 1/3},

�2 = {(�, �, �) ∈ � | 1/3 ≤ � ≤ 1 − 2�},

�3 = {(�, �, �) ∈ � | 1 − 2� ≤ � ≤ 1 − 2�},

�4 = {(�, �, �) ∈ � | � ≥ 1 − 2� and � ≥ 2(� + �) − 1},

�5 = {(�, �, �) ∈ � | � ≤ 2(� + �) − 1}.

(4)

In �5, the inequality � ≥ 1 − 2� does not appear because it is redundant. In �1 and in �2, the

inequality � + � + � ≤ 1 holds and, consequently, all games in these two regions are positive

and thereby convex. As already pointed out, all games are convex whenever � ≤ 0.5 and their

Shapley value belongs to the core: the condition � + � ≤ 4(1 − �) is satisfied. Games in �1

and �4 have a nonempty core while games in �5 are unbalanced. In the case where � = 1,

� = �4 ∪ �5, the other regions correspond to boundaries. The following figures illustrate the

partition in the (�, �)-plane for two values of �, referring to the regions defined in (4).

In Figure 1, � = 0.4. �1 is empty as it is defined for � ≤ 1/3. �2-�5 form a partition of the set of

feasible games. Since � + � ≤ 1, all games are convex and thereby balanced. They are positive

below the dashed line � + � = 1− � = 0.6. The Shapley value belongs to the core for all games

since the relation � + � ≤ 4(1 − �) is always satisfied.

In Figure 2, � = 0.8. �1 is empty as in the previous case. Now games are convex below the

horizontal dashed line � = 1−� = 0.2 and are positive below the dashed line �+� = 1−� = 0.2.

4 Dehez and Pacini (2024, 2025) show that two third of the 3-player convex games are positive and one fifth of

the balanced games are positive.
5 The website www.tuglabweb.uvigo.es by M.Á. Mirás Calvo and E. Sánchez Rodrı́guez (University of Vigo),

the MATLAB and Mathematica packages by H. Meinhardt (Karlsruhe Institute of Technology).



Balanced games are located below the dashed line � + � = 2 − � = 1.2. Games whose Shapley

value belongs to the core are located below the dashed line � + � = 4(1 − �) = 0.8.

In the particular case where � = 1/3, �1 and �2 coincide and are equal to the set of admissible

games given by the triangle with vertices (0, 0) − (0, 1/3) − (1/3, 1/3). �3 is the upper boundary

of this triangle and the other two regions collapse to the point (1/3, 1/3, 1/3). When � < 1/3, only

region �1 survives and �� = ∅, � = 2, . . . , 5.
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Following Legros (1981), the nucleolus of a 3-player normalized game is given by the following

Table. It is easily verified that the nucleolus is continuous across regions.

�1 �2 �3

�1
1/3 1/3 1/3

�2
1−�

2
1+�

4
1+�

4

�3
1−�

2
1−�

2
�+�

2

�4
1−�

2
1+�−2(�−�)

4
1+�+2(�−�)

4

�5
1+�+�−2�

3
1+�+�−2�

3
1+�+�−2�

3

4. Coincidence between the Shapley value and the nucleolus

The following proposition confirms and refines the results of Yokote et al. (2017), with a simple

proof.

Proposition 1. Given the inequalities that characterize the different cases, the Shapley value

and the nucleolus of a 3-player normalized game (�, �̄) coincide if and only if:

� = � = � �� �1 ��� �5

� + � + � = 1 �� �2, �3 ��� �4.

Proof. The different cases are considered separately, referring to (2) for the Shapley value and

to the Table for the nucleolus.

�1: The equations ��1(�, �̄) = ��2(�, �̄) = ��3(�, �̄) = 1/3 imply � = � = �. If � = � = �,

the game is symmetric and the Shapley value coincides with the equal division.

�2: The equation ���1(�, �̄) = ��1(�, �̄) reads: �+�
2

+ 1−�−�−�
3

=
1−�

2
. It is equivalent to

� + � + � = 1 which, together with the condition � ≤ 1 − 2� that characterizes case 2,

implies � = �. Consequently, ���� (�, �̄) = ��� (�, �̄) for � = 2, 3.

�3: Like in case 2, the equation ���1(�, �̄) = ��1(�, �̄) is equivalent to � + � + � = 1. The

two other equations ���� (�, �̄) = ��� (�, �̄) for � = 2, 3 are equivalent to � + � + � = 1.

�4: Like in case 2, the equation ���1(�, �̄) = ��1(�, �̄) is equivalent to � + � + � = 1

which, together with the condition � ≥ 1 − 2� that characterizes case 4, implies � = �.

Consequently, ���� (�, �̄) = ��� (�, �̄) for � = 2, 3.

�5: The equation ��� (�, �̄) = �� (�, �̄) can be written as:

1 + � + � − 2�

3
=

� + �

6
+

1 − �

3
⇔ � + � = 2�

1 + � + � − 2�

3
=

� + �

6
+

1 − �

3
⇔ � + � = 2�

1 + � + � − 2�

3
=

� + �

6
+

1 − �

3
⇔ � + � = 2�

They are simultaneously satisfied if and only if � = � = �. □

Referring to the figures, the subsets of values of � and � for which coincidence occurs are

the thick line in �3 and the heavy dot in �5: coincidence occurs on a subset of measure zero.

This is no surprise. As previously noted, the Shapley value and the nucleolus both satisfy the

three axioms of efficiency, symmetry, and the null player. Marginalism is the fourth axiom that



together with the first three, defines the Shapley value. It retains the rules that allocate to each

player an amount that only depends on his marginal contributions, independently of the way

the other players contribute. This independence axiom is not verified by the nucleolus that is

concerned with minimizing the maximum dissatisfaction among coalitions.

Remark 1. The condition � + � + � = 1 is satisfied in �3 and includes the situation where

� = � = � = 1/3. It is the boundary of the set of positive games, characterized by a dividend of

the grand coalition equal to zero.

Remark 2. The condition � = � = � implies symmetry of the normalized game (�, �̄).

Remark 3. The core of a 1-convex game (Driessen (1985), Dehez (2024)) is a regular simplex

whose center of gravity is the nucleolus. In the case of a game that is both convex and 1-convex,

the nucleolus and the Shapley value coincide. Within a 3-player normalized game, only one

game fits these conditions, namely the symmetric game defined by � = � = � = 1/2.

5. Differential treatment of players in the Shapley value and the nucleolus

Looking at how players are being treated within the two allocation rules, we observe that, in

the normalized game, they are ordered in terms of their marginal contributions: (�, �, 1 − �) ≤

(�, �, 1− �) ≤ (�, �, 1− �). The Shapley value allocates to each player an amount that depends

exclusively on his marginal contribution. Consequently, what players obtain must follow the

same order. The nucleolus, as given by the Table, shares that ordering in all cases. This is

immediate in cases 1, 2 and 5. It is easily verified that it is so as well in the other two cases,

using the inequalities that qualify them.

How are the players being comparatively treated by the Shapley value and the nucleolus? We

first consider the weakest and the strongest players, players 1 and 3.

Proposition 2. In �1, �2 and for the positive games in �3, player 1 is better treated by the

nucleolus while player 3 is better treated by the Shapley value. The reverse applies in �4, �5

and for the games in �3 that are not positive.

Proof. We refer to the nucleolus defined by the Table and to the Shapley value defined by (2).

Let us define Δ� = ��� (�, �̄) − ���� (�, �̄). The sign of Δ1 is given by the sign of � + � − 2�

in �1 and by the sign of � + � + � − 1 in �2. Because � ≤ � ≤ � ≤ 1 and � + � + � ≤ 1, both

are non-positive: the nucleolus treats better the first player in �1 and �2.

The sign of Δ3 is given by the sign of � + � − 2� in �1 and by the sign of 1 + 2� − 4� − � in �2.

Because � ≤ � ≤ � ≤ 1 and � ≤ 1 − 2�, both are non-negative: the Shapley value treats better

the last player in �1 and �2.

The sign of Δ1 is given by the sign of � + � + � − 1 in �3. Then the first player is better treated

by the nucleolus when the game is positive (� + � + � ≤ 1), by the Shapley value otherwise.

The sign of Δ3 is given by the sign of 1 − � − � − � in �3; the third player is better treated by

the Shapley value when the game is positive and by the nucleolus otherwise.

The sign of Δ1 is given by the sign of � + � + � − 1 in �4 and by the sign of 2� − � − � in �5.

Because � ≤ � ≤ � ≤ 1 and � + � + � ≥ 1, both are non-negative: the Shapley value treats

better the first player in �4 and �5.

The sign of Δ3 is given by the sign of 1 + 2� − 4� − � in �4 and by the sign of 2� − � − � in �5.

Because � ≤ � ≤ � ≤ 1 and � ≥ 1 − 2� both are non-positive: the nucleolus treats better the

last player in �4 and �5. □

Let us now consider the middle player.



Proposition 3. Player 2 is better treated by the Shapley value in �1 if 2� < � + � and by the

nucleolus if the reverse inequality holds. In �5, the argument is reversed: player 2 is better

treated by the nucleolus if 2� < � + �. In �3, the treatment of player 2 coincides with the

treatment of player 1.

Proof. The sign of Δ2 is given by the sign of � + � − 2� in �1 and by the sign of 2� − � − � in

�5. The sign of Δ2 is given by the sign of � + � + � − 1 in �3. □

Nothing precise can be said about the treatment of player 2 in the subsets �2 and �4. Simulations

reveal that in �2, the second player is favored by the Shapley value approximately 1/2 of the

cases. In �4, he is favored by the Shapley value in about 2/3 of the cases.

6. Applications

We illustrate our results with two classes of games, airport and bidder-collusion games, for

which coincidence has been studied by Yokote et al. (2017). We show that coincidence never

occurs in proper airport games while it occurs in bidder games when the first two players have

the same evaluations. We also show how the two solutions differently treat players.

6.1. Airport games

Airport games form a class of cost-sharing games introduced by Littlechild and Owen (1973),

for which Littlechild (1974) and Sönmez (1993) give recursive formulas for the nucleolus.

The airport game associated to the cost parameters 0 < �1 ≤ �2 ≤ . . . ≤ �� is given by

�(�) = ����∈� �� . In what follows, we will consider the associated surplus-sharing game (�, �)

defined by �(�) = Σ�∈��� − �(�). The 3-player normalized game (�, �̄) is then defined by the

following parameters:

� = � =
�1

�1 + �2

and � =
�2

�1 + �2

.

The parameters (�, �, �) belong to P. They satisfy the inequalities 1 < � + � + � ≤ 3/2 < 2

and � + � = 1, confirming that the surplus-sharing game is convex and thereby balanced. It is

however not positive. Moreover, � ≥ 1/2. The inequality � ≥ 1 − 2� being satisfied, we fall in

�4 if 2�2 ≥ 3�1 or in �5 if the reverse inequality holds. In �4, using (3), the nucleolus of the

normalized and surplus-sharing games are given by:

���1(�, �̄) =
�1

2(�1 + �2)
→ ���1(�, �) =

�1

2

���2(�, �̄) = ���3(�, �̄) =
�1 + 2�2

4(�1 + �2)
→ ���2(�, �) = ���3(�, �) =

�1

4
+
�2

2

In �5, they are given by:

���1(�, �̄) =
3�1 − �2

3(�1 + �2)
→ ���1(�, �) = �1 −

�2

3

���2(�, �̄) = ���3(�, �̄) =
2�2

3(�1 + �2)
→ ���2(�, �) = ���3(�, �) =

2�2

3

Following (2), the Shapley value is given by �� (�, �) =
(

2�1

3
,

�1

6
+ �2

2
,

�1

6
+ �2

2

)

.

By convexity, it defines a core allocation. Proposition 1 is confirmed. In the subset �4, given

that �1 > 0, coincidence between the Shapley value and the nucleolus never occurs simply

because � + � + � > 1. In the subset �5, coincidence occurs if and only if �1 = �2 and both

solutions coincide with equal division. In that case, the game is equivalent to a 2-player airport

game. Referring to Proposition 2 and Proposition 3, we observe that in both regions the first



player prefers the allocation proposed by the Shapley value while the other two players prefer

the allocation proposed by the nucleolus.

6.2. Bidder collusion game

English auctions are ascending auctions. Graham et al. (1990) have considered a situation

where bidders’ valuations are common knowledge and given by 0 < �1 ≤ �2 ≤ ... ≤ ��. If

a coalition � forms, it behaves as a single bidder: in the non-cooperative game opposing � to

� \ �, remaining active until the bidding reaches ����∈��� is the dominant strategy for � and

remaining active until the bidding reaches ����∈�\��� is the dominant strategy for � \ �. The

resulting payoff for coalition � is then given by:

�(�) =

{

�� if � = �,

�� − ����∉� �� if � ≠ �.

In the case of three players, the game is given by � = (0, 0, �3− �2 |0, �3 − �2, �3 − �1 | �3). The

associated normalized game is then defined by � = � = 0 and � = 1 − �1/�2. The inequality

� + � + � < 1 being satisfied, the game is positive and thereby convex: only the subsets �1 and

�2 are concerned, depending on the ratio �1/�2. If �1/�2 ≥ 2/3, the nucleolus is given by the

equal division or, in terms of the original game, using (3):

���1(�, �) = ���2(�, �) =
�2

3
,

���3(�, �) = �3 −
2

3
�2.

If instead �1/�2 ≤ 2/3, they are given by:

���1(�, �̄) =
�1

2�2

���2(�, �̄) = ���3(�, �̄) =
1

4

(

2 −
�1

�2

) →

���1(�, �) =
�1

2
,

���2(�, �) =
�2

2
−
�1

4
,

���3(�, �) = �3 −
�1

4
−
�2

2
.

By (2), the Shapley value is given by �� (�, �) =
(

�1

3
,
�2

2
− �1

6
, �3 −

�2

2
− �1

6

)

.

We observe that coincidence occurs in �1 if and only if �1 = �2 while it never occurs in �2,

except if �1 = 0, in which case we are reduced to a 2-player game. Assuming �2 > �1 > 0 and

referring to Proposition 2 and Proposition 3, we observe that, in both cases, the nucleolus treats

better the first player while the Shapley value treats better the other two players.

7. Concluding remarks

By limiting ourselves to the case of superadditive essential games with three players and applying

the formula of Legros (1981), we propose a simple framework where the coincidence between

the Shapley value and the nucleolus is confirmed to be a fragile property. Coincidence only

occurs under specific configurations of parameters that reflect symmetry or a particular form

of positivity of the normalized game, in line with the results of Yokote et al. (2017). Beyond

these exceptional cases, the two solutions result in different allocations. We show how players

rank the two solutions depending on the parameters defining the game. The nucleolus favors

the position of the weakest player in �1, �2, and the positive games of �3, while the Shapley

value favors the strongest player. The reverse occurs in �4, �5, and the non-positive games of

�3. Overall, the share of games in which the first player benefits more from the Shapley value

than from the nucleolus is significant, around 83% of the cases in �. As for the second player,

his advantage shifts between the two solutions depending on the parameter configuration.
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